On the Complexity of
Linear Search Tree Programs for Searching

(extended abstract)

David Dobkin and Richard J. Liptomn
Research Report #96
Department of Computer Science

Yale University
New Haven, Connecticut 06520

This research was supported in part by the Office of Naval Research
under grants N00014-75-C-0450 and N00014-75-C-0752.

One of the most fundamental operations performed on a computer is
searching. Generally a set is given in order and probes are then made to
determine whether a new element belongs to the set or where it must be
inserted in the set to preserve the set's order. Knuth [10] provides a
detailed account of known methods of searching and poses an open problem that
has inspired the current research direction. The problem involves searching
sets that do not have a natural ordering. Such a set might consist of a set
of geometric objects in Euclidean space, and we may wish to ask on which
objects a new point lies or where it might occur in the partition of space
introduced by such objects. Problems of this type arise naturally in such
diverse areas as numerical analysis, artificial intelligence, information
retrieval, coding theory, and operations research. In previous papers [3,4]
we have considered such problems in attempts to derive upper bounds on their
complexity and to find reasonable models in which to prove lower bounds on
their complexity. In the current abstract, we report on research that extends
many of these results. Our principal focus here will be on problems of a form
similar to that of the knapsack problem as studied elsewhere [2,4]. We will
show that any algorithm for solving the n-dimensional knapsack problem
requires at least %~n2 operations for almost all inputs using the model of
computation that is actually used to solve such problems. Furthermore, this
‘bound holds even if n, the dimension §f the problem, is given in advance and

unlimited preprocessing is allowed to derive the algorithm before inputs are

received. The knapsack problem is characterized as a problem of searching the
partition of n-dimensional Euclidean space by a particular set of hyperplanes.
We then generalize the problem by considering an arbitrary set of hyperplanes
in Euclidean space. In this case, even the results for n=2 on the complexity
of searching a set of lines in the plane are surprising. It appears
reasonable to conjecture here that all sets of lines in general position are
of approximately equal complexity with regard to searching. This is, however,
not the case and we are able to show that a hierarchy exists with respect to
searching complexity with an exponential gap between the least and the most
complex sets of lines.

In the next section we set forth our notation and model problems.
Following this a study of the general problem in n dimensions and its relation
to the knapsack problem is presented resulting in a lower bound of %-nz on

~this problem. Methods of extending this bound further are also mentioned.
From this section is also developed a general statement of the problem of
geometric search of geometric objects in n-dimensional Euclidean space. This
statement suggests interesting problems that must be tackled in order to
derive faster upper bounds on knapsack-type searching problems. The final

section is devoted to a study of some results that occur when the

2-dimensional version of this problem is considered.

Our basic searching problem will be presented in terms of a set of
hyperplanes Hl,...,Hm in n-dimensional Euclidean space E". Given such a set,

which partitions this space into many regions, we shall probe the set in order

to determine whether a new point lies on one of the original hyperplanes or in
which region of space it lies. This is a very common problem type in pattern
recognition [11], coding theory [1], numerical analysis [6], and operations
research [3,4,7,14]. In different situations, we will allow as probes queries
of varying types. The most widely used types will be the case where a query
is restricted to a concern for the 1ocation.of a given point with respect to
one of the original hyperplanes or an arbitrary hyperplane in E?. Aas
previously observed [2], we may simulate a query concerning the location of a
given point with respect to any hypersurface of degree p by p linear queries.
Thus lower bounds obtained here will apply to a wider class of algorithms.
With this model, our algorithms can be considered as tree programs allowing

statements of the form

Li: if £(x) R O then go to Lj else go to Lk

where f(x) is a linear, affine function of the input and R is one of the
relations {<,=,>}. 1In this case, we shall refer to such algorithms as linear
tree programs: The linear tree program of minimum depth will be used as a
measure of the complexity of our operations. In some applications, we will
wish to consider restricted linear tree programs where f(x) is required to
define one of the original objects in our set. In this case, we will refer to
the restricted linear tree program complexity of our operations. Previously,
programs of these general types have been considered [2,4,5,12,13,16,18].

To conclude our preliminaries, we wish to introduce the knapsack
problem in n dimensions (KSn) as a problem in the searching of hyperplanes in

n . . . :
E'. This problem is generally stated [8] as: "Given an n-tuple (xl,...,xn) of

integers and another integer b, does any subset of the original set sum to b?"
We might then view this as a searching problem by defining a set of
hyperplanes corresponding to all possible packings of the knapsack. That is,

to test whether I ¢ {1,...,n} corresponds to a perfect packing, i.e. whether

is equivalent to determining whether the point

*1 % *n

S)

lies on the hyperplane HI defined as

H = {y_eEnl .Z Y; = 1}.
lel

As there are 2" -1 potential packings, and a similar number of such sets I, we
obsérve that solving the knapsack problem is equivalent to determining where a
‘point in E" lies with respect to the partition induced by these hyperplanes.

