Application of Sparse Matrix Methods
to Partial Differential Equationst

S. C. Eisenstat, M. H. Schultz,
and A. H. Sherman *

Research Report #47

t This paper has appeared in the Proceedings of the AICA International Sympo-
sium on Computer Methods for Partial Differential Equations, Bethlehem,
Pennsylvania, June 1975.

* Department of Computer Science, Yale University, New Haven, Connecticut 06520.
This research was supported in part by NSF Grant GJ-43157 and ONR Grant
N0014~-67-A-0097-0016.

1. Introduction

We consider the system of linear equations Ax = b where the co-
efficient matrix A is an NN symmetric, positive definite matrix.
Such systems arise frequently in scientific computation and their solu-
tion often represents a significant portion of the total calculation.

When N is small or the matrix A is dense (i.e. most elements
aij are nonzero), the usual way to solve the system is with symmetric
Gaussian elimination [1]. Equivalently, we factor A into the product

t

U'DU, where D is a positive diagonal matrix and U is unit upper

triangular, and then successively back-solve the triangular systems

for the solution x. However, when A is large and sparse (i.e. most
elements aij are zero), symmetric Gaussian elimination is extremely
inefficient, both in terms of storage (because of the need to store the
large number of zero elements in A and U) and work (because of the
need to perform a large number of arithmetic operations on zero operands).
Historically, such large sparse symmetric systems have been solved
with iterative methods, in which we choose an initial guess X(O) and
successively generate a sequence of iterates x(k) that converges to
the exact solution. The iteration stops when some iterate satisfies an
estimated error criterion, usually based on the residual Ax<k) - b, and
that iterate is taken as an approximate solution. Such methods require

very little extra storage (typically one or two. temporary vectors) beyond

that needed for A, x, and b, and converge sufficiently rapidly as
to be practical for certain large classes of problems. Unfortunately,
the total work required (i.e. the number of arithmetic operations) is
highly dependent on the initial guess; the stopping criterion is a deli-
cate balance between speed and accuracy; and the rate of convergence is
critically dependent on iteration parameters that are rarely known a
priori. These difficulties have been overcome for some problems arising
out of finite difference approximations to elliptic partial differen-
tial equations [14], but not in general.

More recently, a great deal of attention has been focused on vari-
ants of symmetric Gaussian elimination that attempt in varying degrees
to avoid storing or operating on zero elements occurring during the
elimination process. 1In this paper, we shall examine three such me-
thods -- band elimination [11], profile or envelope elimination [6],
and (general) sparse elimination [9] -- to see how well they meet this
goal and how efficiently they can be implemented.

In Section 2, we introduce several linear systems typical of
sparse systems arising in practice. In Section 3, we present the three
variations of symmetric Gaussian elimination within the context of
avoiding the storage and work associated with zero elements and show
the importance of the ordering of the unknowns and equations in this
regard. In Section 4, we investigate the relative efficiencies of
these variations by looking closely at their innermost loops and, for
sparse elimination, at the additional pointer storage required to

store sparse matrices. Last, in Section 5, we draw some tentative

conclusions as to what methods should be used in practice.

2. Model Problems

In this section, we introduce several model problems that lead
quite naturally to sparse symmetric linear systems of the kind typi-
cally encountered in practice. Although they are all very specialized,
nearly all that will be said about them is valid for more general
problems. i

Our first model problem arises from the Poisson equation on the
unit square D = (0,1)x(0,1) with homogeneous Dirichlet boundary
conditions:

-Av = f in D; v = 0 on 3D.
To solve this problem, we must reduce the continuous problem to a
discrete one. We cover the unit square with a uniform grid with mesh-
width h = 1/(n+l) and seek an approximation Vij to v(ih,jh) at
each interior meshpoint. Replacing the differential operator by the

familiar five-point difference approximation at each interior meshpoint,

we obtain

2
1,541 7 Vi-1,5 T Viel,j T PPy 1

IA

4v,. -V

ij i,j-1 v

i,

.
IA
=]

where Vij =0 4if i =0,ntl or j = O,n+l and Fij = f(ih,jh) [7].

Numbering the unknowns in the natural row-by-row ordering (see Figure

3.1a), we get the nxn block tridiagonal system of linear equations

where T is the nXn tridiagonal matrix

and I dis the nXn identity matrix. We shall refer to this system
as the five-point model problem on an nxn grid. It can also be derived
using the Rayleigh-Ritz-Galerkin method with linear right-triangular
elements.

