Yale University
Department of Computer Science

Solving Schrédinger’s equation on the Intel iPSC
by the Alternating Direction Method

Faisal Saied, Ching-Tien Ho,
S. Lennart Johnsson, Martin H. Schultz

YALEU/DCS/TR-502
January 1987

This work was supported in part by the following: ONR grant N00014-84-K-
0043, ONR grant N00014-86-K-0564, ONR grant N00014-82K-0184, NSF/CER
grant DCR 8106181 and ARO FSP DAALO3-86-G-0029. Approved for public
release: distribution is unlimited.

t To appear in Proceedings of the Second Hypercube Conference 1986.

Solving Schrédinger’s equation on the Intel iPSC
by the Alternating Direction Method

Faisal Saied, Ching-Tien Ho,
S. Lennart Johnsson, Martin H. Schultz
Department of Computer Science

Yale University
New Haven, CT 06520

January, 1987

- Abstract

We consider the numerical solution of the Schrédinger’s equation and investigate
several different algorithms for implementing the Alternating Direction Method on
hypercubes. We indicate the relative merits of the algorithms depending on cube pa-
rameters such as arithmetic speed, communication latency, transfer rate, the packet
size, and the cost of reordering data locally. We present timings for the Intel iPSC
that show that Alternating Direction Methods can be implemented efficiently on
hypercubes.

1 Introduction

In this paper, we discuss implementations of the Alternating Direction Method on the In-
tel iPSC. The implementations are for the time-dependent, two-dimensional Schrédinger
equation on a rectangular domain. Schrédinger’s equation is a fundamental equation in
quantum mechanics. We focus on the efficiency of the Alternating Direction Method.
The results reported here were obtained on a 32 node configuration of the Intel iPSC.

The structure of this paper is as follows. We describe the problem in which we are
interested, and mention several numerical techniques for its solution. In this paper we
investigate only the Alternating Direction Method. We briefly discuss the architectural
features of the Intel iPSC that are relevant for our implementations. We outline several
methods for solving multiple tridiagonal systems on a hypercube, indicate their relative
performances on the iPSC and compare them on the basis of model times. We describe
the basic approach towards the parallel implementation of the ADM that we have fol-
lowed, and discuss several variants. Finally we present the results of some experiments
on the iPSC.

2 The Model Problem

We consider a time-dependent partial differential equation of the following form:

24 o2
z% = g—a}% + 5—?7; +V(z,y,t)u in a rectangular region, R, (1)

where u = u(z, y,t) satisfies
u(z,y,0) = ¢(z,y) for (z,y) € R, and u(z,y, t) = ¢(z,y) for (z,y) € OR.

This equation is essentially the time-dependent, two-dimensional Schrédinger’s equation
in quantum mechanics.

3 Numerical Schemes for the Model Problem
Some of the methods that have been applied to (1) are the following.

e Explicit methods

Crank-Nicolson

e ODE techniques (method of lines)

e ADM (alternating direction methods)

An explicit scheme that is conditionally stable with first order accuracy in time
was proposed in [1] for Schrédinger’s equation. With two space dimensions, the com-
putational stencil involves eight neighboring grid points. Each time step involves a
matrix-vector product only, with local communication involving the stencil neighbors
only. However, a larger number of time steps is required to achieve a given accuracy at a
fixed point in time than with methods that are second order in time. Thus, an efficient
parallel implementation of this method is probably not competitive with the ADM.

The Crank-Nicolson scheme is unconditionally stable, second order accurate in time
and implicit. It requires the solution at each time step of a linear system whose matrix
has the non-zero structure of the discrete Laplacian. Solving such a system can be costly,
especially if the form of the function V' precludes the use of fast Helmholtz solvers. The
efficient parallel implementation of iterative solvers of this class is a topic of current
research, but is not considered in this paper.

In the ODE approach, one discretizes the space variables and solves the resulting
coupled system of ordinary differential equations, which are typically stiff, by some
implicit method, which again requires solving large sparse linear systems, defined by
the stencils, at each time step.

Alternating Direction Methods were developed for solving parabolic partial differ-
ential equations [7]. They have the advantage of being unconditionally stable, second
order accurate in time and require O(P?) operations per time step on a P X P grid.
In applying the ADM to our model problem the spatial operators are approximated by

their discrete equivalents, which for 3-point central differences yields an equation of the
form

du
E{"-A:cu'*'B u+f(x,y,t)u, (2)
where A, and éy with the appropriate orderings, are block diagonal matrices, each block

being a tridiagonal matrix. One ADM step for this equation consists of two half steps,

(I- %AtAz)u"’f% =+ -;-AtB,,)u",

- %AtB,,)u"“ = I+ %Am,)u“f%.

