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ABSTRACT

In numerical continuation methods for solving nonlinear systems, one often
has to solve linear systems with matrices of the following form:
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where A may become singular but M is well-conditioned and therefore direct
Gaussian Elimination on M with some form of pivoting is stable. However, if A
has special structures (e.g. sparsemess, special data structure) or if a special
solver for A is available, then an often used method for solving such systems is
the block-elimination (BE) algorithm which involves solving two systems with A
for each system with M. In this paper, we shall show that the BE algorithm may
be inaccurate when A is nearly singular. We then propose a stable variant of
the BE algorithm which employs deflation techniques when solving the two systems
with. A. The deflation techniques can be viewed as working in coordinate systems
orthogonal to the approximate mnull vectors of A, enabling an accurate
representation of the solution to be computed. The extra work amounts to a few
more backsolves with A. Numerical results will be presented.
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1. Introduction

In numerical continuation methods for solving mnonlinear eigenvalue
problems [11, 12, 135 14] and in homotopy continuation methods for solving
general nonlinear systems [2, 8], the central computational problem often

reduces to solving linear systems of the form:
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where the n by n matrix A>may become singular2 at certain points on the
solution paths but the vectors b and ¢ are chosen so that M remains nonsingular
and well-conditioned. The following lemma gives mnecessary and sufficient
conditions for M to be nonsingular.
Lemma 1: (1) If A is nonsingular, then M is nonsingular iff:
a-cAl #o. | (2)
(2) If A is singular and has a one dimensional null space represented by
a left null vector ¢‘and a right null vector ¢, then M is nonsingular
iff
e £ 0, (3)
and

cTd # 0. (4)

Proof: Straight—forward. A more general version can be found

2We shall assume the nullity of A to be one, which is the most common case in
applications. The algorithms generalize easily to higher dimensional null
spaces but we shall not discuss that here.
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in [11]. The version given above is more suitable for our discussion..

Since M is assumed to be well-conditioned, the use of Gaussian Elimination
on M with some form of pivoting is guaranteed to be stable. However, this
approach is only suitable when n is small or when A is dense since the whole
matrix M has to be stored to allow for fill-ims._ When A is large but has
special structures (e.g. sparsenmess, band or profile structures) or when a
special solver is available for A (e.g. fast elliptic solvers, sparse matrix
solvers, band or profile solvers), or when a solver for A is needed for some
other purposes anyway, it is natural to consider algorithms for solving systems
with M which only involve solving systems with A. The following block

elimination algorithm has this desirable property:

Algorithm BE: [4, 11]

(1) Solve Av=m, (5)
Aws=£. | (6)

T T
(2) Compute y=(g—-cw) / (d-cV). (D
(3) Compute X=W=— Y V. (8)

The work consists mainly of one factorization of A and two backsolve with
the LU factors of A. If there are many right hand sides with the same matrix M,
then the factorization and the vector v can be computed once, and the work
reduces to only one backsolve for each right hand side, which makes the BE
algorithm extremely attractive in such cases.. These situations arise, for

example, in continuation methods where Chord-Newton type methods are used.

Algorithm BE is well-defined if A and M are nonsingular because the

denominator in (7) is nonzero by Lemma 1. However, in Section 2, we show that
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Algorithm BE maybe unstable numerically when A is nearly singular and can
produce completely inaccurate solutions (x, y) in those situmations. The main
source of instability is in Step (1) of Algorithm BE where the vectors v and w
are computed inaccurately when A is nearly singular. In Section 3, we review
implicit deflation techniques developed in [3, 16] which can be used to compute
accurate representations for the solutions v and w. These deflation techniques
can be viewed as working in subspaces orthogonal to approximate null vectors of
A and are implicit in the sense that they only involve solving systems with
A. In Section 4, we show how to use these deflated decompositions of v and w to
obtain a stable variant of the BE algorithm. Further, we show that the mnew
algorithm can be used to obtain a stable deflated decomposition of the solution
(x, y) when M itself is mnearly singular, for example, in applications to
continuation around bifurcation points [1, 11, 13; 14]. We present a backward
error analysis in Section 5 that shows that the stability of th; new algorithm
is independent of the singularity of A. This means that in practice only one
technique is needed to solv; with the matrix M independent of whether A is
singular or not. Numerical tests demonstrating the accuracy aﬁd stability of

the new algorithm will be presented in Section 6.

