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1 Introduction

In classical potential theory, boundary value problems for Laplace’s equation are re-

duced to second-kind boundary integral equations by representing the solutions to the

differential equations by a combination of single-layer and double-layer potentials on the

boundary of the domain. When the boundary of the domain is smooth, the kernels

for the corresponding integral equations are smooth. Moreover, if the boundary data is

smooth then the solutions are also smooth. This class of problems is well understood;

the existence and uniqueness of solutions follow from Fredholm theory, and the integral

equations can be solved numerically using standard tools.

However, when the region has corners the solutions to both the differential equa-

tion and the boundary integral equation are singular. The nature of the singularities

has been the subject of extensive analysis (see [8], [13], [14], and [21] for representative

examples). In particular, it is well-known that solutions are unique and exist in the L2-

sense (see [5], [20]) both for the differential and integral equations. Moreover, the leading

singular terms of the solutions in the vicinity of corners are known for both the integral

and the differential equation. More recently, in [18] the behaviour of solutions to the

boundary integral equations arising from Dirichlet and Neumann boundary conditions in

the vicinity of corners for polygonal domains was characterized in detail. In particular,

it was found that the solution in the vicinity of corners can be represented by linear com-

binations of certain explicitly-known powers and powers multiplied by logarithms. The

analysis has subsequently been extended to curved boundaries [17] as well as the Dirich-

let and Neumann boundary value problems for the Helmholtz [19] and biharmonic [15]

equations. In [12] these representations were used to construct efficient discretizations

for the solution to Laplace’s equation with Dirichlet and Neumann boundary conditions.

In this paper we give a detailed description of the behavior of the solutions to the

integral equations arising in Laplace transmission problems with polygonal boundaries.

Such problems arise naturally in electrostatics. We find that the solutions in the vicin-

ity of corners are representable by certain series of implicitly-defined powers which are
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analytic functions of the material parameters. We then use these analytical results to

construct highly accurate and efficient numerical algorithms for the solution to Laplace

transmission problems on polygonal domains. We demonstrate the performance of this

approach with a number of numerical examples.

The structure of the paper is as follows. In Section 2 we describe the necessary

mathematical preliminaries. Section 3 contains the analytical results. Section 4 contains

numerical results illustrating the performance of the algorithm.

2 Mathematical Preliminaries

2.1 Boundary Value Problems

Let Ω be the interior of a polygonal domain in R2 and γ : [0, L]→ R2 a counterclockwise

arc length parametrization of its boundary. Let ν(t) be the inward-pointing normal to

γ at t ∈ [0, L], and let Γ denote the boundary of Ω. For boundary data f, g : [0, L]→ R

and real numbers λ1, λ2, λ3 and, λ4, we consider the following problem.

Laplace transmission problem:

∇2φ(x) = 0 x ∈ R2 \ Γ, (1)

λ1 lim
x→γ(t)
x∈Ω

φ(x)− λ2 lim
x→γ(t)

x∈R2\Ω

φ(x) = f(t) t ∈ [0, L], (2)

λ3 lim
x→γ(t)
x∈Ω

∂φ(x)

∂ν(t)
− λ4 lim

x→γ(t)

x∈R2\Ω

∂φ(x)

∂ν(t)
= g(t) t ∈ [0, L]. (3)

Let φ1 denote the solution of (1) in the interior and φ2 denote the solution in R2 \Ω.

Remark 2.1. In this paper we assume that λ1, λ2, λ3, λ4 > 0. A similar analysis applies

to the case where some, or all, of the coefficients are negative or zero.