Before proceeding to our major new results on the knapsack problem, we
pause to review some previous results in order to set this result in its
proper framework. Previously [4], we have shown that any linear search tree
for solving the knapsack problem with queries limited to the original

hyperplanes requires

n
0%
vn

queries for almost all inputs. This proof proceeded by an elementary
adversary argument showing that all the hyperplanes corresponding to sets I
with %-elements would have to be considered. We alse proved a result on

determining membership in a union of open sets, which will form the basis of

our current result:

Theorem [4]: Let {Aj}jeJ be a set of pairwise disjoint open sets in E.
Then any linear search tree program (with queries not necessarily restricted
to the original hyperplanes) must require at least log2|J| to determine
membership in

U A.
jed J

for almost all inputs.

This result was previously used to show a lower bound of n leg n on this
problem [2]. The knapsack problem of dimension n consists of open sets formed
as the intersections of the halfspaces determined by the original 2" -1

hyperplanes. Potentially,
27=-1

such open sets could exist, as we might have to consider all possible
orientations with respect to all possible hyperplanes. Were this the case, we
would be able to prove exponential lower bounds. Unfortunately, for n= 4, we

quickly notice that the region

xl-l-x2 > 1, x1+x3 <1, x3+x4 > 1, x2+x4 <1

is non-existent. So we must determine which halfspaces have non-empty
intersections. To do so, we must make contact with results from the theory
of threshold logic. Pioneering work on this problem was done by Winder in the

early 1960's [15]. As observed above, there are about

possible partitions of 2{1,...,n}' each of which potentially gives rise to a

non-empty region. We shall call a partition

acceptable if and only if there exists a point xe¢ R® such that for each jeA

x lies above the hyperplane

Hy

3

and for each j ¢ A x lies below

HI.'
J

A point x is said to be below hyperplane HI if

% X, <1,
iel

above HI if

z xg > 1,
ieI

and on HI otherwise. Clearly, each acceptable partition corresponds to a
nonempty region and two different partitions correspond to disjoint regions;
hence a lower bound on the knapsack problem is given by the logarithm of the
number of acceptable partitions.

A development parallel to the one given above is given in the theory of
threshold logic with switching functions corresponding to arbitrary partitions

and threshold functions to acceptable partitions. Furthermore, it is known

that the number N(n) of threshold functions on n inputs is between

12
22

and

Hence, we have proven:

Theorem: Any linear search tree for the n-dimensional knapsack problem

requires at least %-nz queries for almost all inputs.

Corollary: BAny search tree allowing for queries of degree p or less that

solves the n~-dimensional knapsack problem requires at least

2p

queries for almost all inputs.

Before proceeding to a consideration of upper bounds on this problem,
we observe that this is the first lower bound of better than n log n given for
an NP-complete problem under a realistic model of computation. While linear
search trees do not have the full power of Turing machines, for which the P
vs. NP problem was originally stated, we conjecture that this extra computing
power does not assist in solving the knapsack problem. Although we have

proved that at least

‘l.nz
22
regions exist that are non-empty in the partition of ou by the knapsack

hyperplanes, we also cobserve that almost all of these regions have very small

volume. A result due to Karp [9] gives an algorithm that in time

O(n lgg n)

determines whether a solution of the €-approximate knapsack problem exists.
That is, given {xl,...,xn,b}, does there exist I ¢ {1,2,...,n} such that

z x;

iel
lies between (l-e)b and (1+€)b? If we consider linear search tree programs

for this problem, we can view the hyperplanes as having been extended to

solids such that HI is the set of points with

l-e< ¥ x. <1l+¢
. 1
lel

and we then consider the partition of space induced by these solids. This

partition can consist of at most

nlogn n

2 €

pairwise disjoint open sets.

In order to extend this lower bound, a number of approaches are
. possible. For each of these it is necessary to have a more complete
understanding of the knapsack partition than merely a knowledge of the number

of regions it produces. For example, as we have observed [4], the

—~
(S - I -]

hyperplanes corresponding to exact packings of exactly g-of the original
objects are all facets of a polyhedron; if we restrict our queries to the
original hyperplanes, we must query about eaéh hyperplane to determine whether
a point lies within this polyhedron or not. In the case where queries can be
arbitrary linear forms, this result is not known to hold nor is a better upper
bound known to exist. By further analysis of subsets of this problem improved
bounds may result. As we shall show below, however, these analyses are
nontrivial even in 2 dimensions. The arguments above should make it élear
that another view of the problem of P vs. NP is as a problem in geometry
regarding the partition of n-dimensional Euclidean space by a set of
hyperplanes. And the goal of this problem is to be able to find the location

of arbitrary points with respect to this partition.