Rheinboldt [15] has considered an interesting related algorithm for solving
the'system (1). 1In his applications, the vector ¢ is always equal to a unit
vector, d is always equal to zero but the vector b is genmeral. He considered
splittings of M of the form M = Mb + uzT where u and z are chosen so that M0 is
nonsingular and it is easy to obtain a factoriiation for M0 (actually for a
reduced matrix of smaller dimension than Mo). The solutions (x, y) can then
obtained through the use of the Sherman—Morrison formula by two backsolves with

M However, his approach requires explicitly working with the storage

0°



- 4 -

structure of A in order to obtain the factorization of the reduced matrix
whereas our approach is completely implicit in that it only requires the ability
to solve systems with A. Moreover, our approach works for general b, ¢ and d as
long they satisfy the conditions in Lemma 1 so that M is nonsingular. Howéver,
it should be pointed out that Rheinboldt’s algorithm \can be generalized to
handle this more general case. A rank two modification is required and one more

backsolve is involved.

2, Stability of Algorithm BE
In this section, we show that Algorithm BE may produce inaccurate solutions
when A is nearly singular even though M is well-conditioned.

Lemma 2: If we use vectors v'and ;'satisfying AV - b = T, and Aw —

‘f = r, in Steps (2) and (3) lof Algorithm BE, then the solutions (%, y)
satisfy:
+3+ +r1,-7yr
2 1
Ml _ =1 I (9)
+y+ 4 0 + .

Proof: Straight—forward.

In other words, the computed solutions (%, ;) always satisfy the last
equation of (1) independent of their accuracy whereas the residual for the first

n equations in (1) depends on the accuracy of v and w.

Next we show that when A is nearly singular, Ty and r, are generally large.
From (3), we see that b # Range(A) and therefore the computed ¥ will be large
when A is nearly singular. Similarly, ;:will also be large unless f & Range(A).
From standard round—off error analysis [6], it follows that the residuals Ty and

r, will be large. Moreover, these residuals will mnot cancel out in (9).
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Specifically, consider solving the system Az = p where A is nearly singular but
p is not consistent with A. Let {61,.....,6ﬁ} be the singular values of A
arranged in descending magnitude, {ul,....un} be the corresponding left singular
vectors and {vl,...,vn} be the corresponding right singular vectors. Then the

solution z can be written as:

z =12 ci V., (10)
where T :
c; =¢(uip / oi). : (11)
Since p is not consistent with A, u:p is not small and therefore the 1last term
in the sum in (10) will be 1large if °. ijs small. In finite precision
arithmetic, this last term will dominate the rest of the sum and the computed z

will have an expansion similar to (10) but where the first (n-1) coefficients ;i

~(
are inaccurate. Since the residual for Z can be written as

n
r(z) i(ﬁ; - p)= Z (ci - ;i) u., (12)
=1

we see that the residual corresponding to the first (n-1) terms in (12) will be
large. Furthermore, this part of the residual depends on the particular values
of the coefficients ci's. Therefore, we cannot expect this part of the
residuals e and T, in (9) to cancel out. It follows from Lemma 2 that the
computed solutions (x, y) will give large residuals for the system (1). Since M
is assumed to be well-conditioned, it follows that theverrors in (%, y) will

generally be large. As we shall see in Section 6, this actually bhappens

numerically.



3, Deflation

The implicit deflation techniques that we are going to discuss here were
developed in [3, 16]1. They can be viewed as techniques for separating the
subSpﬁces corresponding to o frbm ;;s orthogonal complement; and only need the
ability to solve systems with A. Explicit deflation techniques [3, 10, 9], which
achieve the same goal by working with parts of the LU factorization of A

explicitly, can also be used when they are applicable.