Here, A; and By are obtained from A, and ﬁy by modifying the diagonal entries to
account for the last term in (2). In the first half step, we form P tridiagonal matrix-
vector products in the y-direction, corresponding to (I + 1 AtB,,)u to get the right
hand sides for the P tridiagonal solves in the z-direction whlch involve (I — 1AtA;).
The second half step requires the same operations to be performed, with the roles of
the z- and y-directions interchanged. It is usual to transpose the data at each half step
in sequential implementations, to make the tridiagonal solves in both directions equally
efficient.

For the applications we are interested in, the P x P grid vector u is complex. We
give the operation counts in terms of real, floating-point operations, even though complex
arithmetic is used. Thus, a complex add is counted as two flops, etc. Let Cypyvp and
Crrip be the number of real single precision operations required per unknown for each
matrix-vector product and tridiagonal solve respectively. Further, let ¢, be the time to
perform one floating-point operation. Then the sequential time for one ADM step on a
P x P grid is

T(P) = 2(CMVP + CTRID)PZta.

4 Solving Tridiagonal Linear Systems on Hypércubes

In this section, we discuss the problem of solving multiple independent tridiagonal sys-
tems on a hypercube. We first give a brief description of the methods we have considered
and then compare them, in terms of actual performance on the iPSC and on the basis
of model times. :

The choice of the method for solving the tridiagonal systems is influenced by the size
of the cube and the size of the local memories relative to the problem size, in addition to
depending on other cube parameters like the arithmetic rate, the communication latency,
the transfer rate, etc.

4.1 Outline of the Methods

Suppose that we have P tridiagonal systems, each of order Q, and a hypercube with N
processors. For simplicity, we assume that P and @ are powers of 2. We will initially
outline the methods for the case N < P and using “one-dimensional domain decompo-
sition”. We will indicate the modifications that are necessary to implement them when

more processors are available (P < N), using two-dimensional domain decomposition.
Two-dimensional domain decomposition can also be applied when N < P, and will be
discussed in the next section.

The simplest approach to the problem is to move P/N systems to each processor,
solve them locally, using standard Gaussian elimination and move the solutions back to
their original distribution. Since the data movement is equivalent to a transpose (of a
distributed, rectangular matrix), we will refer to this method as TGET [5] (“Transpose-
GE-Transpose”). For Gaussian elimination, the number of floating point operations per
row required is 8.

The transpose operation can be implemented efficiently as follows. Assume that there
are P systems each of order @ spread identically across N processors, each processor
having @/N rows of each system. At the first step, each processor whose node number
has its lowest order bit equal to zero, sends its rows of systems (P/2) + 1, ..., P to its
neighbor whose node number differs in the lowest order bit. That neighbor sends its rows
of systems 1, ..., P/2 in exchange. All processors then reorder the unsent part of their
original data and the received data so as to make the data for each system contiguous
and ordered. This process is repeated for the other bits in the node numbers, going from
low to high. At each step, the number of systems in each processor is halved and the
number of rows of each system in a processor is doubled. Thus in each of log N steps,
each processor sends and receives messages equal to half its local data, and reorders all
of its local data. Let Tpomm (B) be the time to send or receive a message consisting of B
bytes. The cost of the above transpose procedure for a real P X Q matrix spread across
N processors is given by

P P
T(P,Q,N) = log N [47%0,,,, + 2Tcomm(2-ﬁ‘?.)] (3)

The parameter t.,,y denotes the time to move one byte of data in the local memory. This
data movement is implemented in FORTRAN by a pair of nested loops and can have an
appreciable cost. Note that ¢,y Will be smaller for complex arrays than for real arrays
due to the lower loop overhead per byte. Unrolling the inner loop reduces the value of this
parameter somewhat. An optimized variant of the transpose operation on a hypercube
has been devised [3] that reduces local copying at the cost of more sends/receives and
reduces the overall run-time.

A different approach is to use substructuring. By substructuring (SS) we mean
reducing each system down to one equation per processor using what is essentially block
Gaussian elimination in the manner described in [9], [4]. For substructuring, the number
of floating point operations required per row is 17. In methods applying substructuring
the load is perfectly balanced during this phase, and there is only one nearest neighbor
communication between adjacent partitions in a subcube. We consider three alternative
approaches for solving the reduced tridiagonal systems.

