Abstract

We present a new algorithm for solving general semilinear, eliiptic par—
tial differential equations. The algorithm is based on Newton's Method
but uses an approximate iterative method to solve the linear systems that
arise at eaéh step of Newton's Method. We show that the algorithm can
maintain the quadratic convergence of Newton's Method and that it may be
substantially faster than other available methods for semilinear or non-

linear partial differential equations.
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1. The Model Problem

let D be a bounded region of the plane, and let 3D denote the'boundary
of D. We are interested in solving problems of the form

-Au = f(u) on D _ (1.1a)

with u=20 on 3D ) (1.1b)
where f and D are such that

| fu(u) <A <A

(where A is the fundamental eigenvalue of —A on D), so that u(x,y) exists
and is unique. Under suitable conditions, our results apply to more
general semilinear, self-adjoint elliptic boundary value problems in two
and three dimensions and to certain nonlinear problems.

To obtain a numerical solution to (1.1), we must reduce the con-—
tinuous, infinite dimensional problem to a discrete, firite dimensional
one. Several techniques are available to do this, and we consider the
use of finite difference and finite element approximations.

For the finite difference approximation, we replace the differ-
ential operator of (1.1) bf a five-point difference approximation on a
square grid Dh with boundary BDh. Here h is the vertical or horizontal
distance between two adjacent grid points. Letting Uij be the approxi-
mation to u(ih,jh), we see that we may deriye a problem given by the
v equations
Ui, 3t b5 "

for (ih,jh) € Dh
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and Uij = 0 - (1.2b)

for (ih,jh) € 3Dh

which is equivalent to (1.1). More concisely, we may rewrite (1.2) as an

N by N system of nonlinear equations

A = FD) : : (1.3)
where
U= {Uij: (ih,jh) € Dh}
2 .
FO = {h f(Uij)= (ib,jh) e D }

N is the number of grid points in Dh’ and A is obtained from the finite
difference equations (1.2). The system (1.3) will have a unique solu-
tion U and Uij will be a close approximation to u(ih,jh) under the same
conditions as we imposed on the system (1.1) earlier.

(0)

To solve (1.3) for H, we use Newton's Method. Letting E be a

given initial guess, we obtain a sequence of successive approximations
&)
{7} to U

(K+1) _ H(K) - J(H(K))—IIAE(K) - E(H(K)J (1. 4)

X
where JQQ(K)) is given by

3™y = a- —:—g w®) | (1.5)
Under the assumptions given above, J(H(K)) will be symmetric, positive
definite, and sparse (i.e. the number of nonzeroes per row is bounded
independent of h). As we shall see later, it is these properties which
enable our algorithm to be efficient.

We now state the following result concerning the convergence of

Newton's Method, cf. [8].



Theorem 1.1: Newton's Method is quadratically convergent:

%‘H(K‘Fl). _ Hi‘ < C”H(K) _ HIZ

Thus convergence to the solution of the discrete problem will be quite
rapid, requiring only O(log log N) iterations to reduce the error by a
factor of hz.
As an alternative to this finite difference approximation, we now
consider finite element methods for approximating the solution of (1.1).

9
If we let 3%'= f(u), then (1.1) is equivalent to minimizing the functional

G[u] given by
oIl = 1p16ED% + (% - 20w} ax gy @.6)

over all functions u e Wl’z(D) satisfying u = 0 on 9D.

Again we must reduce the infinite dimensional continuous problem
(1.6) to a finite dimensional discrete one. To do this we introduce SN’
a finite dimensional subspace of Wl’ZCD) with a linearly independent set

of basis functions {wi}§= Then we approximate u by

10
N

By x,y)
i=1

with the coefficients Bi chosen so as to minimize

N s N 2 a N 9
Gl 2 B,¥.]1= ID{(~5; LBw) + (5 T B.) a.7)
i=1 i=1 Y oi=1
N
i=1

Differentiating, we wish to choose the Bi so that



. N N S
wai{—A(.Z siwi) - f('Z Biwi)} dx dy = 0 . (1.8)
i=1 i=1

for 1 <i <N
Rewriting this is a more convenient form, we wish to solve the system of

nonlinear equations given by

A=F® | (1.9)

where U ='{Bi},

oy, Bwj Bwi Bwi

— —-— 1 PR
=la ) = Upsr o+ 55 550 dx dy}

A N
and F(D) = {waif(.z
J=

>

) ijj)}

As before, we use Newton's Method to solve (1.9). 1In this case,

(0)

we are given an initial guess Y and obtain a sequence of successive

approximations to H

H(K+l) _ Q(K) _ J(,Q(K))'llA,Ig(K) ‘_EQ&(K))] ' (1.10)
where
saw®y < a _ X p®y Aoy ii(g B,y,0F  (1.11)
WA @ T Uy gL B G