We consider computing a deflated decomposition of the solution z of the

system Az =p of the form

z =czp + (cp !/ 8) ¢, (13)

where z4 is the unique solution to the following system:

A,z ,=SAz, =Rp, (14)
(15)
where AS is a singular matri} ’élose' to A with a left null vector ¢ ‘and a right
null vector §. The matrices R and N are defined in terms of &' and b and are
chosen so that the system (14) and (15) is consistent and has a unique solution
that remains bounded as A tends to being exactly singular, The coefficient ¢

is a scalar that depends on p and the scalar 8 tends to zero as A tends to being
singular, In [3]1, we considered two different classes of such deflated
decompositions, one corresponding to choosing As to be the nearest singular
matrix to A in the Frobenius norm, and the other corresponding to choosing AS to
be a singular matrix obtained by perturbing some elements of A by amounts
bounded by the smallest pivot, say &, in a LU-factorization of A. For the

LU-based approach to be successful, we need to make the assumption that ¢ =

O(Gn), which is definitely not valid in general but which we showed empirically



- 7(_

here and in [3] and theoretically in [5] to be valid in practice.

Before we specify &, d, S, R, N and & defining the deflated solutions, we

need some definitions.

I-u uT be the orthogonal projector

3

Definition 3: (a) Let P

1

with respect to a given vector u with lull 1.,

(b) For any vector u with uj # 0 and 1 { j £ n, define

Ej =I-u e? / u..
u J J

(¢c) Let §SV’ with norm equal to one, be an approximation to the
left singular vector corresponding to the smallest singular vector °. of

A. Define 0, = cA—lﬁsv, where 0 =1 / llA_l&SVII'

Y

_ 32T
§LU = q:A e’

where a =1 / || A—T e

(d)

L

and 1 { k { n is the index of the smallest pivot

in the LU-factorization of A.

_ -1
where v =1 / || A-_1 éLU .
_ -1
(£) b, =B A Jr

whwﬁ=1/||f1%|h

3A11 norms used are the Euclidean norm,

(16)

(17)

(18)

(19)

(20)

(21)
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and j is chosen so that I(gLU)jI = 0(1).

The computation of EiU’ ¢E and ¢P costs one back-substitution each. For
§év, a variant of the inverse power method can be used, which is fast when the
smallest singular value of A is well-isolated. When such is not the case, the

inverse power method may have difficulty in convergence.

In [3], we discussed eight deflated decompositioﬁs based on the
LU-factorization and three based on the Singular Value Decomposition. We shall
only use a subset of‘these here since there exist simple relationships among the
deflated solutions and the ones used here are representative and can be computed
most efficiently. The algorithms developed here can be applied to the other

deflated decompositions as well,

In Table 3-1, we give the expressions for the corresponding &, é, S, R, N
and 8. It was shown ig [3] that for the zg deflation, the coefficient °
reduces to &gvp if §év is exactly equal to the 1left singular vector
corresponding to o, The more general form in the table has to be used when the
inverse iteration fails to converge or comverges to the wrong singular value.
We also gave the following algorithm, derived from one first proposed by

Stewart [16], for stably computing the deflated solutions{

Algorithm IIA:

4We shall use the notation (u)k to denote the k—th component of the vector u.



Table 3—-1: Deflated Decompositions
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Start with z such that N z =z,
Loop
(1) Formr =R p - S A z,
(2) Form d = AT r.
(3) z -z + Nd.
In [3], we analyzed the convergence and stability of Algorithm ITA, and showed

that for zgs Zg and Zps DO iteration is necessary. We then proposed the

following non—iterative algorithm for computing %

Algorithm NIA:
(1) r =R p.
(2) 4 = A 1r,

(3) z =«N d.

