Yale University
Department of Computer Science

A Syntactic Method for Proving Observational
Equivalences

Martin Odersky

Yale University, Department of Computer Science,
Box 2158 Yale Station, New Haven, CT 06520

Research Report YALEU/DCS/RR-964
May, 1993

A Syntactic Method for Proving Observational Equivalences

Martin Odersky

Yale University, Department of Computer Science,
Box 2158 Yale Station, New Haven, CT 06520

Abstract

We present a syntactic method for proving observational equivalences in reduction systems.
The method is based on establishing a weak diamond property for critical pairs. It has been
used successfully in proofs on the observational equivalence theories of Aygr and Av.

1 Introduction

Observational equivalence is the most comprehensive notion of equality of between program frag-
ments. Usually, it is what programmers have in mind when they say that two program fragments
are interchangeable. The observational equivalences of a language define thus the transformations
that are admissible in it. Hence, knowing what those equivalences are is important in areas such
as program verification, transformational programming, partial evaluation and code optimization.

Intuitively, two terms are observationally equivalent if they cannot be distinguished by some exper-
iment. Experiments place a program fragment in a context and observe the output of the resulting
program. If each experiment yields the same output for both fragments, or if it yields no out-
put for both fragments (due to non-termination, for instance), then we say the two fragments are
observationally equivalent. What constituteés “output” in this context depends on the underlying
language.

This definition of observational equivalence does not lead naturally to a simple technique for proving
that a given relation is an observational equivalence. In fact, such proofs tend to be rather hard.
Therefore, one often tries to prove observational equivalences indirectly.

One popular approach works with a model of the programming language instead of the terms
of the language themselves. A model is adequate if any equality that holds in the model is also
an observational equivalence. Writing =p for equality in the model and (=) for observational
equivalence, we have =p C =. Adequate models present a sound way to prove observational
equivalences. In fully abstract models denotational identity and observational equivalence are the
same, i.e. =p = =. Reasoning in fully abstract models is therefore sound and complete for the
observational equivalence theory of a language. Unfortunately, it is often hard to construct a fully
abstract model that makes reasoning about =p simpler than reasoning about (=). For instance, in
the case of PCF [10], the the only known fully abstract model [6] is defined in terms of congruence

classes of (=), and hence cannot contribute anything new to our knowledge about (). Riecke and
O’Hearn improve over this by showing that in the presence of a context lemma only congruence
classes of closed terms need to be considered [11].

Sometimes, properties of the language in consideration can help in observational equivalence proofs.
For instance, Milner’s context lemma [6] for the A-calculus and related functional languages estab-
lishes that the only contexts one needs to consider are function applications. Or, it might be
sufficient to consider only closed instantiations of the sides of an observational equivalence (as in,
[5] Theorem ciu).

This paper presents a purely syntactic method for proving observational equivalences in arbitrary
extensions of the A-calculus. The work was motivated by the need to prove observational equiv-
alences in the syntactic theories A,qr [9] and Av [8], for which no abstract models are known yet.
The method is inspired by the “critical pairs” technique of the Knuth-Bendix completion algorithm
[4]. The critical pairs technique of Knuth and Bendix consists of a proof that, for each critical pair
My, M, with root M the following diagram can be completed.

(1)
M M,
!
Myeeeeeennnns N

As usual, given nodes are connected by straight lines in this diagram, whereas nodes attached by
dotted lines have to be shown to exist.

Like Knuth-Bendix completion, our technique relies on establishing some kind of diamond property

for critical pairs. It requires that the following diagram can be completed for all (—, ~)-critical
pairs (N, M').

2

MI

~ ™~

Unlike a conventional critical pair, a (—,~)-critical pair involves two relations, reduction (—)
and parallel similarity (~;). Similarity (~) is the candidate relation that needs to be shown an
observational equivalence. (~;) is a parallel version of (~), resulting from applying (~) relations
to independent subterms of a term. Informally, the diagram says that, whenever M~; N and M
reduces in one step to M’ we can find a term N’ such that M’~; N’ and N’ is observationally
equivalent to N. If this holds for all critical pairs, we say that (~) is locally stable. The second
condition we need is that (~) preserves answers, i.e. one has M ~ A = M = A for all terms M
and answers A. Our first theorem (Theorem 2.26) states that if these conditions are both met then
(~) is an observational equivalence. Our second theorem (Theorem 2.27) extends this approach to

2

deterministic reduction.