A slightly different linear system comes from using a nine-point

finite difference operator to approximate the differential operator:

A = -
(V)ij 8V,. +V

i3 7 Vae1,3-1 T Vie1,5 Va5 T Ve -1 T Vi, g

+V V' .

41,5 7 Vit 50 Vi3m0
The corresponding matrix problem is again an nxn block tridiagonal

system

e

where B and C are nXn tridiagonal matrices

— -
8§ -1 1 1
-1 8§ -1 1 1 1
B = \ R C = \ R
-1 1
-1 8 1 1
b — L -

We shall refer to this system as the nine-point model problem on an
nxn grid. It can also be derived using Rayleigh-Ritz-Galerkin with
a basis of tensor products of piecewise linear functions.

Our third model problem arises from the biharmonic problem
2 .
A“v = f din D; v = 0, 3v/on = 0 on 3D

on the unit square, where 3/9n denotes the normal derivative. Re-
placing the differential operator Az by the familiar thirteen-point
difference operator and using centered differences to approximate the
normal derivative along the boundary, we are led to an nkn block
penta-diagonal system where the diagonal blocks are

penta-diagonal, the sub- and super-diagonal blocks are tridiagonal, and
the remaining blocks are diagonal [7]. We shall refer to this system as

the thirteen-point model problem on an nxn grid.

3. Variations on Gaussian Elimination: The Importance of Ordering

When systems of linear equations are formulated, there is usually
some natural ordering of the variables and equations. Yet for any NxN
permutation matrix P, Gaussian elimination applies equally well to the
permuted system

PAP'y = Pb, Px = 7y

in which both the variables and equations have been permuted [2]. As

we shall see in this section, the ordering has an extremely large effect
on the storage and work required when we attempt to avoid storing and
operating on zero elements, and indeed may dictate the form of symmetric
Gaussian elimination to be used.

As an illustration, consider the five-point model problem on an
nxn grid. With the natural ordering of unknowns and equations (see
Figure 3.la), the coefficient matrix A is best described as a band
matrix; i.e. all the nonzero elements of A 1lie in a band about the

diagonal: a5 # 0 dimplies |i-j| < n

(see Figure 3.1b). Moreover, U is again a band matrix with the same
bandwidth as A and nearly all the elements of the band of U are non-
zero (see Figure 3.lc). Band elimination methods are just Gaussian
elimination with the assumption that all elements within the band of A
or U are nonzero and must be stored and operated on, but that all ele-
ments outside the band of A and U are zero and can be ignored. Such

methods are easy to implement [11] and widely used.

Figure 3.1a Natural ordering for a 3%x3 grid.

M O T o
I I I
N TN T o
I I I
Lon Bl e

Figure 3.1b Corresponding zero structure of A for five-point

model problem.

Figure 3.1lc Band structure of U (30 elements).

With the diagonal ordering (see Figure 3.2a), the coefficient
matrix A 1is best described as a variable bandwidth or profile matrix
(see Figure 3.2b). Letting fjA denote the row index of the first non-

zero element in the j-th column of A, we find that

A
a,,. 0 and i< j dimpl £, < i < 3
i 7 j dmply £, i

(the set of elements {(i,j)| fjA < i< j} is called the profile or
envelope of A). The envelope of U is the same as the envelope of A
and contains no zero entries (see Figure 3.2¢). Envelope elimination
methods have been developed analagous to band methods to avoid storing
and operating on zero elements in A and U [6]. Note that there are
fewer elements in the profile of U than in the band of U (every en-
velope matrix is a band matrix!) so that one would expect to need less
storage and fewer arithmetic operations to factor A. However, whereas
one number (namely the bandwidth) sufficed to represent the band struc—
ture of A or U, a vector of length N (namely the fjA's) is re-
quired to describe the envelope. In general, this trade-off of storage
for U for storage for the structure of U 1is quite beneficial.

With the alternate diagonal ordering (see Figure 3.3a), the coeffi-
cient matrix A has no discernible structure (see Figure 3.3b). Howevér,
even though U also has no regular structure (see Figure 3.3c), it has
significantly fewer nonzero elements than we obtained with either of the
two previous orderings. But, to take advantage of this, we must store

A and U as sparse matrices (i.e. store only the nonzeroes) and do

(general symmetric) sparse elimination (i.e. keep track of nonzeroes as

they occur during the elimination process and operate only on nonzeroes).

Figure 3.2a Diagonal ordering for a 3%3 grid.

N — W — =
I

RO e U1 — N
1

O —

Figure 3.2b Corresponding zero structure of A for five-point
model problem.