1. SS/TGET: This methods applies TGET to the reduced systems, after performing
substructuring. The Gray code is not required for the transpose [3].

2. SS/“Naive” CR: Solve the reduced systems by cyclic reduction (CR), with all
systems converging to the same processor. We do not recommend this method
because of its poor load balancing properties.

3. SS/BalCR: The CR process is balanced, in the sense that an equal number of
systems converge to each processor [5]. Each step of CR requires 17 floating point
operations per row. The reduction phase and the substitution phase take log N
steps each in CR. The number of rows modified in each processor is halved on
successive steps. Each step in balanced CR requires shipping half as much data
as the previous step, in contrast to the transpose, where the the amount of data
shipped is the same for all steps. However, each step of BalCR requires twice as
many start-ups as a step of the transpose. One potential advantage of SS/BalCR
is the fact that for “sufficiently” diagonally dominant systems, the cyclic reduction
process can be terminated in fewer than log N steps, where N is the number of
processors.

We now discuss the modifications that are required to implement the methods de-
scribed above when P < N. Note that this regime is not important on small hypercubes
such as the iPSC with 32 or 64 nodes, but will be relevant for larger cubes. To use
more than P processors, we must use two-dimensional domain decomposition. However,
this involves separating the tridiagonal systems into groups that are confined to disjoint
subcubes, and the problem on each subcube corresponds to one-dimensional domain
decomposition, with more processors than systems. When N > P, TGET will involve
moving one single system to each of P processors, leaving the remaining N — P processors
idle while Gaussian elimination is being applied. This requires that the local memories
be sufficient to hold an entire system. Even when sufficient memory is available, this
approach will be unattractive when too many processors are idle. Similar considerations
apply to SS/TGET, except that the local memory requirements are lower, since only
the reduced systems are being solved by TGET. With SS/BalCR, after log P steps, we
end up with single systems on subcubes of dimension log NV — log P. We can then apply
any method that is appropriate for solving single tridiagonal systems on hypercubes, for
example cyclic reduction [5].

4.2 Comparison of Methods for Multiple Tridiagonal Systems

In the following, we compare TGET, SS/TGET and SS/BalCR. We first present the
results of experiments on the iPSC and then use model times to predict the relative
performance of the methods on cubes with different parameters.

We use the following simplified model of communication on the hypercube. The time
to send or receive a message consisting of B bytes is '

B
Tcomm(B) = Btc + [B—'] T,
m

where 7 (& 1.5 msec) is the start-up time, ¢, (=~ 0.001 msec) is the transfer time per byte,
and By, is the maximum packet size. B,, = 1k bytes on the iPSC. This is different from
the maximum message size, which is 16k bytes on the iPSC. This model neglects the
difference between “internal” start-ups that occur between packets in the same message,
and the “external”, or initial start-up for the first packet. The considerable variability
in the measured communications times for different runs with the same code and in-
put parameters represents a significant difficulty in applying this model, or any other
performance related model.

128 real trid. systems of order 128 each

[I | ! I ! I T
\
L \ 4
\
\
%3000 — \\ —
=
<] - .
9
22000 .
=
: - -
1000 |~ -
0 : '
0 6

Cube Dimension

Figure 1: Solving 128 real tridiagonal systems of order 128 on the Intel iPSC with
one-dimensional domain decomposition. Solid line: TGET, Dotted line: SS/TGET,
Dashed line: SS/BalCR.

Figure 1 shows the time needed to solve 128 real independent tridiagonal systems,
each of order 128 on the iPSC using one-dimensional domain decomposition, on cubes
of dimension up to 5, using SS/BalCR, SS/TGET and TGET. Note that the amount of
substructuring and the order of the reduced systems vary with the cube dimension, but
all times are for solving the same problem. For this problem, TGET was the fastest,
followed by SS/TGET, with SS/BalCR being the slowest.