Note the similarity between this technique and bisimulation. Bisimulations are relations that were
originally studied in the context of process algebras [7]. The concept has also been adapted in a
functional setting [1]. A relation (~) is a bisimulation if the following diagram can be completed
for all terms N, M, M’ and observable actions a:

(3)

M a M

The main difference between diagram (2) and diagram (3) concerns the top and bottom edges.
In the case of bisimulation, these are both reduction steps with the same observable action a.
In our critical pairs method, the given reduction on the top is a single (—)-step, and we require
only N = N’ on the bottom. This offers a convenient way to use previous knowledge about the
observational equivalence relation (%).

The rest of this paper is organized as follows. Section 2 defines observational equivalence for
reduction systems and presents criteria for a ralation to be an observational equivalence. Section 3
applies these results to the Av calculus. Section 4 concludes.

2 Proving Observational Equivalences

We study observational equivalence in the context of reduction systems that extend the A calculus.
In the following, let 7 be an equational theory that extends A with term language Terms(T), a set
of programs Progs(T) C Terms(T), and a set of answers Ans(T) C Progs(T).

2.1 Observational Equivalence

Definition 2.1 Two terms M, N € Terms(T) are observationally equivalent in T, written

TEM=N |
iff for all contexts C in Terms(T) such that C[M] and C[N] are programs, and for all answers
A e Ans(T),

TFCM=A & T+ C[N]=A.
Lemma 2.2 For all M, N € Terms(T),
TEM=N & VC.T E C[M]= C[N)].

Proof: “=": Assume M 22 N, let A be an answer, and let C be a context. Let C’ be a context

such that C'[C[M]] and C'[C[N]] are closed. Then M = N implies
C'[C[M]]= A& C'[C[N]] = A.

3

Since C' was arbitrary, C[M] = C[N].
“c”: Pick C=[]. m

The definition of (&) gives us only a very cumbersome way to reason about observational equiva-
lence, since it relies on a universal quantification over all contexts. In the following, we work out
other criteria for observational equivalences that are easier to use in proofs.

2.2 Basic Definitions

Our main result requires a formal definition of rules for reduction and observational equivalence.
We introduce a new alphabet of meta-variables a, b, c, Meta-terms are constructed from meta-
variables, the productions that form terms, and a substitution operator.

Definition 2.3 A meta-term X is one of the following:

(1) If M == P(M,...,M,) is a term-forming production, and Xj,..., X, are meta-terms, then
P(Xy, ..., Xy) is a meta-term.

(#) A meta-variable is a meta-term.

(i) ¥ Xi,...,X, are meta-terms, z,..z, are variables, and a is a meta-variable then
[X1/21, ...y Xn/2n] @ is a meta-term.

Definition 2.4 A meta-context is a meta-term with a hole [] in place of one of its sub-meta-terms.

In the following, we will use letters K, L, M, N, ... for meta-terms as well as terms. Letters C, D
will denote (meta-)contexts.

Definition 2.5 A wvaluation p is a mapping from meta-variables to meta-terms that maps all but
a finite number of meta-variables to themselves. We will write valuations in the same way as we
write substitutions, i.e. [Az.z/a] is the valuation that assigns Az.z to a. The set of all valuations
for a term language 7 will be denoted V. Where it is clear from the context we will leave out the
subscript.

The meaning of a valuation is extended homomorphically to a mapping from meta-terms to meta-
terms. We will also sometimes extend the meaning of valuation to a mapping from meta-terms to
meta-contexts by defining p [] =[].

Definition 2.6 Two meta-terms X and Y are syntactically equal, X = Y/, if for all valuations p
such that pX and pY are terms, pX = pY. X and Y are observationally equivalent X = Y, if for
all valuations p such that pX and pY are terms, pX = pY.