Since the vector r in Step (1) lof both Algorithm ITA and Algorithm NIA are
consistent with AS which is 'close’ to A, the first (n—1) coefficients in the

singular vector expansion of z_ will not be dominated by the last coefficient,

D
and therefore they can be computed accurately. Therefore, the deflated
decomposition (13) can be viewed as an accurate representation of the solution
z, It was shown in [3] that the scalar o-(Definition 3, part ¢) tends to the
smallest singular vdlue o_ as A tends to being singular and that «, B and y are
0(g). Thus we see from Table 3-1 that & goes to zero as A becomes singular, If

we were to compute z in (13) directly, then the last term will dominate the

first and the accuracy in z will be lost.

4, Deflated Block Elimination

Recall that the reason Algorithm BE becomes unstable when A is nearly
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singular is that the computed v and ;:have large relative errors in the subspace
orthogonal to ¢. The deflation techniques discussed in Section 3 overcome this
problem by computing zp with low relative errors in the same subspace. In this
section, we show howvto use the deflation techiques to obtain a stable variant

of Algorithm BE.

The main idea is to compute the deflated decompositions of v and w instead
of computing them directly from (5) and (6). By using Aigorithm NIA (or
Algorithm ITA if necessary), ﬁe can obtain the following deflated decompositions
for v and w:

ind v =ovp + (e / 8) ¢, | (22)
w=wpy + (co / 8) 0. (23)
When A is nearly singular, one wants to avoid actually carrying out the
divisions by & and the additions in the above formulas because the second terms
will be large and will ovgrwhelm the first terms, causing a loss of accuracy.
It turns out that it is not difficult to derive a stable variant of Algorithm BE
that uses the representations of v and w in (22) and (23) but which does not
involve adding large vectors to the accurate deflated solutions AN and Vpe

Lemma 4: If v and w are represented by (22) and (23), then the

solutions (x , y) of (1) can be expressed as:

+x + + w, + 1 +h, ¢6-h v, +
11 = 121 + —1 3 4D (24)
+ y + +0 + D + h4 + ,
where n _ T
1 =87 ¢ Wy
T
h2 =d c vD,
hy = hye, — hyop,
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h, = (cT¢) ¢ — 8hy,
D =«(cT0) ¢y 8h, .
Moreover, D is nonzero if M is nonsingular.

Proof: The proof that (x, y) given by (24) satisfy (1) [can be
derived by direct substitution. We shall only show that D is nonzero if
M is nonsingular. When A is singular, 8 = 0 and from Lemma 1, both cTO
and §Tb are nonzero. For the zg and Zp deflations, Cy = ETb. For the
zg deflation, ¢ = &I(b - Azg) = §Tb because ¢ is then a left null
vector of A. Therefore, for all three deflations, we have D =«(cT¢)(§Tb)

# 0. When A is not singular (8 # 0), it can be easily shown from (22)

that D =.8:(d - cThflb) and therefore by Lemma 1, D # 0.
We shall call the algorithm represented by (24) Algorithm DBE.

The expressions defining hlf h2, h3 and h4 are all stable formulas in the
sense that no large vectors are involved. Note also from (24) that the vectors
D and 2N generally have as much weight in the solutions (x, y) as the vector é,
and therefore the accuracy of (x, y) depends directly on the accuracy of b and

w. Moreover, one can also see from the formulas involved that when & is small

D*
(i.e. when A is nearly singular), it is enough to control the absolute error in
S. This is important because in general we cannot hope to be able to do better
than this in computing 8. Furthermore, the stability of Algorithm DBE depends
only on the singularity of M in the sense that ID| is as small as M is singular,
and is independent of the singularity of A. This means that in practice only one

algorithm is needed for dealing with solving (1). We shall prove all the above

assertions rigorously in the next section.