Remark 2.2. For ease of exposition we restrict our discussion to regions with polygonal

boundaries. The analysis and algorithm outlined in this paper extend in a straightforward

manner to multiply connected domains and domains with curved boundaries.
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2.2 Single- and double-layer potentials

In classical potential theory, boundary value problems are solved by representing the

solution of the differential equation inside the region as a potential induced by charges

and dipoles on the boundary. Let ψ0
x0(x) denote the potential of a unit charge at x0 ∈ R2

and let ψ1
x0,h

(x) denote the potential of a unit dipole at x0 ∈ R2 oriented in the direction

h. Specifically, ψ0
x0 , ψ

1
x0,h

: R2 \ x0 → R are given by the following formulas

ψ0
x0(x) = log(‖x− x0‖), (4)

ψ1
x0,h(x) =

〈h, x0 − x〉
‖x0 − x‖2

. (5)

where ‖ · ‖ denotes the standard Euclidean distance and 〈·, ·〉 denotes the inner product.

The potential due to a charge distribution ρ on the boundary Γ is referred to as a

single-layer potential and is given by

φ0
ρ(x) =

∫ L

0
ψ0
γ(t)(x)ρ(t) dt, (6)

for any x ∈ R2\Γ. Similarly, the potential due to a dipole distribution ρ on the boundary

is referred to as a double-layer potential and is given by

φ1
ρ(x) =

∫ L

0
ψ1
γ(t),ν(t)(x)ρ(t) dt, (7)

for any x ∈ R2 \ Γ.

The following theorem describes the behaviour of (6) and (7) as x approaches the

boundary Γ.

Theorem 2.1. Suppose the point x approaches a point x0 = γ(t0) from the inside along
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a path such that

−1 + α <
x− x0

‖x− x0‖
· γ′(t0) < 1− α (8)

for some α > 0. Then

lim
x→x0

φ0
ρ(x) = φ0

ρ(x0) (9)

lim
x→x0

φ1
ρ(x) = φ1

ρ(x0)− πρ(x0) (10)

lim
x→x0

d

dτ

∣∣∣∣
τ=0

φ0
ρ(x+ τν(t0)) =

d

dτ

∣∣∣∣
τ=0

φ0
ρ(x0 + τν(t0)) + πρ(x0). (11)

Similarly, if x approaches a point x0 = γ(t0) from the outside then

lim
x→x0

φ0
ρ(x) = φ0

ρ(x0) (12)

lim
x→x0

φ1
ρ(x) = φ1

ρ(x0) + πρ(x0) (13)

lim
x→x0

d

dτ

∣∣∣∣
τ=0

φ0
ρ(x+ τν(t0)) =

d

dτ

∣∣∣∣
τ=0

φ0
ρ(x0 + τν(t0))− πρ(x0). (14)

Definition 2.1. Define the operator φ∗ : L2([0, L])→ L2([0, L]) by

φ∗ρ(t) =
d

dτ

∣∣∣∣
τ=0

φ0
ρ(t+ τν(t)) (15)

The following lemma gives a representation of the normal derivative of the single-layer

potential φ∗ρ in terms of the function ψ1.

Lemma 2.2. Let Ω be the interior of a polygonal domain in R2 and γ : [0, L] → R2

a counterclockwise arc length parametrization of its boundary. Let ν(t) be the inward-

pointing normal to γ at t ∈ [0, L], and let Γ denote the boundary of Ω. Then, for ρ ∈

L2([0, L])

φ∗ρ(t) =

∫ L

0
ψ1
γ(t),ν(t)(γ(s)) ρ(s) ds. (16)
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The following theorem is proved in [7] and describes the behaviour of the normal

derivative of a double-layer potential near the boundary.

Theorem 2.3. Let 0 < t0 < L and suppose that the curve γ and the density ρ are

smooth on the interval (t0 − δ, t0 + δ) for some δ > 0. Suppose further that the point x

approaches a point x0 = γ(t0) along a path such that

−1 + α <
x− x0

‖x− x0‖
· γ′(t0) < 1− α (17)

for some α > 0. Then

lim
x→x0
x∈Ω

d

dτ
φ1
ρ(x+ τν(t0))

∣∣∣∣
τ=0

, (18)

and

lim
x→x0
x∈R2\Ω

d

dτ
φ1
ρ(x+ τν(t0))

∣∣∣∣
τ=0

, (19)

are well-defined and equal.

2.3 Properties of the double-layer potential

The following lemma establishes the regularity of the function ψ1
x0,h

(x) when x0, x ∈ Γ

and h is normal to Γ. It can be found in [1], for example.