Definition 2.7 Substitution [X/z]Y on meta-terms is defined inductively in the same way as it
is defined on terms, with the added rule that

[Y/3) (Xi/ 21, o Xnf2a) @) = (Y /3, (V5% 20,y (Y /51K0) [22] 0

Lemma 2.8 For all meta-terms M, N, P, meta-variables q,

M — N = [P/a]M — [P/a]N.
Proof: Immediate from the definition of (—) =

Definition 2.9 Let § = {X; < Y;}ics be a set of equations between meta-terms of 7. The
compatible valuation closure of S is the relation between meta-terms given by

ClpXx] % ClpY]

where ¢ € I, C ranges over the meta-contexts of 7, and p ranges over the valuations of 7. We
will leave out the superscript of < if it is unimportant.

In the following we assume that 7 is a reduction system given by a term language Terms(T), and
a reduction relation (=) that is the compatible valuation closure of a system R of reduction rules
on meta-terms U;, V; (U; non-variable) in MetaTerms(T).

R = {U; = Vi}ier
As usual, we write (—) for the reflexive and transitive closure of (—), and take equality (=) to be

the smallest equivalence relation that contains (—).

We further assume a similarity relation (~) that is the compatible valuation closure of a symmetric
system S of equations between non-variable meta-terms Xj, Y; in MetaTerms(T).

S = {Xj ~ Yj}jes

We assume that the meta-variables in R are distinct from those in S.

Definition 2.10 Parallel similarity (~) is the smallest relation closed under the following three
rules.

M~N

ID M~y M SINGLE
(ID) 1 () M N

M ~1 N P ~ Q
[P/a]M ~1 [Q/a]N

We write M ,351 N if M~ N and X is the set of all subterms of M that derive from pattern
instances of single similarities (~) in M~;N. Formally, 31 is defined as follows. Augment the
term language by marked terms M*. Let L(M) be the set of marked subterms in M and let | M|

be the erasure of M, in which all marks are deleted. Let ~y: be the smallest relation closed under
(ID), (COMP) and

(COMP)

ClL] ~ N

SINGLE' :

Then define [M| “Cf) N iff M~y N.

2.3 Critical Pairs and Local Stability

Ana,ldgous]y to the notion of critical pairs in rewrite systems, we define critical pairs to be the
result of applying two independent modifications to overlapping parts of a common term. Unlike
the situation in rewrite systems, our modifications are of two different kinds, namely reduction and
similarity.

Definition 2.11 (Interference, Critical Pair) Let L+ R € R,S~ T € S, p be a valuation. Two
sub-meta-terms pL and pS of a common meta-term interfere, if there is a non-variable meta-term
M, meta-context C such that (4) or (5) holds.

L=C[M N pM
S =C[M] AN pM

1l
il

pS 4)
pL (5)

Two terms M, N form a (—,~)-critical pair if there exists a root term P, a redex A, and pattern
instances of similarities Ly,..., L, (n > 1), such that

PA& M and Pty

and A interferes with each L; (¢ = 1,..,n). The pair is deterministically critical if there is an
evaluation context! E such that P = E[A].

We will often use the notation [N~y P — M] for a (—, ~)-critical pair M, N with root P.

Definition 2.12 (~) is locally stable if for all (—, ~)-critical pairs M’, N with root M there is a
meta-term N’ such that the following diagram commutes.

(6)
M M !
~ o
N--oe-. SRR N’

(~) is deterministically locally stable if for all deterministically (—,~)-critical pairs M’, N with
root M there are meta-terms M”, N’ such that the following diagram commutes.

(7)

———— LS > "
M——— M- =M
~1 ~1
Nevereonenn FERTTRRPPPS N’

!Evaluation contexts are defined in the next sub-section.

Lemma 2.13 If (~) is locally stable then for all terms M, M’, N with N~y M, M — M’ there
exists a term N’ such that the following diagram commutes.

(®)
M M !
~1 ~1
Neoeeonn FYIERRE N’

Proof: Let M 31 N and A be the redex of the reduction M — M’. Let Oy,..., O,, be those terms
in X that interfere with A. Let Py, ..., P, be those terms in X\{Oy,..., On} that are contained in
either A or some O; (i = 1,...,m).