We will assume that {wi(x,y)}§=l is a local basis (i.e. for each i, the
support of wi intersects with the support of a bounded number of wj's).
Then J(Q) will be sparse, symmetric, and positive definite, and the system
(1.9) will have the same properties as the system (1.3).

We have seen how we may use Newton's Method with either finite
difference or finite element approximations. In praétice, we rewrite the

iteration equations (1.4) or (1.10) for Newton's Method so as to obtain



the sequence of successive approximations to U by solving

and setting
E(Kﬂ) _ H(K) _ Q(K) ‘ (1.13)

Our problem is then reduced to the solution of a sequence of related,

sparse, symmetric, and positive definite systems of linear equatiomns.



2. The Solution of Sparse, Symmetric, Positive Definite

Systems of Linear Equations

In this section we éonsider methods for the solution of an N by N sparse,
symmetric, positive definite system of linear equations

Az = b 2.1)
As we saw in Section 1, such systems arise in the use of Newton's Method
in the solution of a model nonlinear problem. We may solve (2.1) using
either a direct decomposition method or one of several iterative methods,

and we will discuss both classes of methods here.

The direct method that we consider is the Choleski decomposition,

a2 symmetric variont of standard Caussian climination. To solve (2.1 we
. . T . . .
first decompose A into the product LL™, with L a lower triangular matrix.
T

Then we successively solve Ly = b followed by L'z = y to obtain the
desired solution Z

It is well known that this direct method may be equally well ap-
plied to PAPT instead of A for any permutation matrix P [8], and we will
use this fact to reorder the variables and equations of the system (2.1)
so as to reduce the storage and/or time required for its solution.

In general, the use of the Choleski decomposition to solve an N

by N symmetric system of linear equations requires O(Nz) storage and O(N3

time. However, since our model problem is sparse, we may use any of

several techniques to reduce these requirements. All of the direct meth-

ods which we will describe are sensitive to the ordering of the variables




and equations. It is of great imporfance to choose a permutation matrix
P so that the reordered‘matrix PAPT can be decomposed in as little time
and with as little storage as péssible. It has been shown that our model
problemko_n a square five—point finite difference mesh requires at least
Q(N log N) storage and at least O(N3/2) time [7]. Moreover, using tech-
niques which we describe later and an ordering due to Birkhoff and George
[2], we can actually achieve these lower bounds.

The simplest mefhods which take advantage of the sparsity in A are
the band methods. We define the bandwidth b(A) of A by

b(&) = max {]i-j|: a;, # 0) | | (2.2)

It is easily verified that if li-jl > b(A), then éij = Qij = 0, so that
we need only store and operate on those elements which £all in the band
of A (i.e. those elements a,

13

problem the use of a band method with the natural (row by row) variable

such that |i-j| < B(A)). For our model

ordering will reduce the storage and time to O(NB/Z) and O(Nz), respec-
tively [8].

With more effort we can do even better than this. Band methods
assume that all the matrix elements are nonzero within the band. For
many variable orderings, though, this is not the case, and we can obtain
further reductions in space and time by keeping more careful track of the
positions of the nonzeroes in A and L. To do ;his we store the nonzero
matrix elements row by row, keeping track of the number of nonzero ele-
ments in each row and the column index of each element. Since column

accesses are quite costly, we perform all the eliminations in each row at



the same time and insert new nonzeroes where and when they occur during
the decomposition pfocess. Using such techniques has the advantage that
we can fully utilize our knowledge about the zero structures of A and L
in order to reduce the costs of solving (2.1). However, the data strucr
" tures (linked lists) and programming needed to implement the scheme may
be quite complex, the storage requirements are vériable so that storage
management may be difficult, and the technique may not adapt well to
paged, virtual storage systems.