Lemma 2.4. Let γ : [0, L] → R2 be a curve parametrized by arclength and ν(t) be the

normal vector to γ(t) = (γ1(t), γ2(t)), 0 < t < L, satisfying

ν(t) = (−γ′2(t), γ′1(t)). (20)

Suppose that for some integer k ≥ 2, γ is Ck in a neighbourhood of a point s, 0 < s < L.
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Then

ψ1
γ(s),ν(s)(γ(t)), (21)

ψ1
γ(t),ν(t)(γ(s)), (22)

are Ck−2 functions of t in a neighborhood of s and

lim
t→s

ψ1
γ(s),ν(s)(γ(t)) = lim

t→s
ψ1
γ(s),ν(s)(γ(t)) = −1

2
κ(s), (23)

where κ : [0, L] → R is the signed curvature of γ. Similarly, if γ is analytic in a neigh-

borhood of a point s, where 0 < s < L, then (21) and (22) are analytic functions of t in

a neighborhood of s.

The following lemmas describes the behaviour of ψ1 in the vicinity of a corner.

Lemma 2.5. Under the same assumptions as the previous lemma, if γ has a corner with

interior angle πα at t0 then

lim
s→t+0
t→t−0

ψ1
γ(s),ν(s)(γ(t)), (24)

lim
s→t+0
t→t−0

ψ1
γ(t),ν(t)(γ(s)), (25)

do not exist. In particular, along s− t0 = −(t− t0) = h,

ψ1
γ(t0+h),ν(t0+h)(γ(t0 − h)) =

( cosπα

2 sinπα

) 1

h
+O(1) (26)

if γ is smooth in a neighbourhood of the corner.

Lemma 2.6. Suppose Γ is an open wedge with side lengths one and an interior angle

of πα, where 0 < α < 2. Let γ : [−1, 1] → R2 be an arclength parametrization of Γ, and
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ν(t) be the inward-pointing normal to Γ. Then

ψ1
γ(t),ν(t)(γ(s)) =

−|s| sinπα
s2 + t2 + 2st cosπα

, (27)

if s < 0, t > 0 or s > 0, t < 0. For all other values of s and t, ψ1
γ(t),ν(t)(γ(s)) = 0.

Lemma 2.7. Let Ω be a polygonal domain with boundary curve Γ. Let γ : [0, L] → R2

be a counter-clockwise arc length parametrization of Γ and ν(t) be the inward-pointing

normal vector to Γ at γ(t). Let Γ∗ be a subset of Γ corresponding to a wedge of sidelength

δ > 0, and without loss of generality assume that γ : [0, 2δ]→ Γ∗. Then

∫ L

2δ
ψ1
γ(t),ν(t)(s) ρ(s) ds, (28)

and

∫ L

2δ
ψ1
γ(s),ν(s)(t) ρ(s) ds, (29)

are smooth for all 0 < t < 2δ and ρ ∈ L2([0, L]).

We conclude this section with the following definitions which will be used in the

remainder of the paper.

Definition 2.2. For a given boundary Γ, we define the kernel K : Γ × Γ → R by the

formula

K(x, y) = ψ1
y,ν(y)(x). (30)

Here by a slight abuse of notation we denote the normal derivative to Γ at a point y ∈ R2

by ν(y), instead of ν(γ−1(y)). Similarly, we define the adjoint kernel K∗ : Γ× Γ→ R by

the formula

K∗(x, y) = ψ1
x,ν(x)(y). (31)
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2.4 Boundary conditions in terms of potentials

In order to solve the system (1) we represent the interior and exterior solutions each as

the sum of a single-layer potential and a double-layer potential;

φ1(x) = φ0
ρ1(x) + φ1

ρ3(x), (32)

φ2(x) = φ0
ρ2(x) + φ1

ρ4(x), (33)

where ρ1 and ρ2 are charge densities on the inside and outside surface of the boundary,

respectively, and ρ3 and ρ4 are dipole densities on the inside and outside surface of the

boundary, respectively. We are then free to choose two additional relations between the

densities ρ1, ρ2, ρ3 and, ρ4. As in [16], for example, we choose the additional constraints

so that the singular integrals in (32) and (33) cancel. Equivalently we set

λ1ρ1 = λ2ρ2, (34)

λ3ρ3 = λ4ρ4. (35)

Let ρs = ρ1/λ2 and ρd = ρ3/λ4. The following lemma reduces the boundary value

problem (1) to a system of integral equations.