Let K’ be the smallest subterm of M that contains A and Oy, ..., Op,.. Let K be the result of replac-
ing each subterm P; in K by a fresh meta-variable a; (i = 1,...,n). Then K' = [P;/q...P,/a,] K.
Furthermore, there are contexts C, D, as well as terms L, @y, ..., @, such that

M = C[[P1/a1...Pn/ay) K]
N = D[[Q/a1...Q./ a,] L]
P; & Qi

K {01,.'\.'.,10",} L

Also, since M~; N, we must have C[b] ~; D[b] for all meta-variables b.
We construct in three stages a diagram that implies (8).

Stage 1: Let R be the reduct of K under A. That is, [P1/a;...Pn/a,] K 2 [Py/ay...P,/ay,] R.
Since A does not interfere with P, ..., Py, the following diagram commutes:

9
[P1/a...P,/a,] K —2—~[Pi/ay...P,/a,] R

[Ql/alan/an] K—— [Ql/al---Qn/an] R

Stage 2: Assume first that m > 1. Since A interferes with Oy, ..., Op,, R and L form a critical pair.
Since 7 is locally stable, there exists then an R’ such that the following diagram commutes:

(10)

~ ~

L'——T'_R,

On the other hand, if m = 0 then K = L and (10) can be made to commute with R’ = R.
Furthermore, (10) still commutes if a valuation p is applied to each vertex:

(11)
pK AN PR

pL——x——pR'

Stage 3: Let p be some arbitrary valuation. By the previous stage, pL = pR’. Hence, by Lemma 2.2,
also C[pL]= C[pR'] and D[pL] = D[pR’]. Therefore, the following diagram commutes:

(12)
ClpL]—A— C[pR)

~ ~1

DlpL]—g— D[pR]]

Setting p = [@Q1/a1...Qn/a,] and stacking diagrams (9), (11), and (12) on top of each other yields:

(13)

M = C[[Pi/a...P,/a,] K]—2~ C[[Pi/ar...P./a,] R] = M’

~1 ~1

Cll@i/a1...Qn/as] K] Cl[@&/a1...Qn/as] R]

~1 ~1

Cll@1/a1...Qn/ ay] L]-————g——— Cl[@1/a1...Qn/as] R]

~1 ~1

N = D[[Ql/al...Qn/an] L] = D[[Ql/al...Qn/a,,] R']

Looking on the right hand column of this diagram, we have P; ~ Q;, R~y R', C[b]~1D[b], for all

b. By repeated application of rule (COMP), M~y D[[Q1/a...Qn/an] R % N’, which implies the
proposition. W

2.4 Deterministic Local Stability

We now work towards a version of Lemma 2.13 that can be applied to (deterministic) evaluation
steps instead of reduction steps. The new version is generally easier to establish than Lemma 2.13,
but holds only if the theory admits an evaluation procedure that is definable as a context-machine

[3].

-

Definition 2.14 (Evaluation Contexts, Deterministic Reduction) Let £ be a subset of the meta-
contexts of 7. We define a binary relation —¢ on terms of 7 as follows:

M —¢ N iff there are terms M’, N' and there is an meta-context £ € £ such that
M = E[M'], N = E[N"], and M’ 2 N'.

Then & is a set of evaluation contexts and —¢ is a deterministic reduction if the following two
conditions are met.

e —¢ is deterministic. M —¢ Ny and M —¢ N, implies N; = N,.
e —¢ is sound and complete for reduction to an answer. For all terms M, answers A,

M—3A & M- A

We also use the symbol —» for deterministic reduction if the set £ is clear from the context.

Definition 2.15 A set & of evaluation contexts is downward closed if, for all E € £, meta-contexts
Ci, Gy, E = C; - C; implies that Cy € £.

Example 2.1) has a set of evaluation contexts, which is generated by the grammar
Ez:=[]|EM | pE. (14)

This is a consequence of the Curry-Feys Standardization theorem for the A-calculus ([2], CH 11,

§4).
Proposition 2.16 Evaluation contexts for A are downward closed.