To avoid the difficulties just mentioned, we use an improvement,
due to Chang [3], in»which we preprocess the system (2.1) in order to
determine the exact locations of the nonzeroes in L before we actually do
the decomposition. This symholic factorization, though quite complex in
itself, need be done only once for a sequence of problems (2.1} in which
A has a fixed zero structrre (even if the actual values of the elements
of A do change). Thus for an application like Newton's Method, the cost
of the symbolic factorization may be spread over the solution to a number
of systems (2.1). TFor each system to be solved, we need perform only a
numerical factorization, a process which becomes quite efficient after the
symbolic factorization has determined the exact zero structure of L. When
this technique is used with the nested dissection variable ordering due
to Birkhoff and George [2], the Choleski decomposition requires only

/

O(N log N) storage and'O(N3 2) time.
The alternative to using a direct method for the solution of (2.1)

would be to use one of the many iterative methods [13] which are avail-



able. These have been developed mainly to solve sparse‘linear systems
like our model problem, and they work very well for regular problems on
simple areas of the plane. The main advantages of the iterative methods
ére in the storage requirements (usually O(N)), in the fact that some of
them may be fastef than direct methods, and in their ability to make use
of a good guess at the solution. This last point is especially applicable
to our model noanlinear problem, for the solutions to the sequence of
linear problems arising from Newton's Method aré converging quadratically
towards the solution of the nonlinear problem.

However, the good points of the iterative methods may often be
outweighed by their negatiye features. Most important, it is difficult
to know when to stop iterating, since a posteriori error bounds are usu-
ally not conveniently available. Also, several of the methods have
parameters which must be accurately estimated in order for the methods to
behave well. Finally, not all of the methods can be extended easily to
non-rectangular or irregular domains, so that there are many problems for
which the iterative methods may not help at all.

In Table 2.1 (cf. ]6]) we summarize the storage and time require-—
ments of several direct and iterative methods. One should be careful
- about making direct comparisons, however, since the choice of the best
method for a problem may depend on the problem size, on the context of
the linear system in allarger numerical method, and, especially, on the
coefficients of the terms in the expressions for the storage and time

requirements.



Table 2.1

Method

Choleski Decomposition

Band Choleski Decomposition
Sparse Choleski Decomposition
Gauss—Seidel Iteration

SOR Iteration (Optimal w)
SSOR Iteration

ADI Iteration (Optimal a)

SIP Tteration

Storage
oa?)
or*/?)y
O(N log N)
o)

o)

o)

o)

O(N)

Time
o)

ov?)

o2y

o’

OCN‘?'/2 log N)
oo/

o log2 N)
o(N log2 N)

10.
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3. The Newton—-Sparse-Richardson Method

We now return to the model nonlinear problem presented in Section 1 and
discuss the numerical solution of the sequence of linear problems gen—
_erated by Newton's Method.. We consider direct decomposition methods and
certain variations on them that we will mention later. Although we re—
strict our analysis to the model problem, it is clear that what we will
say is applicable to any numerical method which requires the solution of

a sequence of related systems of linear equations.

The most obvious method for solving.the sequence of linear systems
is to solve each system using the sparse Choleski decomposition presented
in Section 2. We shall call this method Newton-Sparse (NS), and it is
clear that it has all of the convergence properties of Newton's Method.
The advantages of NS are that there are no parameters to estimate and
that it is essentially independent of the domain and the source of the
linear systems. However, it ignores the relationships which exist between
the solutions of successive problems, and its requirements for O(N log N)

/2

storage and O(N3 log log N) time very likely make it inferior td vari~
ations of Newton's Method using SSOR, ADI, or SIP (cf. I8]) to solve the
linear systems occurring at each step (although this may depend heavily
on implementation efficiency).