We now discuss the relative merits and shortcomings of each method, to explain the
ranking that is displayed in Figure 1, and why one can expect the ranking to change as
parameters such as cube size, problem size, ratio of arithmetic to communication speed,
etc. are varied. The advantage of TGET over SS/TGET is that SS/TGET has to pay
the “substructuring penalty” of 17 floating arithmetic operations per row as opposed
to 8 for Gaussian elimination in TGET. This is the primary factor that leads to the
superiority of TGET for this problem. This advantage will be offset by the the fact
that TGET transposes the entire data, whereas SS/TGET transposes only the data
associated with the reduced systems as the problem size is increased. SS/BalCR also
pays the substructuring penalty and in addition, requires twice as many start-ups as as
SS/TGET (these two methods do not incur internal start-ups for this problem), which
is why it is the slowest in Figure 1. However, since the amount of data communicated
at each step is halved on successive steps for SS/BalCR and remains constant for TGET
and SS/TGET, balanced cyclic reduction will be at an advantage for large cubes, and
large problems. If the computational speed is increased relative to communication speed
(e.g. by using vector boards), SS/BalCR and SS/TGET will benefit more than TGET
because the substructuring penalty will be less crucial. Finally, reducing the copying
time, teopy, Will help TGET and SS/TGET.

We state the expressions for the time required for each of the methods, in terms of
the cube parameters.

PQ PQ PQ [2PQ] T) , "

TTGET(P,Q, N) = STta + logN (B—J-V——tcopy + Sth + 4 N_.Bm

1 1
TSS/BalCR(P7Q7N) = 17P(—1QV - l)ta + 17P(1 - jv,—)ta + SOP(I — ‘ﬁ)tc + 8log N7. (6)

The expressions for SS/TGET and SS/BalCR have been simplified by assuming that
messages do not exceed By, bytes, i.e. no internal start-ups are incurred and by neglecting
the nearest neighbor communication performed in the substructuring phase.

Figure 2 compares the three methods using model times under the following assump-
tions: P =@, N < P, 7 = 1000 and ¢{, = 1. This comparison assumes that sufficient
memory is available. Each (P, N) pair is represented by a box, which is shaded to indi-
cate which method is fastest for that pair. The four plots, (A) through (D), represent
different choices of the parameters tq and teopy. SS/BalCR is the fastest for sufficiently
large P and N, but reducing the copying time shifts the crossover boundary in favour
of TGET (or SS/TGET). Reducing the arithmetic cost (going from (B) to (C)), clearly
favours the methods that apply substructuring. Note that plot (B) in Figure 2 corre-
sponds approximately to the current parameters for the Intel hypercube.

5 ADM on Hypercubes

In this section, we discuss our implementations of the Alternating Direction Methods.
We embed a two-dimensional processor mesh (torus) in the hypercube [6]. The P x
P computational grid is mapped onto an N, x N, processor grid, with all processors
receiving equal, contiguous blocks of grid points. N = 2" = N, x N, is the total number
of processors in the cube and N, and Ny are powers of 2. We point out that for Ny = 1,
this scheme reduces to embedding a linear array in the hypercube, or one-dimensional
domain decomposition. For simplicity, we assume that P is also a power of 2.

We recall that for Schrodinger’s equation we use complex arithmetic. The tridiagonal
matrix-vector products at each half step involve CMVP(P2/N) arithmetic operations
and nearest neighbor communication. The methods discussed in the preceeding section
are central to the parallel implementation of the ADM. In going from real to complex
arithmetic, with the grid size fixed, the arithmetic costs increase approximately by a
factor of 5 and the data volume in each communication is doubled compared to the real
case. Based on our experience with multiple real tridiagonal systems, where SS/BalCR
was close to but slower than SS/TGET, we only report results for the ADM using the
TGET and SS/TGET algorithms.

When we consider the complexity of a full ADM step, using a two-dimensional pro-
cessor mesh, it is interesting to note that several terms in the final expression depend
on N, but not on N; or Ny. These include the total arithmetic for the matrix vec-
tor products (MVP), for substructuring in SS/TGET and for Gaussian elimination in

CUBE DIMENSION (LBG(N))

CUBE DIMENSI@N (LBGI(N})

10 — (R)

L "

$S/BALCR

TGET

, SR

PRBBLEM SIZE (LBG(P))

.

SS/BALCR

5
PRBBLEM SIZE (L@BG(P))

T T
I\
» N
10 (B) <,
z
8 /
;, SS/BALCR
st
o
g
TGET
N \\\
0 3 10
PROBLEM SIZE (LBG(P))
1 1
D
10 D) \
N
_ N
- N7
g
n
o SS{BHLCR
3
SS/TGET
TGET
s

H
PROBLEM SIZE (LOG(P))

Figure 2: Comparison of TGET, SS/TGET and SS/BalCR based on model times for
solving P tridiagonal systems of order P, on N processors. N < P, 7 = 1000 and ¢, = 1.
(A): ta = 25, teopy = 10, (B): ta = 25, teopy = 5, (C): ta = 5, teopy = 5, (D): ta = 5,

tcopy = 1.