Lemma 2.8. Suppose ρs and ρd satisfy the integral equations

−π (λ1λ4 + λ2λ3) ρd(t) + (λ1λ4 − λ2λ3)φ1
ρd

(t) = f(t), (36)

π (λ1λ4 + λ2λ3) ρs(t)− (λ1λ4 − λ2λ3)φ∗ρs(t) = g(t). (37)

Then φ1 and φ2 given by (32) and (33), respectively, satisfy (1)-(3) with ρ1 = λ2ρs,

ρ2 = λ1ρs, ρ3 = λ4ρd, and ρ4 = λ3ρd. Moreover, if φ satisfies (1)-(3) then there exist ρs

and ρd such that φ is given by (32) inside Γ and by (33) outside.

Remark 2.3. For simply-connected domains with the choice of auxiliary conditions given

by (34) and (35), the equations for the single-layer densities and double-layer densities

completely decouple. For multiply-connected domains, though the single- and double-layer
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densities are coupled, it does not affect the structure of the singularities near corners.

For ease of exposition we introduce the constant β, defined by

β =
λ1λ4 − λ2λ3

λ1λ4 + λ2λ3
, (38)

and define the rescaled boundary conditions f̃ , g̃ : [0, L]→ R by

f̃(t) =
1

λ1λ4 + λ2λ3
f(t) (39)

g̃(t) = − 1

λ1λ4 + λ2λ3
g(t), (40)

in which case (36) and (37) can be re-written as

−πρd(t) + βφ1
ρd

(t) = f̃(t), (41)

−πρs(t) + βφ∗ρs(t) = g̃(t). (42)

Note that |β| < 1 if λ1, λ2, λ3, λ4 > 0.

2.5 Analytical Formulas

The following lemmas, proved in [18], provide the values of certain integrals which will

be used in this paper.

Lemma 2.9. Suppose that 0 < α < 2 is a real number and µ is a complex number such

that Reµ > −1, and µ 6= 0, 1, 2, 3, . . . Then

∫ 1

0

s sinπα

t2 + s2 − 2st cosπα
tµ dt = πsµ

sinπµ(1− α)

sinπµ
+
∞∑
k=0

sin (k + 1)πα

µ− k − 1
sk+1,

(43)

for all 0 < s < 1.

Lemma 2.10. Suppose that 0 < α < 2 is a real number and m is a non-negative integer.
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Then

∫ 1

0

s sinπα

t2 + s2 − 2st cosπα
tm dt = smπ(1− α) cosmπα− sm log(s) sinmπα

+
∞∑
k≥0

k 6=m−1

sin (k + 1)πα

m− k − 1
sk+1,

(44)

for all 0 < s < 1.

The following lemmas establish properties of a certain collection of implicitly-defined

functions.

Lemma 2.11. For a fixed −1 < δ < 1, consider the equation

β sin δz = sin z. (45)

Then for each j = 0, 1, 2, . . . , there exists an open region Rj ⊂ C containing the interval

on the real axis (−1, 1), and a function zj(β) which is holomorphic on Rj and satisfies

the following equations

β sin δzj(β) = sin zj(β), (46)

zj(0) = πj. (47)

Moreover, these solutions are complete. Namely, if there exists (z0, β0) ∈ R+ × (−1, 1)

satisfying (45) then z0 = zj(β0) for a unique j ≥ 0.