- 13 -

There is a reason why we use the particular form (24) for expressing the
solutions (x, y). The reason is that as M itself tends to being singular, D
tends to zero, and (24) automatically becomes a deflated decomposition of (x,
y). Moreover, the vector multiplying (1 / D) in (24) is then a null vector of
M. In practice, one can monitor the size of D and avoid performing the division
by D and the addition to the first vector when ID| becomes too small, The form
(24) will then remain an accurate representation ofvthe solutions (x, y) and can
be used in further computations just like what we have done here for the
deflated decompositions of v and w. Such situations arise, for example, in
applying continuation methods around bifurcation points [11], where A is

singular but ETb = 0 and therefore M is also simgular.

e

Compared to Algorithm BE, the extra overhead involved in Algorithm DBE,
with Algorithm NIA for computing the deflated solutions, amounts to a few more
backsolves for computing the two null vectors and storage for them. For the
SVD-based deflated decompositions, the number of extra backsolves depends on the
convergence of the inverse iteration. If the inverse iteration fails to
converge, then an extra copy of A has to be stored for computing cp, For the
LU-based deflated decompositions, only two more backsolves are needed and the
matrix A does not have to be stored. When there are multiple right hand sides
for the M—system, the null vectors and the deflated decomposition for v have to
computed only once and the cost per extra right hand side is then no more than

that of Algorithm BE.

5. Error Analysis
We prove in this section that Algorithm DBE is stable by exhibiting a

backward round—-off error bound for (x, y). We shall show that the (x, )
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produced by Algorithm DBE give small residuals to the system (1) |if the computed
solutions are mnot large. If M is well-conditioned, then it follows that the

errors in (x, y) are also small, If M is ill-conditioned, a small residual is

all we can hope for.

We shall use ' ' to denote computed quantities. To simplify the error

analysis, we shall make the following assumption:
Assumption 1: We shall assume that the only source of errors

in Algorithm DBE is in solving systems with A

]

(i.e. errors in Vv, ;ﬁ % and §)

and that no round-off errors are made in carrying

out the operations in (24).
This is a reasonable assumption because (24) represents a stable algorithm. The

actual round-off errors made in (24) can be bounded by a small constant times

€
€

v, 5, b, ¢, d, £, g. These can

the machine precision times quantities like v D’

D’
all be absorbed into our final bounds.

The following lemma shows that the residuals for (1) depends on the
accuracy of the computed ;:, ;b' z, $'and 3.

Lemma 5: If the computed vy, Wy, & $'and § used in Algorithm DBE

satisfy
SAvD - Rb = Ty
SAwD - Rf = Tes
A - 3% = rg,

then the computed solutions (%, ¥) satisfy:

x T _ T To - yr o+ (h3/D) ré(;
+ o+ (] +

~ (25)
y
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Proof: The proof is rather straight—forward albeit a bit tedious

and follows from a direct substitution of (24) into the expression for

the residuals.

, WD and 5 are

computed. Next, we consider the use of Gaussian Elimination with some form of

The actual residuals Tyr T and rg‘depend on the way ;D

pivoting,
Lemma 6: If we use Gaussian Elimination with some form of pivoting

for solving systems with A, then the residual rg,satisfy:

r, £ k(n)eM||A||. (26)

E ¢
where Ey is the machine precision and k(n) is a polynomial in n that

depends on the form of pivoting used. Further, if Algorithm NIA without

Step (3) is used to compute V. and W ,» then

D D
, < k(n)eM||VD||||A||. (27)
r. £ k(n)eM||WD||||A||. (28)

Proof: The standard backward error bounds for Gaussian Elimination
with pivoting (e.g. [6], p.181) for solving a general linear system Az
= p has the form

lp - Azll < k(e lIzIITIAIL, (29)
where k(n) is a slowly growing polynomial that depends on the pivoting
strategy. The bound for rg(follows directly from this. For the othef
two bounds, observe that the vector d produced at Step (2) Algorithm NIA

satisfies Ad = Rb +'B, where the vector B satisfies a bound similar to

(29). Therefore, ry = SAd - Rb = S(Rb + B) — Rb = (S — I)Rb + SB. It

»
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can easily be shown from Table 3-1 that (S — I)R =0 for all the choices

=P, oz ?, , lIsBll CIIBIl. For s =3 HT,
SV LU Sy
)j) IIBlIl. Since (§LU)j is chosen to be O0(1), we

of 8§ and R. For S

IIsBIl < (1 + /(&4

have |ISBlIl ¢ C |IBll| where C is a small constant., The bounds for rb

and rf follows since C can be absorbed into k(n).