Proof: Let E be an evaluation context, and let Cy, C, be meta-contexts such that £ = C - C,.
Using an induction on the form of C;, we show that C; is an evaluation context. Since E = C; - Cs,
C, must be of one of the forms of (14) If C; =[] then E = C; and hence C; is an evaluation context.
If C; = E' M, for some evaluation context E’ and term M, then there is a meta-context C| such
that E' = C{ - C;. By the induction hypothesis, C, is an evaluation context. Finally, if C; = p F,
for some primitive operator p and evaluation context E’, then there is again a meta-context C{
such that E' = C{ - C;. By the induction hypothesis, C; is an evaluation context. M

Definition 2.17 (~) preserves evaluation contezts if, for all meta-terms M, (~)-pattern instances
P, meta-contexts C, and meta-variables a, if [P/a]C is an evaluation context then so is C.

If evaluation contexts are defined inductively then there is a syntactic criterion for preservation of
evaluation contexts that is easy to check:

Definition 2.18 A contezt-pattern is formed from the inductive definitions of meta-context, plus
a new alphabet of variables that range over contexts instead of terms.

Example 2.2 Evaluation contexts for A are the least fixed point of the equation
e=UrllUcau | fpe) (15)
peEV p€Primops

where the expression inside the parentheses is a union of three context-patterns with context-
variable e and meta-variable a.

Definition 2.19 A context-pattern C overlaps with a non-variable meta-term M if there is a
nonvariable sub-meta-term N of C and a valuation p such that pM = pN.

Definition 2.20 Let evaluation contexts be defined by an inductive definition
e=UJUrP
peV iel

where each P; is a context-pattern. Let (~) be the compatible valuation closure of a symmetric
system {X; ~ Yj}jes. Then (~) interferes with evaluation contexzts if there is a P; (¢ € I) that
overlaps with an Xj (5 € J).

10

Note that NV in the previous definition is required to be a meta-term. That is, N cannot contain a
hole [], nor can it contain a context-variable.

Proposition 2.21 In A no similarity relation (~) interferes with evaluation contexts.

Proof: The only subterms in the context patterns of (15) are meta-variables. Hence, no overlap is
possible. =

Proposition 2.22 If evaluation contexts are defined inductively and (~) does not interfere with
evaluation contexts then (~) preserves evaluation contexts.

Proof: Assume that (~) does not preserve evaluation contexts. We show that in that case (~) must
interfere with evaluation contexts. :

Let P be a pattern instance of a similarity, and let C' be a meta-context such that [P/a]C is an
evaluation context but C is not. If a does not occur in C then C is an evaluation context, which
contradicts the assumption. Assume therefore that a does occur in C. Let evaluation contexts be
given by the inductive definition

e= U U p P;

peViel

for some index set I, and context patterns P;. Then

Er[[Ez/€]([P/a]Q)]

for some evaluation contexts Ej, Ez, context variable e, and valuation instance Q of a context
pattern P; that contains a. But this implies that (~) overlaps with P;. Hence, (~) interferes with
evaluation contexts. W

[P/a]C

Lemma 2.23 If 7 has downward closed evaluation contexts and (~) is deterministically locally
stable and preserves evaluation contexts then for all terms M, M’', N with N~y M, M - M " there
exist terms M"”, N’ such that the following diagram commutes.

! n
M] M d -M
~ ~1
Neveoroenns FRTITTIRe N’

Proof: Largely analogous to the proof of Lemma 2.13. Let M 251 N. Let A be the redex of the
reduction M — M’. Let Oy, ..., Oy, be those terms in X that interfere with A. Let P, ..., P, be
those terms in X\{Oy, ..., On} that are contained in either A or some O; (i = 1,...,m).

As in the proof of Lemma 2.13, let K’ be the smallest subterm of M that contains A and Oy, ..., Op,.
Let K be the result of replacing each subterm P; in K by a fresh meta-variable a; (i = 1,...,n).

11

Then K' = [Py/a;...P,/a,] K. Furthermore, there are contexts C, D, as well as terms L, @, ..., @y
such that

M = C[[P1/a1...Pp/an] K]
N = D[[Ql/al---Qn/an] L]
P; & Qi

K {01,...,0m} L

Since M~ N, we must have C[b] ~; D[b] for all meta-variables b. Since M —» M’ there is an
evaluation context F such that M = E[A].