© O © © O O K M M
© ©O O © M MK O MW X
© O O K MK O MW O KX
O O MK O O MK O XK o
O XK MK O MK O K K o
O XK O XK O O XK o o
MW O M O X K o o o
M XK O K K © o o o
M X XK ©o o o o o o

o
Fh
e

Figure 3.2c Envelope structure (28 elements).

bed
X X M o
M M X MK o
X X XK X o o
M XK XK KM o o o
M M M XM O o o o
M M M o O o o o o

10.

Figure 3.3a Alternate diagonal ordering for a 3x3 grid.

S — N —
1

Figure 3.3b

©O O XM KM O O O O K

Figure 3.3c

O — Ww — O
I
U — 00 — N

Corresponding zero
model problem.

0 0 0 0 X
X 0 0 0 X
0O X 0 0 X
0 0 X 0 O
0 0 0 X 0
X X 0 0 X
0O X X 0 0
X X 0 X o0
0 X X X 0
Zero structure of
0 0 0 X
0 0 0 X

0 0 X

X 0 O

X 0

X

structure of A for five-point

O O MK O O XKW MKW O M
O M O O MK O MW M O
M O O O K XM MK o o

U (27 nonzero elements).

M MK O MK X o N
M MK M MK O M M O
M M XM M MK X M o o

11.

Again we have a trade-off, between storage for the nonzero elements of
U and storage to describe the nonzero structure of U. Although the
process is somewhat more complex than either band or envelope elimina-
tion, general sparse elimination can be implemented without great diffi—
culty by preceding the ﬁumeric factorization (NUMFAC) with a symbolic
factorization (SYMFAC) to determine which elements of U are nonzero.
Details are given in a companion paper in these proceedings [4,13].

But if we are being forced to use sparse elimination, why not
seek an ordering of the variables and equations that minimizes the work
and storage? The work required to eliminate the k-th equation is
proportional to the square of the number of nonzeroes in the k-th row
of U. Thus, we could locally minimize the work by choosing at the k-th
stage to eliminate the variable and corresponding equation, which leads
to the smallest number of nonzeroes in the k-th row of U. This
heuristic is known as the minimum degree algorithm [12] and it does
indeed lead to a further savings (see Figures 3.4a-c).

To further illustrate the results of this section, we solved a
series of sample model problems with different orderings using band,
envelope, and general sparse elimination. In each case we counted the
number of nonzeroes in U (or the number of elements in the band or
profile of U, whichever was appropriate) and the total number of
multiply-add pairs to factor A. The figures are given in Table 3.5.
The important points to note are that general sparse elimination with
the minimum degree ordering is always best and that envelope is never

worse than band with the same ordering.

12.

Figure 3.4a Minumum degree ordering for a 3x3 grid.

w— o —
1

0 — OV — WU
1

N— N N

Figure 3.4b Corresponding zero
model problem.

X 0 0 0 X X
0O X 0 0 X 0
0 0 X 0 0 X
0O 0o 0O X 0 O
X X 0 0 X o
X 0 X 0 0 X
0O X 0 X 0 o0
0O 0 X X 0 o0
0O 0 0 0 X X
Figure 3.4c Zero strueture of
X 0 0 X X
0 X 0

0 0 X

X 0 o0

X X

X

structure of A for five-point

M O MK © O X © X o
M K O O O K K O o
M MK K XK K O © o o

U (26 nonzero elements).

M MK X K o X o
M M XK O K K o o
M MK X MK K o o o o

Table 3.5 Number of elements in band or envelope of U or nonzeroes
in U and number of multiply-adds to factor A for several
model problems.

Band Elimination Envelope Elimination Sparse Elimination

_ Non- Non- Non~-
16%16 zeroes Work zeroes Work zeroes Work
Five-point:
Natural 4,216 37,536 4,111 36,206 4,111 36,206
Diagonal 4,216 37,536 3,096 22,136 3,096 22,136
Alternate

diagonal - - - - 2,200 13,442
Minimum

degree - -= - -= 2,047 12,149
32%32
Five-point:
Natural 33,264 562,496 32,799 551,646 32,799 551,646
Diagonal 33,264 562,496 23,344 307,056 23,344 307,056
Alternate

diagonal - -- - - 14,384 166,146
Minimum

degree - - - - 12,031 131,893
16x16
Nine-point:
Natural 4,455 41,838 4,336 40,151 4,336 40,151
Minimum

degree - —_— - - 3,209 25,259
32%32
Nine-point:
Natural 34,255 596,190 33,760 583,855 33,760 583,855
Minimum

degree - - - - 18,855 245,346
16x16 Thir-
teen-point:
Natural 7,920 131,648 7,724 126,909 7,724 126,909
Diagonal 7,920 131,648 5,890 78,308 5,890 78,308
Minimum

degree - - == - 5,619 80,671
32x32 Thir-
teen-point:
Natural 64,480 2,104,960 63,580 2,064,005 63,580 2,064,005
Diagonal 64,480 2,104,960 45,570 1,154,500| 45,570 1,154,500
Minimum

degree - — | - - - 38,865 1,052,964

14.