TGET. Also, the nearest neighbor communications in the MVP and SS phases does not
depend on N or Ny, unless we are using one-dimensional domain decomposition. This
phenomenon limits the sensitivity of the total time to the aspect ratio of the processor
mesh. However, there are terms that depend on N, and N, and for P x P grids, these
terms are minimized for N, = Ny = \/—

We now derive the time for one ADM step using SS/TGET to give insight into the
complexity of an ADM step. Let Cpvp, Css and Crrrp be the number of floating-
point operations per point for the matrix-vector products, substructuring and the (local)
tridiagonal solves respectively. The times for the different phases of a full step are

p?
Tamyvep =2Cpqve Fta + 2T comm (8) + 2Tcomm (8),
II
P? P
Tss = 2csswta + 2Twmm(32—) + 2Teomm (85~) + 2Teomm (32 =) % 2eomm (8 5~ o),
y

' P P P
Trs = (40log NzI—V- + 40log Ny — Ny)

V)
+2 log N, [Tcomm() + Tcomm(_)] +2 log N, [Tcomm(16P) + Tcomm()]

tcopy + CTRID(_ +

For tridiagonal matrices w1th complex coeflicients with constants on the off-dlagonals,

Cmvp = 16 real arithmetic operations. Assuming that the matrices for the tridiagonal

system solution have off-diagonal elements equal to —1, which is the case after scaling,

Css = 70. For the reduced system we assume a general, complex, system, which for

Gaussian elimination yields Crgrrp = 46. This constant reduces to 24, if we assume that

the sub- and super-diagonals entries are all equal to —1. With the simplified communi-

cation model, the total time is

P

Tapm(P,N,N;) = ne7 + (96 4+ 40log N,,) tc + (96 + 40log N,)N

y
P P

P P?
+ (40log N,TV-; +40log N,)tcopy7+(172 ~ 46—N— + 46Ny)

where

8P 32P 16 P 4P
me =4 [N;Bml +2 [N B.] + 2log Ny [NzBm] +2log Ny [N,Bm]

8P 32P 16P 4P
is the total number of start-ups incurred, under our communication model. If we choose

N, = N, = /N, n, decreases like (log N,)/N, as N increases, but is bounded below by
124 4log N.

We now consider the case Ny = 2, which is a special case in the sense that when
we apply TGET in the y direction, each tridiagonal system is distributed over two
processors. By using “two-way” Gaussian elimination, we can avoid the two transposes
(which would have required just one step each) and replace them by one small exchange,
involving just one row per system. Even though for larger cubes and larger problems with
square grids, we expect a square processor mesh to be optimal, in our experiments we
found Ny = 2 to be faster than N, =+/N. For a one dimensional cube, the tridiagonal
solves in one direction are entirely local and this special case applies to the other direction
For a two dimensional cube, this special case applies for both directions.

9

20 Time for one step of complex ADM, 128 X 128 grid
I T

15

Seconds
—_—
o
T T T T [T T T T I T T T 1 | T T T 1

lllllllll'lllllllll

(@]

Cube Dimension

Figure 3: Cost of one step of ADM on the iPSC. Solid line: Using TGET (Dashed line:
Extrapolation to 6-cube), Dotted line: Using SS/TGET.

| 6 Experimental Results on the Intel iPSC

In our experiments we used hypercubes of up to 5 dimensions. The floating-point ca-
pacity of each node is approximately 35 kflops (measured). The standard version of
the Intel iPSC comes with 512k bytes of memory per node, but the Yale iPSC is cur-
rently configured with 4.5 Megabytes of memory per node. The Intel times reported
here were obtained with the NX operating system, which has a reduced communication
latency (N 1.5 milliseconds) and the Ryan-MacFarland Fortran compiler, which handles
complex arithmetic much more efficiently than the previous compiler.

In our experiments, we found that TGET with Ny = 2 was faster than SS/TGET
for the 128 x 128 grid on cubes up to dimension 5 and the results reported correspond
to this case, rather than N, = N,,.