Proof. Note that

dzj
dβ

=
sin(δz)

1− δ2β2 − (1− δ2) sin2(z)
[cos(z) + δβ cos(δz)] , (48)

and so is bounded for all −1 < β < 1. By the analytic implicit function theorem, there

exists an open region in C containing (−1, 1) on which the function zj can be uniquely
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defined. �

Lemma 2.12. Fix −1 < δ < 1. If

zj(β0) = kπ (49)

for some integer k and β0 ∈ (−1, 1), β0 6= 0, then δkπ is an integer, k = j and

zj(β) = jπ (50)

for all β ∈ (−1, 1).

Proof. If zj(β0) = kπ, β0 6= 0 then

sin(δkπ) = 0, (51)

and hence z(β) = kπ is a solution to (45) for all β ∈ [−1, 1]. The uniqueness guaranteed

by the implicit function implies that z(β) = zj(β) which completes the proof. �

Lemma 2.13. Suppose that δπj is not an integer. Then Rj contains [−1, 1]. Moreover,

let σ+
j be the jth smallest element of

{
k

1− (−1)kδ

∣∣∣∣ k = 0, 1, 2, . . .

}
(52)

and let σ−j be the jth smallest element of

{
k

1 + (−1)kδ

∣∣∣∣ k = 0, 1, 2, . . .

}
. (53)
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Then

lim
β→−1

zj(β) = σ−j , (54)

lim
β→1

zj(β) = σ+
j . (55)

Proof. The proof is an immediate consequence of the previous lemma and the analytic

implicit function theorem. �

Lemma 2.14. For n ≥ 1, suppose that (1− δ)jπ is not an integer for any j ≤ n and let

A be the n× n matrix with entries defined by

Ai,j(β) =


πβ sin(1−δ)iπ

zj(β)−iπ β 6= 0, i 6= 0, or j 6= 0

−π (1− βδ) β 6= 0, i = j = 0,

−πδi,j β = 0.

(56)

Then detA(β) is a holomorphic function of β in an open set containing [−1, 1].

Proof. First, we observe that

zj(β)− iπ 6= 0 (57)

if β 6= 0 or i 6= j. Moreover

dzj(β)

dβ

∣∣∣∣
β=0

= (−1)j sin(πjδ) 6= 0. (58)

and thus

1

zj(β)− iπ
(59)
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has a simple pole at β = 0 if i = j. If j 6= i then it is holomorphic on Rj . Hence

πβ
sin (1− δ)jπ
zj(β)− iπ

(60)

is holomorphic on Rj \{0} and has a removable singularity at β = 0. The holomorphicity

of Aij on Rj follows by l’Hôpital’s rule.

Letting R∗n be the intersection of all Rj , j ≤ n, we observe that [−1, 1] is in the

interior of R∗n from which the result follows. �

Lemma 2.15. For n ≥ 1, suppose that (1− δ)jπ is not an integer for any j ≤ n and let

A be the n×n matrix defined in the previous lemma. Then det(A) 6= 0 for all β ∈ [−1, 1].

Proof. If β = 0 then the result follows immediately from the definition of A. For β 6= 0

let C be the n× n matrix with entries given by

Ci,j(β) = πβ
1

zj(β)− iπ
(61)

and B the n× n diagonal matrix with entries

Bj,j = sin(1− δ)πj, (62)

and note that A = BC. Since C is a square Cauchy matrix it is invertible. Moreover, B

is diagonal and by assumption, since (1− δ)zj(β) 6= kπ for any integer k, it follows that

detB 6= 0. �

Definition 2.3. For j = 0, 1, . . . and −1 < δ < 1, define wj(β) via the formula

wj(β; δ) = zj(β;−δ). (63)
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In particular, note that

β sin(δwj(β)) = − sin(wj(β)), −1 < β < 1, (64)

wj(0) = πj. (65)

Definition 2.4. For j = 0, 1, . . . and −1 < δ < 1, define the n × n matrix B(β; δ) via

the formula

Bij(β; δ) = Aij(β;−δ) (66)

where the entries of Aij are given by (56).

The following lemma establishes the convergence of a family of series.

Lemma 2.16. Suppose that n is a positive integer and 0 < zj < (n+1)π and 0 < α < 2.