4., Efficiency: The Innermost Loop

In Section 3, we saw that sparse Gaussian elimination can offer sig-
nificant savings both in terms of storage (i.e. the number of nonzeroes
in U) and work (i.e. the number of multiply-adds to factor A) over either
band or envelope elimination. Details on how to implement the method are
given in a companion paper in these proceedings [4; also 13]. 1In this
section, we shall show that the implementation is efficient in the
sense that the additional overhead (over band or envelope) per multiply-

add and the pointer storage per nonzero element of U are both rela-

tively small.

As is often observed empirically [10], the bulk of the running
time of a program is spent in its innermost loops. Thus we begin by
examining the innermost loops from the several different variations of
Gaussian elimination (see Figure 4.1). By way of comparison, we have
also presented the loop from an inner-product routine. Each loop is
written in an extended version of FORTRAN-IV accepted by most existing
compilers and is expressed in a most natural form (as opposed to the
form that a particular compiler would translate into the most nearly
optimal machine code). The loops are arranged in order of increasing
complexity but all are very much similar. To..compare the efficiencies
of these program fragments abstractly, we must consider how to implement
them in machine code for a "typical" modern computer. We shall assume
that there are enough arithmetic and index registers available to keep

all but subscripted variables in registers throughout execution of the

s, o g

a)

b)

c)

d)

Figure 4.1 Innermost loops from several variations of Gaussian

elimination.

Inner-product routine

DO 1 J=JMIN,JMAX

SUM = SUM + A(J)*B(J)

Envelope elimination or band elimination (inner product form)

DO 1 J=JMIN,JMAX
SUM = SUM + U(MUIHJ) * U(J+MUK)

Band elimination (outer product form)

DO 1 J=JMIN, JMAX
U(MUI+J) = U(MUI+J) + UIK * U(MUK+J)

Sparse elimination

DO 1 J=JMIN,JMAX
D(JUMU+J)) = D(JU(MU+J)) + UKL * U(J)

Figure 4.2 Pseudo-machine-code corresponding to the different
inner loops.

a)

b)

c)

d)

LOAD

FMLT

FADD
<LOOP>

LOAD

FMLT

FADD
<LOOP>

LOAD
FMLT
FADD
STORE
<LOOP>

LOAD
LOAD
FMLT
FADD
STORE
<LO0OP>

R1,B-1(J)
R2,R1

R1,U+MUI-1(J)
R1,U+MUK-1(J)
R2,R1

R1,U+HMUK-1(J)
R1,UIK

R1,U+MUI-1(J)
R1,UHMUI-1(J)

R1, JUHMU-1(J)
R2,U-1(J)
R2,UKI
R2,D-1(R1)
R2,D-1(R1)

s FETCH A(J)
sMULTIPLY BY B(J)
;ADD TO RUNNING SUM IN R2

sFETCH U(MUI+J)
sMULTIPLY BY U(J+MUK)
sADD TO RUNNING SUM IN R2

sFETCH U(MUK+J)
sMULTIPLY BY UIK

3ADD U(MUI+J)

s SAVE RESULT AS U(MUI+J)

s FETCH JU(MU+J)

s FETCH U(J)

sMULTIPLY BY UKI

;ADD IN D(JU(MU+J))

;SAVE RESULT AS D(JU(MU+J))

15,

16.

loop, and shall ignore the common loop-control instruction(s). The
corresponding machine code is givén in Figure 4.2. Since each loop
contains a floating point multiply-add pair, the important points to
note are the number of fixed point instructions needed to calculate
element addresses, the number of core accesses, and the total number of
instructions (with loop-control counted as a single instruction).
These figures are presented in Table 4.3. Without specifying instruc-
tion- times, we can make only qualitative statements about the respec-
tive running times: Sparse elimination should cost more per multiply-
add than the other variations (but not much more); profile elimination
should cost no more than band elimination.