Notice that we have used Algorithm NIA without Step (3) in order to obtain
the above bounds. If Step (3) of Algorithm NIA is used, then we can show, by

using the bound (26), that SANd - SAd =fB1, where ||B1|| < ZaMk(n)||A||||d||.

It follows that ||rz|| = || (SANd — SAd) + (SAd - Rb) || ¢ aMk(n)||A||||d||, where
again the constants are absorbed into k(n). However, we cannot in general
obtain a bound in terms of |lzl| rather than llall. If €+'is not close to the

left null vector of A in the zZg deflation, or if & »> 'O(Gn) in the LU-based

deflation, then |lzl| can be much smaller than llall. However, we believe that

b and T will still be satisfied if either Algorithm

NIA or Algorithm ITA is used for computing ;D and ;D'

in practice the bounds for r

Using Lemmas 5 and 6, we obtain our main result:

«

Theorem 7¢ If the computed quantities v R w , 6: E and 3 satisfy

D
the bounds in Lemma 6, and no further round-off errors are made in
Algorithm DBE in the sense of Assumption 1, then the computed solutions

(X, ¥) satisfy:

1Az + 56 - £11 < U1+ IFIH55D + a3 x@) Al ey

lqu§ + ;d - g|| = 0.

Proof: The proof follows directly from Lemmas 5 and 6, and by

observing that, from (24), |E3/5| < I + ||;D|| + |;| I‘;Dll’
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From Theorem 7% we see that the key to the success of Algorithm DBE is to
control the size of ;D"; R ;:and X. When A is not nearly singular, this is mno
problem, When A is nearly singular, Algorithm DBE achieves this by the
deflation techniques. Thus, the stability of Algorithm DBE is independent of
the singularity of A. In practice, this means that, with only a little overhead,
the same algorithm can be used to solve systems with M accurately independent of

whether A is nearly singular or not.

6. Numerical Results
We performed some numerical tests to verify the accuracy and stability of
Algorithm DBE with the various deflation techniques. We considered two classes

of matrices for A:

A1 : (I—2uuT) Diag(on,n—l,nrz,..;..,l) (I—2va) where u and v are chosen
randomly and scaled to have norm 1, and °, varies from 1 to 10—8.

A.2 : T - xmin(T)I - oI where T = Tridiagonal(1,-2,1) and o again varies
from 1 to 10 5.

Note that °, is equal to the smallest singular value of A1 and A,. For A,
the smallest singular value has multiplicity 2(when o = 1. The dimension n of
A is chosen to be 19, so that the dimension of M is 20. The vectors b and c are
chosen randomly in (0,1) and d is set to 1. The solutions (x. y) are also

generated randomly and the corresponding right hand sides (f, g) are then

computed by multiplying (x, y) by M.

In the inverse iteration for determining the approximate singular vector

§év, we start with the vector with all components'equal to 1 and always take 5
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iterations. When A is highly singular, one or two iterations is enough for full
accuracy. However, we had some convergence difficulties when A does not have a

well isolated small singular value.

For the deflation, we use Algorithm NIA without the correction step (3).
This is the case covered by the error bounds in Section 5. We have also
performed the same tests using Algorithms NIA and IITA with qualitatively the
~ same results. Moreover, Algorithm ITA always converged in ome iteration. For
comparison, we will also use Algorithm BE without deflation and direct Gaussian
Elimination (GE) on M itself, All LU-factorizations are performed by the
routine SGECO of LINPACK [7] which uses the partial pivoting strategy. The
computations were performed on a DEC-20 with 27 bits mantissas corresponding to

a machine precision of about .4 x 10_8.