Define the function φj(z;n) by

φj,n(s) =

∞∑
k=n+1

sin kπα
zj
π − k

sk−n. (67)

Then φj,n is bounded for all 0 ≤ s ≤ 1.

Proof. We begin by observing that

∞∑
k=n+1

sin kπα
zj
π − k

sk−n (68)

converges for all |s| < 1 and thus φj,n is continuous on [0, 1).

Next, define the sequences w1, w2, . . . and q1, q2, . . . by

wk = − sin kπα, (69)

qk =
1

k − zj
π

sk. (70)
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Observe that for all N ≥ n+ 1,

∣∣∣∣∣
N∑

k=n+1

wk

∣∣∣∣∣ =
1

2

∣∣∣∣∣
N∑

k=n+1

eikπα − e−ikπα
∣∣∣∣∣ (71)

≤ 1

2

∣∣∣∣∣1− ei(N−n)πα

1− eiπα
− 1− e−i(N−n)πα

1− e−iπα

∣∣∣∣∣ (72)

≤ 1

2 sin πα
2

<∞. (73)

Moreover, note that qk > qk+1 > 0. Therefore, by the Dirichlet test,

∞∑
k=n+1

sin kπα
zj
π − k

sk−n (74)

converges for s = 1. By Abel’s theorem it follows that φj,n is continuous on [0, 1] and

thus is bounded. �

3 Analytical results

In the following two sections we characterize the behaviour of solutions to (36) and

(37) on a wedge, provided the prescribed boundary data is analytic on either side of

the corner, though possibly discontinuous across it. This analysis immediately applies

to general polygonal domains since Lemma 2.7 guarantees that the potential due to the

remainder of the boundary is analytic when restricted to a sufficiently small neighborhood

of a corner. Finally, we note that in light of Remark 2.3 it suffices to consider (41) and

(42) independently.

In the following we take Γ to be a wedge with unit side lengths and interior angle πα,

where 0 < α < 2 and α is irrational. Additionally, let γ : [−1, 1] → Γ be an arclength

parametrization of Γ and ν(t) denote the inward facing normal.
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3.1 Series representation of the solutions of the double-layer equation

Theorem 3.1. Suppose that f is representable by a convergent Taylor series on the

intervals [−1, 0] and [0, 1], so that

f(t) =

∞∑
k=0

ckt
k +

∞∑
k=0

dk sgn(t) |t|k. (75)

Then, for all n ≥ 0, there exist sequences a0, . . . , an and b0, . . . , bn such that if

ρd(t) =
n∑
k=0

ak|t|wj(β)/π +
n∑
k=0

bk sgn(t) |t|zj(β)/π (76)

then

−πρd(s) + β

∫ 1

−1
ψγ(t),ν(t)(γ(s))ρd(t) dt = f(t) + snφ(s) (77)

for −1 ≤ s ≤ 1. Here φ : [−1, 1] → R is a bounded function, and zj(β; 1 − α) and

wj(β; 1− α) are the functions defined in Lemma 2.11 and Definition 2.3, respectively.

Proof. If β = 0 then the result follows immediately. Now suppose β 6= 0. Applying the

results of Lemma 2.9, if µ > −1, µ 6= 0, 1, 2, . . . then

∫ 1

−1
K(s, t)|t|µ dt = −π|s|µ sinπµ(1− α)

sinπµ
−
∞∑
k=0

sin (k + 1)πα

µ− k − 1
|s|k+1 (78)

and

∫ 1

−1
K(s, t) sgn(t) |t|µ dt = π sgn(s)|s|µ sinπµ(1− α)

sinπµ
+ (79)

∞∑
k=0

sin (k + 1)πα

µ− k − 1
sgn(s)|s|k+1
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from which it follows that

−π|s|wj/π + β

∫ 1

−1
K(s, t)|t|wj/π dt = (80)

− [π + βπ(1− α)] δj,0 − β
∞∑
k=1

sin kπα
wj

π − k
|s|k,

and

−π sgn(s)|s|zj/π + β

∫ 1

−1
K(s, t) sgn(t)|t|zj/π dt = (81)

− π [1− (1− α)β] δj,0 + β

∞∑
k=1

sin kπα
zj
π − k

sgn(s)|s|k.