To make quantitative statements, we now restrict our attention to
a particular machine, the IBM 370/158, and a particular compiler, the
FORTRAN-IV Level-H-Extended optimizing compiler. Each innermost loop
was hand-coded in machine language to be as efficient as possible and
the running time for each execution of the loop calculated from the
timing manual. Next each program was compiled and the same calculation
made for the compiler-generated code; the difference between these values
is the cost of programming in a high-level language. Last, the algori-
thms were timed on the 16x16 and 32x32 five-point model problems. The
total time divided by the total number of multiply-adds gives the cost
per multiply-add, or equivalently the actual cost per execution of the
innermost loop; the difference between this and the calculated time for
the compiled code is just the overhead associated with the remainder of

the algorithm. These figures are presented in Table 4.4. As expected,

Table 4.3 Qualitative comparison of the pseudo-machine-code loops.

(a)
Number of fixed point
instructions 1
Number of core references 2
Total number of
instructions 4

(b)
1

(c)

* One fewer if machine has floating point add-to-memory instruction.

T Counting loop control as a single instruction.

Table 4.4 Quantitative comparison of the innermost loops for the
IBM 370/158

16x16 Five-point

Diagonal ordering
SYMFAC
Band elimination
Envelope elimination
Sparse elimination

Minimum degree ordering
SYMFAC
Sparse elimination

32x32 Five-point

Diagonal ordering
SYMFAC
Band elimination
Envelope elimination
Sparse elimination

Minimum degree ordering
SYMFAC
Sparse elimination

Total

Optimum Code Compiled Code Compiled Code Executign
(Estimated) (Estimated) (Executed) * Time
- - — 0.11 sec
7.1 us 10.2 us 10.0 us 0.38 sec
6.3 Us 9.3 us 11.3 us 0.25 sec
8.1 us 10.7 us 14.5 us 0.32 sec
- - - 0.09 sec

8.1 us 10.7 us 15.6 us 0.19 sec
- - — 0.75 sec

7.1 us 10.2 us 10.0 us 5.62 sec
6.3 us 9.3 us 10.3 us 3.16 sec
8.1 us 10.7 us 12.6 us 3.87 sec
- - - 0.38 sec

8.1 us 10.7 us 13.3 us 1.76 sec

* Times are accurate to within only 10-20%.

17.

Table 4.5 Additional storage required for sparse elimination.

(Additional)
Nonzeroes Total Pointers
in U Storage ' per Nonzero

16x16 Five-point

Natural 4,111 8,871 1.16

Diagonal 3,096 6,841 1.21

Alternate diagonal 2,200 5,049 1.29

Minimum degree 2,047 4,218 1.06
32x32 Five-point '

Natural 32,799 68,175 1.08

Diagonal 23,344 49,625 1.11

Alternate diagonal 14,384 31,345 1.18

Minimum degree 12,031 21,287 0.77
16x16 Nine-point

Natural 4,336 9,081 1.09

Minimum degree 3,209 5,587 0.74
32x32 Nine-point

Natural 33,760 69,105 1.05

Minimum degree 18,855 29,241 0.55
16x16 Thirteen-point

Natural 7,724 15,721 1.04

Diagonal 5,890 12,053 1.05

Minimum degree 5,619 8,538 0.52
32x32 Thirteen-point

Natural 63,580 128,217 1.02

Diagonal 45,570 92,197 1.02

Minimum degree 38,865 52,065 0.34

sparse elimination is much faster for these problems although the time
per multiply-add is somewhat higher, reflecting the smaller operation
counts.

To estimate the additional pointer storage required for sparse

19.

elimination, we measured the total storage required and divided this
by the number of nonzero elements in D and U for each of the prob-
lems considered at the end of Section 3 (see Table 4.5). As we can
easily see, the additional pointer storage per nonzero element of U

is quite small, even though a full word is used for each pointer.

5. Extensions and Conclusions

In the preceding sections, we have seen that sparse elimination
offers significant savings in the number of nonzeroes in U and the
number of arithmetic operations to factor A. Indeed, for all our
model problems on an n*n grid, it can be shown that sparse elimina-
tion with the appropriate variable ordering needs only O(nzlog n)
storage and 0(n3) work [8], whereas band or envelope elimination
requires at least 0(n3) storage and 0(n4) work for any ordering
[3,8]. Moreover, the added overhead in implementing sparse elimination
is very small, so we conclude that it is preferable for all but very
small or very dense problems. Since it does no more work, requires
no more storage for U, and has no more overhead, we also conclude
that envelope elimination is always preferable to band elimination.