In an effort to avoid these difficulties, we will present a modi-—

fication to the straightforward NS method based on the ideas embodied in

the Strongly Implicit Procedures (SIP) of Stone [11], Diamond [4], and
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others. The basic strategy for the solution of each linear system in
the sequence is to use the solution to a different, but related, system .
in conjunction with an iteration procedure to obtain‘the solution to the
system of interest. In particular, suppose tﬁat we wish to solve (2.1)
and that for some matrix B (depending on A) we can quickly solve (say in
O(N) time) the system

(A+B)¥ =4 . (3.1)
We may then obtain the solution of (2.1) by using a Richardson-D'Jakonov

iteration (cf. [5, 9, 13]) to generate a sequence of vectors'{%(K)} which

(0)

converge linearly to the desired %. For a given starting guess z , the
successive iterates are obtained by solving the system

a8z ) = iy ® 4 vy ® - g | (3.2)
or, equivalently, by first solving the system

» ® _ , &

(A+B)Q = Az -B (3.3)

and then setting %(K}l) = %(K) + YQ(K)-

The cost of each step of the

iteration will be O(N), and the iteration will converge to the solution
of (2.1) if p = i1 + Y(A+B)-.1 All < 1. To maximize the rate of converg-—
ence, we must choose y to minimize p. If all the eigenvalues of (A—H!.)“l A
lie in the interval [a,8], then we will choose y = 2/(a+B) and obtain

p = (B~a)/(a+B). If A and B are such that a and B are independent of N,
then the iteration will converge at a rate independent of the mesh size.
Hence, the solution of (2.1) with the above version of SIP would require

0(log N) Richardson iterations or O(N log N) total time in order to re-

duce the initial error by a factor of 1/N. Further, it has been shown
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by several authors that these requirements may be reduced by using
Tchebychev acceleration to choose a sequence of parameters.{XK} instead
of the single parameter y [4].

The main problem with SIP is that it has so far defied analysis
.even for our model problem, and it is not known whether there exists a
matrix B for which d and B are independent of N. 'We now examine a method
similar to SIP which does lead to a rate of convergence independent of N.
SIP chooses a matrix B so that A+B has a sparse, symmetric decomposition
of an especially nice form. What we propose is to choose B so that A+B
is a matrix for which we already have a deéomposition, even though the
decomposition will have O(N log N), rather than O(N} nonzero elements.
That is, in order to guarantee a rapid rate of convergence independent of
the mesh size, we will sacrifice a factor of lqg N in the work per iter—
ation. More explicitly, we use a direct decomposition method to decompose
J(Q(O)) into a product LLT in the first step of Newton's Method. Then at
successive steps of Newton's Metﬁod, Qe define B = J(E(O)) - J(E(K)) and
use the Richardson-D'Jakonov iteration given above to solve (1.12). We
shall call this method Newton-Sparse—Richardson (NSR).

There are two main theoretical questions which arise concerning
the use of NSR. First, is it possible to maintain the quadratic converg—
ence of the Newton iteration by using an inner Richardson-D'Jakonov
iteration scheme at each step? And if so, how many Richardson-D'Jakonov
iterations are required to do it? 1In answer to these questions, we give

the following two theorems, which will be proved elsewhere [10].
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~ Theorem 3.1: If Newton's Method is quadratically convergent for a given

&*+1) (5 be the 25th

semilinear problem (1.1), and if we define U
Richardson-D'Jakonov iterate in the K-th step of NSR, then NSR is quad-
fatically convergent independent of N:

1y (D)

g g < elp® -, e < 1.

Theorem 3.2: If Newton's Method is quadratically convergent for a given
(k+1) |

semilinear problem (1.1), and if we define H to be the first
Richardson-D'Jakonoy iterate in the K-th step of NSR, then NSR is linearly

convergent independent of N:

“E(K+l) —vH" S_cﬂE(K) - H”, c < 1.

Having determined that NSR will actually converge whenever Newton's
method converges, we now wish to know how much effort is required to solve
a semilinear problem using NSR. Rather surprisingly, we have the fol-
lowing theorem which shows that if we neglect preprocessing and the cost
of the sparse LLT factorization at the first step, then the NSR methods

described in Theorems 3.1 and 3.2 asymptotically require the same amount

of time!

‘ Theorem 3.3: Assume that Newton's Method converges quadratically for a
given semilinear problem (1.1). Then the NSR methods described in The—
orems 3.1 and 3.2 will reduce the initial error "H(O) - Q” by a factor of
1/N in O(N log2 N) iteration time, if we ignore preprocessing and the

T . . .
cost of the LL™ factorization at the first step.
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Proof: Each Richardson-D'Jakonov (RD) iteration requires O(N log N) time.
If we take ZK‘RD iterations at the K-th step of NSR,VTheorem 3.1 tells us
that we can achieve quadratic convergence, so that we need only log log N
NSR steps to reduce the initial error by 1/N. The total iteration time
required for NSR is then
'log log N K » 2
o( T 27 N log N) = O(N log™ N)
K=1
On the other hand, if we use only one RD iteration at each step of NSR,
we will need log N steps to reduce the initial error by 1/N. Since each
step of NSR will require O(N log N) time, we see again that the total

time for NSR is O(N log2 N).