Let Ep and Ag be such that K = Ep[A¢] and [P1/a;...Py/a,]Ao = A. Let E' = [Py/a;....Py/an)Eo.
Since

E[A] = M = C[[Pi/a1...Pa/a] K] = C[ETA],

one has that E = C- E'. Since F is an evaluation context and 7 is downward closed it follows that
E' is also an evaluation context. Since E’ = [Py/a;]([P2/az....Pn/ax])Fo), and since (~) preserves
evaluation contexts, [P2/as....P,/a,]Fp is an evaluation context. Repeating this step n times, we
get that Ey is an evaluation context.

Similarly to the proof of Lemma 2.13 we now construct in three stages a diagram that implies
(Lemma 2.23). Stages 1 and 3 are exactly as in the proof of Lemma 2.13.

For Stage 2, we reason as follows. Let R be as in the proof of Lemma 2.13. Assume first that
m 2> 1.

Let A’ be the redex of the reduction [Q;/a;...Qn/an] K — [Q1/a1...Qn/as] R. Since A interferes
with Oy, ..., Oy, R and L form a critical pair with root K and redex Ag. The pair is deterministically
critical, since K = Fp[Ag], and Ep is an evaluation context. Since 7 is deterministically locally
stable, there exists then meta-terms R’, R” such that the following diagram commutes:

. "
K——"—R--- =R
~1 .Nl
) A Ao R

The rest of Stage 2 is as in the proof of Lemma 2.13.
Stacking the results of the three stages on top of each other yields:

12

(16)
M = C[[P/ay...Pa/an) K] 2 C[[P1/a1...Pn/as] R] = M’ ——=C[[P1/a1...Pa/as] B']

C[[Ql/alan/an] K] d C[[Ql/al---Qn/an] R] d C[[Ql/al-'-Qn/an] R”]

C[[Ql/alan/an] L]

C[[Ql/al...Q,,/an] R,]

14

N = D[@1/a1..-Qn/an] I} = DI[@1/a1.Qu/a] R

Looking on the rightmost column of this diagram, we have P; ~ @;, R"~R', C[b]~1D[b]. By
repeated application of rule (COMP),

M" ¥ C[[P/ay...Pa]a,]) R") ~1 D{[Q1/1...Qn/an] R] & N'.

2.5 Proving Observational Equivalences

We now use the previous results to develop two criteria for observational equivalences; one applying
to conventional reduction, the other applying to deterministic reduction.

Definition 2.24 Let (~) be a binary relation on terms in 7. Then (~) preserves answers if, for
all meta-terms M, answers A, M ~ A = M — A.

Lemma 2.25 If (~) preserves answers then so does (~).

Proof: Assume M~; A, for some term M, answer A. We show M —» A by an induction of the
derivation of M~y A.

If M~y A by rule (ID), then M = A by the premise of this rule. If M~; A by rule (SINGLE) then
M —» A by the premise of the lemma. If M~ A by rule (COMP), then there exist by the premise
of this rule meta-terms P, @, M', N’ and a meta-variable a such that M = [P/a]M', A =[Q/a]N’,
P~y Q, M'~N'. A=[Q/a]N' implies either N'= Aor N' = a A @ = A. We distinguish between
the two cases.

13

If N' = A, then M’ —» A by the induction hypothesis. Hence, by Lemma 2.8 [P/a]M’' —» [P/a]A =
A.

On the other hand, if N/ = a and Q = A then P —» A by the induction hypothesis. Furthermore,
M'~;N' and N’ = a imply M’ = a since pattern instances of similarities are non-variable terms.
Hence, [P/a]M =[P/ala=P —» A. 1

Theorem 2.26 Let = be the transitive closure of (~). If (~) is locally stable and (~) preserves
answers then ~ C =,

Proof: (i) We first show a slightly simpler result: For all terms M, N, answers A,
M~iNAM-—»>A= N>»A (17)

The result is shown by an induction on the length of reduction from M to A. If M = A, then
N~j A, and hence N — A since (~) preserves answers.

If M - M' — A then by Lemma 2.13 there is a term N’ such that M’~; N’ and N = N’. Then
by the induction hypothesis, N’ —» A, which together with N = N’ implies N —» A. This shows
(17).

An obvious consequence of (17) is that, for all terms M, N, contexts C, answers A,
C[M]~C[N] A C[M]—» A = C[N]— A.