There remains the original question of whether one should be
using Gaussian elimination in any form versus an iterative method such
as Symmetric Successive Over-Relaxation (SSOR) [14] or the Conjugate
Gradient method combined with Strongly ImPlicit factorizations (CG-SIP)

[2]. For the five- and nine-point model problems on an nxn grid,

20.

these methods require 0(/H-log n) iterations to reduce the initial
error by a factor of h2 [2]. Since each iteration requires only O(nz)
multiply-adds, the total operation count is O(n2 /n log n) with O(nz)
storage, clearly superior asymptotically to even sparse elimination.
However, for the corresponding thirteen-point model problem, O(n log n)
iterations are required and sparse élimination is preferable. Nonasymp-
totically, one can only look at the actual operation counts and run times
to choose between these methods. (See Table 5.1.)

Two other points must be made. First, for grid problems in two
dimensions, one can reduce the storage from O(nzlog n) to O(nz) at
the cost of doubling the work [5,13]. Thus one need not automatically
choose an iterative method because of storage considerations. Second,
for the corresponding problems in three dimensions, one should probably
not use direct methods:. It can be shown that Gaussian elimination re-
quires O(n6) work and 0(n4) storage for any ordering [3,8], whereas
SSOR or CG-SIP requires only O(n3 /n log n) work and 0(n3) storage
for the analogs of the five- and nine-point model problems and

0(n4log n) work and 0(n3) storage for the analog of the thirteen-

point model problem [3].

Table 5.1 Comparison of Direct and Iterative Methods for the Five-Point
Model Problem

Storage:
16 x 16 32 x 32 48 X 48 64 X 64
Sparse (Minimum degree) 4,218 21,287 53,058 100,690
CGSIP (Poisson) 1,280 5,120 11,520 20,480
CGSIP (General) 2,496 10,112 22,848 40,704
Work:
16 x 16 32 x 32 48 x 48 64 X 64
Sparse (Minimum degree) 15,987 154,931 522,524 1,248,748
CGSIP (Poisson) ‘ : 29,965 185,365 490,777 1,036,318

CGSIP (General) 55,644 347,308 922,612 1,949,502

10.

11.

Bibliography

G. Dahlquist and A. Bjorck. MNumerical Methods. Prentice-Hall,
Englewood Cliffs, New Jersey, 1974.

R. Chandra, S.C. Eisenstat, and M.H. Schultz. Conjugate Gradient
methods for partial differential equations. Proceedings of the AICA
International Symposium on Computer Methods for Partial Differential
Equations, Bethlehem, Pennsylvania, 1975.

S.C. Eisenstat. Complexity bounds for Gaussian elimination. To
appear.

S.C. Eisenstat, M.H. Schultz, and A.H. Sherman. Efficient implemen-
tation of sparse symmetric Gaussian elimination. Proceedings of the
AICA International Symposium on Computer Methods for Partial Differ-
ential Equations, Bethlehem, Pennsylvania, 1975.

S.C. Eisenstat, M.H. Schultz, and A.H. Sherman. Direct methods for
the solution of sparse systems of linear equations with limited core
storage. Presented at SIAM Fall Meeting, Alexandria, Virginia, 1974.

S5.C. Eisenstat and A.H. Sherman. Subroutines for envelope solu-
tions of sparse linear systems. Yale Computer Science Research Re-
port #35, 1974.

G.E. Forsythe and W.R. Wasow. Finite Difference Methods for Partial
Differential Equations. John Wiley & Sons, New York, 1960.

J.A. George. Nested dissection of a regular finite element mesh.
SINUM 10:2, 1973.

F.G. Gustavson. Basic techniques for solving sparse systems of
linear equations. In Rose and Willoughby, Sparse Matrices and Their
Applications, Plenum Press, New York, 1972.

D.E. Knuth. An empirical study of FORTRAN programs. Software:
Practice and Experience 1:2, 1971.

R.5. Martin and J.H. Wilkinson. Solution of symmetric and unsymme-
tric band equations and the calculation of eigenvectors of band ma-
trices. Numerische Mathematik 9:2, 1967.

21.

22.

12.

12.

13.

14.

D.J. Rose. A graph-theoretic study of the numerical solution of
sparse positive definite systems of linear equations. In Read,
Graph Theory and Computing, Academic Press, New York, 1972.

A.H. Sherman. Ph.D. dissertation, Yale University, 1975.

D.M. Young. Iterative Solution of Large Linear Systems.
Press, New York, 1971.

Academic