If we consider the sparse factorization at the first NSR step to

be a form of preprocessing, then NSR requires only O(N log2 N) time as

against the O(NB/2

log log N) time required for the NS method that we
discussed above. Other adyantages of the NSR method are that it is in-
dependent of both the problem domain and the method used to generate the
nonlinear system of equations and that it takes advantage of good guesses
to the solution at each iteration step. The only serious disadvantages

of NSR are its requirements for O(N log N) storage locations and O(NB’/2

)

preprocessing time.
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4. Numerical Experimerits

In this section, we shall illustrate our general method by solving the
equation
(Sux)x + (tuy)y = f(x,y,u)
over the domain
35 35
D = (0,1) x (0,1) - Ig,5] * I5s%]
the unit square with a hole cut out. In particular, we consider two

problems given by Bartels and Daniel [1]:

: 2 2, - » x y - u

{(A+x" +y )gxlx + {(1+e +e )uy}y g(x,y)e (4.1a)
in D

ulx,y) = < + yz (4.1b)
on 3D

and

, 2 . xy 3

QA+ G} + {10+ e)u } = gkx,y)(1 + v) (4.2a)

XX vy

in D ‘

u(x,y) = Xz + yz (4.2b)

on 9D
where in each case g(x,y) is chosen to make the unique exact solution
u(x,y) = x2 + yz. For all tests, the initial approximation was chosen to
be zero inside the region and to satisfy the boundary conditions. The
results are summarized in Table 4.1. By way of comparison, we also give

in Table 4.2 the corresponding times for the Nonlinear Conjugate Gradient

method (NCG) proposed by Bartels and Daniel [1]. All times listed are in
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seconds and reflect execution times on a CDC—66OC. We note that asymp-—

totically NCG requires O(N) storage, O(NB/2

log N) preprocessing time,
gnd o log2 N) iteration time, whereas NSR requires.O(N log N) storage,
0(N3/2) preprocessing time, and O(N log2 N) iferation time.

The results are clear: even including domain—dependent preprocess—
ing time (ordering and symbolic factorization), which accounts for roughly
half the total execution time, NSR reduces the nonlinear residual by a
factor of 10”11 in significantly less time than NCG requires to reduce
the error by a factor of 10-3. There is little to choose between the two

yariants of NSR. Other experiments indicate that letting the number of

Richardson iterations vary between the two extremes gives better results.
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Table 4.2
Nonlinear Conjugate Gradient Method
" Problem (4.1) Problem (4.2)

"h'=1/16 h=1/32 h=1/16 h=1/32
Preprocessing time .394 2.90 .398 2,82
Number of conjugate gradient 6 8 9 12
iterations to reduce error by :
factor h?
Time per iteration . 347 1.20 .287 .943
Total iteration time 2.08 9.63 2.58 11.3

Total time 2.57 12.9 3.05 14.4
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5. Conclusion

In this paper we have presented a means for improving the efficiency of
Newton's Method as used in the numerical solufion of semilinear self-
adjoint, elliptic partial differential equations. However, our technique
of using an SIP-like iteration to solye the linear systems that arise in
each step of Newton's Method is not limited to just this one application.
Under suitable conditions, the method may be equally useful in the nu-
merical solution of more general nonlinear and time dependent problems.
In fact, the technique may prove fruitful whenever the numerical solution
of any problem requires the solution of a sequence of related systems of
linear equations; the only restriction is that the operafors in successive
systems be close enough so that the Richardson-D'Jakonov iteration con-—
verges quickly.

In theory we have seen that our method is quite efficient. The
numerical examples show the practical value of the method, both as a tool
for enhancing the efficiency of Newton's Method and as a very efficient
means of solving certain semilinear problems fof which other methods have
been successfully used in the past. We are currently examining the ap-—
plicability of the method to the numerical solution of more general non-
linear problems, and we fully expect that it will be able to compete quite

successfully with methods which are currently in use.
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