Hence, ~; C 2. Since = is the transitive closure of (~;) and £ is transitive this implies =~ C =.
]

Theorem 2.27 Let = be the transitive closure of (~). If

e T has downward closed evaluation contexts,
e (~) preserves evaluation contexts,
e (~) is deterministically locally stable, and

e (~) preserves answers
then =~ C &2,

Proof: We show (17) as follows. Let M — A. Since 7 has downward-closed evaluation contexts,
there exists a deterministic reduction from M —» A. We perform an induction on the length of
this sequence. The base case is as in the proof of Theorem 2.26. For the induction step, assume
M — M’ —» A. Then by Lemma 2.23 there are terms N', M" such that M’ —» M", M"~ N,
and N = N’. Then by the induction hypothesis, N’ — A, which together with N = N’ implies
N —» A. This shows (17), from which the proposition follows as in the proof of Theorem 2.26. =

3 Application to \v

In this section we apply Theorem 2.26 and Theorem 2.27 to show some observational equivalences
for Av [8].

14

{ (A\z.a)b —= [b/z]a | z e Idents} u
{ pV = 4(p, V) | pe Primops, V € Values} U
{ n==n = true | ne Names} U
{ n==m — false | m,n e Names, m # n} U
{ vn.(a,b) — (vn.a, vn.b) | ne Names} U
{ vnAz.a — Azwn.a | n e Names,z € Idents} U
{ vn.m - m | m,n e Names,m # n}

In [8], Theorem 4.6 it was shown that Av has a set of evaluation contexts that is generated by the
grammar
Ex=[]| EM | pFE | vn.E. (18)

Proposition 3.1 Av has downward closed evaluation contexts.

Proof: Essentially identical to the proof of Proposition 2.16. The additional induction step E =
vn.E' is completely analogous to the other two induction steps in Proposition 2.16. m

Proposition 3.2 In Av no similarity relation (~) interferes with evaluation contexts.

Proof: The set of evaluation contexts of Av is the least fixed point of the equation

e=Jp((lueau |J {peyu |J vna) (19)

peV pE€Primops ne€Names”

The only subterms in the context patterns of (19) are meta-variables. Hence, a side of a similarity
cannot overlap with a context-pattern. =

3.2 Observational Equivalences in \v

Proposition 3.3 The following are observational equivalences in Av:

vn.M
vnwvm.M

M if n¢g FV(M) (20)
vmwon.M (21)

R R

Proof: (20) corresponds to the compatible valuation closure of the symmetric system

{vn.M ~M | ne Names,M € Terms,n¢ FN(M) } U (22)
{M~vnM | ne Names,M € Terms,n¢ FN(M) }

We first show that ~ preserves answers. Assume that M ~ A. Because of the form of (22), this
relation must have been derived from a similarity nun.A ~ A, where n ¢ FN(A). Since answers
are names in Av, A is a name, and we have M — A by a single v,, reduction.

16

€ Idents A-bound identifiers
€ Names = Names® U Names” names
n® € Names® constants
n” € Names v-bound local names
p € Primops primitive operators
M € Av terms
M == z | AeM | M M,
| n|vnM| M==M,
| (M, M) | p M
Figure 1: Syntax of Av
B (Az.M)N — [N/z]M
é pV = 4(p, V)
eq n==mn — true
n==m — false (n’ ?1: m)
vy vnz. M - Az.wvn.M
vp vn.(My, My) — (vn.My, vn.M;)
Vn vn.m - m (n # m)

Figure 2: Reduction rules for Av

3.1 The M\ calculus

Av extends A with local names. Its term language and reduction rules are given in Figures 1 and
2. The construct vn.M binds a name n in a term M. FN(M) denotes the set of names that occur
free in M.

Viewed formally, the reduction relation of Av is the compatible valuation closure of the following
system of equations.

15

We now show that ~ is locally stable. Matching (22) against Av’s reduction rules establishes that
a redex A interferes with a pattern instance vn.M iff A C vn.M. We distinguish according to
the relative position of A and vn.M. Assume first A C M and let M’ such that M 2 M’. Then
there is the following instance of diagram (8):

vn.M A vn.M'

M A M

The similarity vn.M’ ~ M’ in this diagram follows from the premise ¥n.M ~ M and the fact that
reduction in Av does not create new free names, i.e. M — M’ implies FN(M') C FN(M).