"To begin our study of this precblem, we set out to understand

10.

partitioning of E2 by lines. Préviously, we had observed an algorithm for
searching a set of n lines in the plane in 3 log n queries using a linear
search tree [3]. We can also show that 2 log n is a lower bound on this
problem. But in the case of linear search trees with queries restricted to
the original lines, the results obtained are far more precise. It is clear
that certain sets of lines in the plane are very easy to search. For example,
suppose we have a set of n parallel lines or a set of n lines each passing
through a common point. Each of these sets can be easily searched in log n
queries by taking advantage of their natural ordering. In order to make the
problem most interesting, we then restrict ourselves to lines in general
position. That is, no three lines have a single point in common and each pair
of lines have a non—émpty intersection. In this case, it would seem
reasonable to assume that all sets of n lines require the same number of
queries in any linear search tree algorithm. Furthermore, since the general
position restriction appears to rule out any natural orderings on the lines,
it would seem reasonable to assume that O(n) queries are required.
Furthermore, since the general position restriction appears to rule out any
natural orderings on the lines, it would seem reasonable to assume that O(n)
queries are required. Furthermore, we can add further credence to this
conjecture by demonstrating, for each n, a set of n lines that require n
queries for their search. This set is given as a set of n lines forming an
n-gon where, to determine membership in the interior, on the boundary, or in
the exterior of the n-gon, n queries are required.

We can, however, construct a set of 7 lines that can }o searched in 6

queries. This set is given as:

11.

We observe that all intersections of A, B, and C occur above O and all
intersections of a, b, and ¢ occur below O. Hence, if we wish to locate x in
this partition, we can begin by locating x with respect to 0. If x is above
O, we can locate x with respect to a, b, and ¢ in 2 queries and with respect
to A, B, and C in 3 queries. A similar result holds if x lies below O. Thus,

not all sets of lines are of equal complexity. Furthermore, we can extend

12.

this argument to demonstrate, for each n, the existence of a set of n lines
that can be searched in %—],og2 n queries (n sufficiently large). Thus, there
is an exponential gap between easiest and hardest sets of lines. This result

can be extended further to:

Theorem: For any function f£{(n) such that log2 n £ £f(n) £ n and any n, there

is a set of n lines that can be searched in f(n) queries but no fewer.

As a further research effort, we hope to extend these results to
enable a study of partitions of higher dimensional spaces with the hope of
generating better upper and/or lower bounding techniques on the knapsack

problem.

References

1]

2]

3]

4]

5]

6]

7]

D. Arden.
Private communication, 9 March
1976.

D. Dobkin.

A non-linear lower bound on linear
search tree programs for solving
knapsack problems.

Yale Computer Science Research
Report #52, 1975. To appear in
the Journal of Computer and
System Science.

D. Dobkin and R. Lipton.

On some generalizations of binary
search.

ACM Symposium on the Theory of
Computing, May 1974. To appear
in the SIAM Journal of
Computing.

D. Dobkin and R. Lipton.

On the complexity of computations
under varying sets of primitive
operations.

Automata and Formal Languages.
Springer-Verlag Lecture Notes in
Computer Science #33, 1975.

D. Dobkin and R. Lipton.

The complexity of searching lines
in the plane.

Unpublished manuscript.

J. George.

A Computer Implementation of the
Finite Element Method.

PhD thesis, Stanford University,
1971.

E. Horowitz and S. Sahni.

Computing partitions with
applications to the knapsack
problem.

Cornell University Computer Science
Technical Report 72-134, 1972.

8]

9]

10]

111

12]

13]

4]

15]

16]

13.

R. Karp.

Reducibility among combinatorial
problems.

In R. Miller and J. Thatcher,
editors, Complexity of Computer
Computations. Plenum Press,
1972. :

R. Karp.
Private communication, 24 March
1976.

D. Knuth.

The Art of Computer Programming.
Volume 3: Sorting and
Searching.

Addison-Wesley, 1973.

S. Levinson.
Private communication, 11
February 1974.

M. Rabin.

Proving simultaneous positivity
of linear forms.

Journal of Computer and System
Science 6:639-650, 1972.

E. M. Reinhold.

Computing the maxima and the
median.

12th Annual Symposium on Switching
and Automata Theory, 216-218.
1971.

M. Shamos.

Computational Geometry.

To appear as a PhD thesis, Yale
University.

E. Sheng.
Threshold Logic.
Academic Press, 1969.

P. Spira.

Complete linear proofs of systems
of linear inequalities.

Journal of Computer and System
Science 6:205-216, 1972.

171 P. Spira.
On the number of comparisons
necessary to rank an element.
Courant Computer Science Symposium
7., edited by Randall Rustin.
Algorithmics Press, 1973.

18] A. Yao.
On the complexity of comparisen
problems using linear functions.
16th Annual Symposium on Switching
and Automata Theory, 85-89.
1975.

14.