Figure 3 gives the time to perform one ADM iteration on a 128x 128 grid, as a function
of the cube dimension. With a 5-cube, TGET took 1.24 seconds, which represents a
speed-up of 25.8 over the same code on a single node of the hypercube, and is faster
than the VAX 8600 which took 1.4 seconds for the same problem. The code for TGET
was not run on a 6-cube, and we have used an extrapolated value (0.8 seconds). The
predicted time on a 7-cube is & 0.6 seconds. Figure 4 shows the efficiencies corresponding
to the times in Figure 3. The efficiencies are based on a running time of 32 seconds on a
single node. For both methods, the efficiency falls off as the cube size is increased, but
the deterioration is more rapid for SS/TGET because of the substructuring. Finally,
Figure 5 shows the variation in the total time as N, is varied. As one can see, the “edge
effect” of choosing Ny = 2 yields the best results for a 5-cube. TGET is less sensitive to
variations in the aspect ratio of the processor mesh than SS/TGET.

10

1.0 Efficiency for complex ADM on hypercube
. | ~ T I T T

o
@
|

o
o
|

SS/TGET ™. -

Efficiency
1

o
'S
|
|

o©
™
|
I

0.0 ! | 1 | | I
0 2 4 8

Cube Dimension.

Figure 4: Efficiency of an ADM step. Solid line : Using TGET, Dotted line: Using
SS/TGET. ’

55 128 by 128 grid, 5—cube.
. T ' T l 1 ,
i) ‘, SS/TGET 1
/ \
- / \ ~
2.0 _\\ // \\ //, fa—
L N / : \ s
,g \\ / \ // N
a - / Y pu
[}
3] - -
Q
72} - -
1.5 + T -
\/_TGE,P\/]
1.0 . ! . ! . ! |

0 2 4 B

log; (number of processors in X direction)

Figure 5 Effect of varying the aspeét ratio of the processor mesh for a 5-cube. Time for
one ADM step vs. N,. Solid line: Using TGET, Dashed line: Using SS/TGET

11

7 Conclusion

The ADM scheme can be implemented efficiently on hypercubes. This is due to the fact
that the method has regularity and a considerable degree of parallelism. The best iPSC
time for a 128 x 128 grid is 1.24 seconds on a 5-cube, which represents a speed-up of
25.8, or an efficiency of 81%. Our predicted time on a 6-cube for the same problem is ~
0.8 seconds, which represents a speed-up of 40, or an efficiency of 63%. The time on a
7-cube is expected to be less than 0.6 seconds. The same problem takes 1.4 seconds on
a VAX 8600.

The ADM scheme, due to its desirable numerical properties and the effectiveness
with which it can be parallelized, can be recommended for the solution of Schrdinger’s
equation on hypercubes. However, future work on some of the other solution methods
mentioned may lead to comparable or better parallel methods for the model problem.

Acknowledgement

This work was supported in part by the following: ONR grant N00014-84-K-0043,
ONR grant N00014-86-K-0564, ONR grant N00014-82K-0184, NSF/CER grant DCR
8106181 and ARO FSP DAALO3-86-G-0029.

References

[1] T.F.Chan, D. Lee, and L’ Shen. Stable Ezplicit Schemes for Equations of Schridinger
Type. Techmcal Report YALEU/DCS/RR-305, Department of Computer Science,
Yale University, 1984. ,

[2] J.J. Dongarra, C.B. Moler, J.R. Bunch, and G.W. Stewart. LINPACK User’s Guide.
SIAM, Philadelphia, 1979.

[8] C.-T. Ho and S.L. Johnsson. Matriz Transposition on Boolean n-cube Configured
Ensemble Architectures. Technical Report YALEU/CSD/RR-494, Yale University,
Dept. of Computer Science, September 1986.

[4] S.L. Johnsson. Odd-Even Cyclic Reduction on Ensemble Architectures and the So-
lution Tridiagonal Systems of Equations. Technical Report YALE/CSD/RR-339,
Department of Computer Science, Yale University, October 1984.

[5] S.L. Johnsson. Solving tridiagonal systems on ensemble architectures. SIAM J. Sci.
Stat. Comp., ():, 1986. Report YALEU/CSD/RR-436, November 1985.

[6] S.L. Johnsson, Y. Saad, and M.H. Schultz. Alternating direction methods on mul-
tiprocessors. SIAM J. on Sci. Stat. Comp., ():, 1986. Yale University, Dept. of
Computer Science, August, 1985, YALEU/CSD/RR-382.

[7] D.W. Peaceman and H.H. Rachford Jr. The numerical solution of parabolic and
elliptic differential equations. J. Soc. Indust. Appl. Math., 3:28-41, 1955.

[8] E.M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms. Prentice Hall,
1977.

12

[9] H.H. Wang. A parallel method for tridiagonal equations. ACM Trans. Math. Softw.,
7:170-182, 1981.

13