Assume now that A = vn.M. We further distinguish according to the notion of reduction with A
as redex. There are three possibilities:

vniz. M — Azwn.M

vn. (M, M) — (vn.My,vn.Mp)

vn.m - m

where n ¢ FN(M) U FN(M;) U FN(M,) and n # m. Diagram (8) can be made to commute for
each of these, as can be seen from the following three diagrams:

vnAz. M —— Az.vn.M vn.(My, Ma) - (vn.My,vn.M,) vn.m m
~ ~ ~ ~1 ~ =
Az.M ‘ (M1, M3) m
With Theorem 2.26, (20) follows.
(21) corresponds to the symmetric system
{vnwvm.a ~ vmwn.a | n,me Names,n# m}. (23)

Let ~ be the compatible valuation closure of this system. We use Theorem 2.27 to show that (~)
is an observational equivalence. From Proposition 3.1 we know that Av has downward closed eval-
uation contexts. From Proposition 3.2 and Proposition 2.22 we know that (~) preserves evaluation
contexts. Furthermore, since no side of (23) matches an answer, (~) vacuously preserves answers.
Hence, it only remains to show that (~) is deterministically locally stable.

Matching (23) against Av’s reduction rules establishes that there are three classes of critical pairs:

[vmyndiz.M ~ wvnvmAzM = vndzomM 1,
[vmon. (M, My) ~ vonvm.(My, M) = vn.(vm.My,vm.M)],
[vmun.n' ~ vnvm.n' - vouan]

17

where M, My, M, are meta-terms, n,m, n’ are names, and m # n’. Diagram (7) can be made to
commute for each of these, as can be seen from the following three commuting diagrams:

vavmiz.M i vn.Az.vm.M ri Az.vnvm. M

vm.vnz.M Az.vmuon.M

vn.vm.(My, M) — vn.(vm.My,vm. M) —E(un.um.Ml, vn.vm.Ms)

vmwn.(My, M) (vmuwn. My, vm.vn. M)

vnvm.n' ——vn.n'

IR

vmwn.n'

The =-diagonal of the last diagram is justified by (20), since m # n'. Hence, (~) is deterministically
locally stable. With Theorem 2.27, the transitive closure of (~) is an observational equivalence,
which implies (21). =

4 Conclusions

We have presented a syntactic method for proving that a given relation between terms is an obser-
vational equivalence. The method has been used succesfully in many proofs about the observational
equivalence theories of A,,- and Av. Hopefully it will be useful to others as well.

Acknowledgements This work was supported in part by grant N00014-91-J-4043 from DARPA.
Many thanks to Vincent Dornic and Dan Rabin for their detailed comments on previous drafts of
this paper.

18

References
[1] S. Abramsky. The lazy lambda calculus. In Research Topics in Functional Programming, The UT Year
of Programming Series, chapter 4. Addison-Wesley Publishing Company, Inc., 1990.

[2] H. P. Barendregt. The Lambda Calculus: its Syntaz and Semantics, volume 103 of Studies in Logic and
the Foundations of Mathematics. North-Holland, Amsterdam, revised edition, 1984.

[3] E. Crank and M. Felleisen. Parameter-passing and the lambda-calculus. In Proc. 18th ACM Symposium
on Principles of Programming Languages, pages 233—-244, January 1991.

[4] D. E. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor, Compu-
atational Problems in Abstract Algebra, pages 263-297. Pergamon, Oxford, 1970.

[6] I. Mason and C. Talcott. Equivalence in functional languages with side effects. Journal of Functional
Programming, 1(3):287-327, July 1991.

[6] R. Milner. Fully abstract models of typed A-calculi. Theoretical Computer Science, 4:1-22, 1977.
[7] R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.
[8] M. Odersky. A syntactic theory of local names. Technical Report TR-965, Yale University, May 1993.

[9] M. Odersky and D. Rabin. The unexpurgated call-by-name, assignment, and the lambda-calculus,
revised report. Research Report YALEU/DCS/RR-930, Department of Computer Science, Yale Uni-
versity, New Haven, Connecticut, May 1993.

[10] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science, 5:223-255,
1977.

[11] J. Riecke. Proving observational congruences. Personal Communication, February 1993.

19