Recalling the definition of the matrices A and B given in (56) and (66), respectively,

it follows that

−πρd(s) + β

∫ 1

−1
K(s, t)ρd(t) dt =

n∑
k=0

sgn(s)|s|k
n∑
j=0

Akjbj −
n∑
k=0

|s|k
n∑
j=0

Bkjaj

(82)

+
∞∑

k=n+1

n∑
j=0

bj
sin kπα
zj
π − k

sgn(s)|s|k −
∞∑

k=n+1

n∑
j=0

aj
sin kπα
wj

π − k
|s|k.

(83)

By Lemma 2.15, since A and B are invertible, there exist sequences a0, . . . , an and

b0, . . . , bn such that

n∑
j=0

Akjbj = dk, (84)

and

n∑
j=0

Bkjaj = −ck. (85)
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Moreover, by Lemma 2.16

φ(s) =
n∑
j=0

bj

∞∑
k=n+1

sin kπα
zj
π − k

sgn(s)|s|k−n −
n∑
j=0

aj

∞∑
k=n+1

sin kπα
wj

π − k
|s|k−n,

(86)

is a bounded function for all s, which completes the proof.

�

3.2 Series representation of the solutions of the single-layer equation

Theorem 3.2. Suppose that f is representable by a convergent Taylor series on the

intervals [−1, 0] and [0, 1], so that

g(t) =
∞∑
k=0

ck+1t
k +

∞∑
k=0

dk+1 sgn(t) |t|k. (87)

Then, for all n ≥ 1, there exist sequences a1, . . . , an+1 and b1, . . . , bn+1 such that if

ρs(t) =

n+1∑
k=1

ak sgn(t)|t|wj(β)/π−1 +

n+1∑
k=1

bk |t|zj(β)/π−1 (88)

then

−πρs(s) + β

∫ 1

−1
ψγ(s),ν(s)(γ(t))ρs(t) dt = g(t) + snφ(s) (89)

for −1 ≤ s ≤ 1. Here φ : [−1, 1] → R is a bounded function, and zj(β; 1 − α) and

wj(β; 1− α) are the functions defined in Lemma 2.11 and Definition 2.3, respectively.

Proof. If β = 0 then the result follows immediately. Now suppose β 6= 0. Applying the
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results of Lemma 2.9, if µ > −1, µ 6= 0, 1, 2, . . . then

∫ 1

−1
K∗(s, t)|t|µ−1 dt = −π|s|µ−1 sinπµ(1− α)

sinπµ
−
∞∑
k=0

sin (k + 1)πα

µ− k − 1
|s|k

(90)

and

∫ 1

−1
K∗(s, t) sgn(t) |t|µ−1 dt = π sgn(s)|s|µ−1 sinπµ(1− α)

sinπµ
+ (91)

∞∑
k=0

sin (k + 1)πα

µ− k − 1
sgn(s)|s|k

from which it follows that

−π|s|wj/π−1 + β

∫ 1

−1
K∗(s, t)|t|wj/π−1 dt = (92)

− β
∞∑
k=1

sin kπα
wj

π − k
|s|k−1,

and

−π sgn(s)|s|zj/π−1 + β

∫ 1

−1
K∗(s, t) sgn(t)|t|zj/π−1 dt = (93)

β

∞∑
k=1

sin kπα
zj
π − k

sgn(s)|s|k−1.

Recalling the definition of the matrices A and B given in (56) and (66), respectively,

it follows that

−πρs(s) + β

∫ 1

−1
K∗(s, t)ρs(t) dt =

n+1∑
k=1

sgn(s)|s|k
n+1∑
j=1

Akjbj −
n+1∑
k=1

|s|k
n+1∑
j=1

Bkjaj

(94)

∞∑
k=n+2

n+1∑
j=1

bj
sin kπα
zj
π − k

sgn(s)|s|k−1 −
∞∑

k=n+2

n+1∑
j=1

aj
sin kπα
wj

π − k
|s|k−1.