The first set of tests is to see how & varies with o The computed &, its
position k, the computed o and the reciprocal of the estimated condition number
of M (the parameter RCOND in routine SGECO) are given in Table 6-1 for A1 and

Az.

We see that, at 1least for these two classes of matrices, & is indeed
roughly O(Gn). Moreover, the smallest pivot always appears at the (n,n)-th
position. Note also that, when 6 is well-isolated, the computed o is rather
accurate and has low absolute error. However, when the smallest singular value
is not well isolated., the inverse iteration is not successful at all. This is
especially true for A2 because its lowest eigenvalues are rather close to each

other. Since this only occurs when A is well-conditioned, the accuracy of

Algorithm DBE with the SVD-based deflations is not affected.

The relative residuals of the M equation as computed by the various

algorithms are displayed in Figures 6-1 and 6-2. The relative errors are
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Table 6—1: Table of &, k and RCOND

as a Function of cn =:10—I

A
|l T | computed ¢ | & | x | RCOND |
l o | 0.1000007E+01 | 0.1183648E+01 | 19 | 0.1065610E-01 |
l 1 | 0.9999996E-01 | 0.9543458E+00 | 19 | 0.1099506E-01 |
| 2 | 0.1000000E-01 | -0.6528494E-01 | 19 | 0.1687405E-02 |
| 3 | 0.1000016E-02 | 0.7956855E-01 | 19 | 0.1218959E-03 |
| 4 | 0.9999102E-04 | -0.1555381E-02 | 19 | 0.2518016E-02 |
| 5 | 0.1001859E-04 | -0.9973533E-04 | 19 | 0.1758764E-02 |
l 6 | 0.9929115E-06 | 0.4390627E-04 | 19 | 0.6221786E-02 |
l 7 | 0.9942711E-07 | —0.7852563E-04 | 19 | 0.2147673E-02 |
| 8 | 0.1375784E-07 | 0.8866191E-06 | 19 | 0.6173249E-03 |
A,
l T | computed o | e I x | RCOND |
l o |: 0.6789568E~01 | —0.7148705E+00 | 19 | 0.9330396E-02 |
l 1 | 0.9806986E-01 | 0.7308936E+00 | 19 | 0.4726424E-02 |
l 2 | 0.1000000E-01 | 0.5541958E+00 | 19 | 0.1737031E-03 |
| 3 | 0.1000000E-02 | 0.6328177E-01 | 19 | 0.3318758E-03 |
| 4 | 0.1000006E-03 | 0.6386045E-02 | 19 | 0.3319462E-02 |
| 5 | 0.9999954E-05 | 0.6391779E-03 | 19 | 0.1049820E-02 |
l 6 | 0.9980513E-06 | 0.6379932E-04 | 19 | 0.2220898E-03 |
l 7 | 0.1047228E-06 | 0.6694347E-05 | 19 | 0.5903182E-02 |
| 8 | 0.1462787E-07<] 0.9350479E-06 | 19 | 0.7973481E-03 |

# Singular Vectors had not converged after 5 iterationms.

** Singular Value converged to the wrong value.
*%% Tnverse Iteration had not converged after 5 iteratioms.

*%
&k%
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displayed in Figures 6-3 and 6-4, It is seen that Algorithm DBE with any of the
three deflation techniques achieve about the same accuracy as that of GE on M,
whereas Algorithm BE with no deflation loses accuracy as A tends to being
singular. Note also that we do nmot try to control the singularity of M itself
and it can become rather ill-conditioned. However, by the backward error bounds
in Section 5, the relative residuals to the M equation should still be small in
these situations because the solutions (x, y) are small by construction. The
relative errors, however, will be large if M is ill-conditioned. This is

reflected in the figures too.
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Figure 6-1: Relative Residusl ss a Function of °. =-10—I for Al
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RELATIVE RESIDUAL

Figure 6-2: Relative Residual as a Function of % =«10-I for Az
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Figure 6-3: Relative Error as a Function of s =10
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RELATIVE ERRBR

Figure 6-4: Relative Error as a Function of o',; ='10-I for A2
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