(95)
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By Lemma 2.15, since A and B are invertible, there exist sequences a1, . . . , an+1 and

b1, . . . , bn+1 such that

n+1∑
j=1

Akjbj = dk, (96)

and

n+1∑
j=1

Bkjaj = −ck. (97)

Moreover, by Lemma 2.16

φ(s) =
n+1∑
j=1

bj

∞∑
k=n+2

sin kπα
zj
π − k

sgn(s)|s|k−n −
n+1∑
j=1

∞∑
k=n+2

aj
sin kπα
wj

π − k
|s|k−n,

(98)

is a bounded function for all s, which completes the proof.

�

4 Numerical results

We solve the integral equations corresponding to the Laplace transmission problem on

polygonal domains using a modified version of the algorithms described in [12]. In or-

der to avoid recomputation of the quadratures for different values of β we modify the

procedure described in [12] to construct quadratures which integrate ranges of powers

multiplied by the kernel for ranges of angles instead of the set of singular powers corre-

sponding to that particular angle. As described in [12], the discretization for the integral

equations involving the single-layer potential are obtained by taking the adjoint of the

discretized operator for the double-layer potential. To illustrate the performance of the

algorithm we solve the exterior and interior Dirichlet problem on the domains shown in

Figures 1-3. After discretization, the resulting linear systems were solved using standard
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techniques. The algorithm was implemented in Fortran 77 and the experiments were run

on a 2.7 GHz Apple laptop with 8 GB RAM.

To demonstrate the accuracy of the algorithm for the Laplace transmission problem,

we choose our boundary data f and g to be the result of an incident charge placed inside

or outside the region. We solve the linear system to obtain the potential and use (6) and

(7) to construct the solution away from the boundary. In both cases an analytic solution

exists and is used to determine the accuracy of our solution. Specifically, the potential

is evaluated analytically and numerically at a few arbitrary points and the maximum of

the difference is calculated. The results are summarized in Table 1.
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Figure 1: Γ1 - a triangle in R2.
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Figure 2: Γ2 - a chevron in R2.
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Figure 3: Γ5 - top view of a falcon in R2.

5 Conclusions and extensions

In this paper we analyze the solution to boundary integral equations related to Laplace

transmission problems on polygonal domains. In particular, if the boundary data is
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Curve
Boundary
conditions

Maximum
error

Number
of nodes

Total
run time

Condition
number

Γ1 0.93651 1.7764 · 10−15 378 0.41724 35.307
Γ2 -0.93651 6.0091 · 10−13 1528 16.352 32.115
Γ3 -0.93651 2.7496 · 10−11 7242 1666.7 50.402

Table 1: Numerical results for the Laplace transmission problem.

smooth on either side of the corner then the solution to the boundary integral equations

in the vicinity of the corner are represented by a series of non-integer powers and non-

integer powers multiplied by logarithms. The resulting singular powers are analytic

functions of the material parameters. Using a modification of the algorithm described in

[12] the representations of the solutions near the corners can be used to create efficient and

accurate discretizations for solving Laplace transmission problems on simply-connected

and multiply-connected polygonal domains.

5.1 Multiple junctions

Here we consider only the case of Laplace transmission problems in regions with corners.

This analysis can easily be extended to tilings in which more than two materials meet

at a point. A detailed description of this analysis will be described in a future paper.

5.2 The Helmholtz transmission problem on domains with corners

In this paper we consider the solution to transmission problems for Laplace’s equation on

polygonal domains. The method used here extends naturally to the Helmholtz equation

and the biharmonic equation on polygonal domains. Papers detailing the analysis and

corresponding numerical algorithms to solve transmission problems for the Helmholtz

and biharmonic equations on polygonal domains are currently in preparation.

5.3 Generalization to three dimensions

The generalization of the apparatus of this paper to three dimensional polyhedra is fairly

straightforward, but the detailed analysis has not been carried out. This line of research
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is being vigorously pursued.
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