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1-Introduction :

An important engineering problem is the determination of the electromagnetic fields
in microwave systems, for example tapered waveguides, horns, scatterers, closed cavities,
and open resonators. We here consider the case of axisymetric transverse electric modes.
Such problems for monochromatic radiation can be reduced to consideration of an elliptic
partial differential equation similar to the Helmholtz equation1 . Methods have been
developed for the direct numerical solution of the partial differential equationl. Variational
principles have been used to optimally determine approximate values of objects of interest
like reflection and transmission coefficients!. An alternative approach is the reduction of
the problem to consideration of an integral equation defined on the metallic walls defining
the object 2(the boundary integral method). These have been solved for the case of scalar
fields described by the Helmholtz equaﬁonz. The boundary integral equation method is
feasible when the Greens function is known in a computationaly convenient form, and is
very often much more computationaly efficient than its competitors, particularly when the
geometry is complex. We here describe the theory and effective numerical implementation
of such a boundary integral equation approach for the case of an axisymetric transverse
electric electromagnetic field. The technique is readily generalizable to arbitrary
axisymmetric fields.

2 - Mathematical and Physical Preliminaries

Consider a transverse electric field which in cylindrical coordinates p,$,z can be
expressed as

E=(Vo)Re[ e 0t w(p,2)] M

Note that Vo6 = ey/p . The Maxwell equations read for this case
VXE =iopH ?2)
VxH = - ineE . 3

where the dielectric constant € and permeability p will be taken to have their vacuum
values. The situation where they are piecewise constant, appropriate for example for a
waveguide with dielectric layers, can readily be treated by a generalization of the methods
to be presented. It follows directly from (1) and (2) that

H=_im=_im (4)
op pOU

If one forms the scalar product of (3) with V¢ , on using (4) to eliminate H and (2) to
express E, there results after some algebra
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and it is readily established from (5) that
VI=0 | ®)

Eq. (7) can conveniently be employed in testing numerical results. L
In vacuum €y =1/c2, where c is the speed of light. Define k=w/c. We shall require for
what follows the outgoing Greens function associated with (5). It is, as shown in i
Appendix A,
2n

[ eikR i '
K(p.p'z-2) = pp’ G[d¢ IR ¢ ©
where, since r = pep+ze; and r'= p'ep+z'e; , the separation

R=Ir—rl=[p2+p2-2pp'cos(d — ¢) + (z — z')2]12 (10)

. As is also shown in appendix A

3(p — p8(z—2) (11)

LK) = (pp)1/2

Note that K is invariant under interchange of primed and unprimed arguments. Thus
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The Greens function can be used to reduce the problem of determining ‘¥ to the
solution of an integral equation on the perfectly conducting metallic surfaces assumed to
bound the system. This serves to replace the partial differential equation (5), defined on a
two dimensional domain, by a problem defined on a one dimensional domain. There are,
indeed, a number of such integral equations. We shall deal with one such which is of the
second kind and provides a formulation which is numerically stable.

Suppose that the domain of interest is a volume V bounded by a surface S obtained by

rotating around the z axis a curve I defined in a plane ¢=const. Let s denote arc length
along I', and suppose that I' is defined by the parametric equations p=p(s) and z=z(s) .
Then ds=[(dp)2+(dz)2]1/2. The volume element is d3r=pdpd¢dz. The vector element of
surface is d2r=nrdsd¢ , where n=np(p,z)ep+nz(p,z)e, isthe unit normal pointing out of V.
We seek an axisymmetric function 6(p,z) defined on A such that

2¥(p',2) = Jer . OVK (13)
A
or equivalently
¥(p2) = [ds o (14)
r

For any point p',z' interior to V and not on I" it follows from (11) and (13) that
L'{¥(p',z)}=0. ButonT, as shown in appendix A, because of the singular nature of K
as r-r', eq. (13) reduces to

9(s) = o(s) + [F(s',8)o(s)ds (15)
r

where the inhomogeneous term

_2%(p(s).2(s))
p(s)

o(s) (16)

is presumed to be given. The kernel
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develops a simple pole as s—s', whence the integral must be interpreted as a Cauchy
principal value. The factor :

oK JK(p,z;p',z")

n-VK = e ny(p,2) JK(p,z;p',2)

oz {15

+ ng(p,z)

Eq. (15) is the desired integral equation of the second kind for G.

For the case of horns and scatterers one is concerned with the field far from the object.
This is readily determined from the integral representation (13). To this end note that as
r'=(p'2+z2)1/2 5 oo, one has Ir-r'l ~ r' —r- (r'/r') +, whence to lowest significant
order in r/r'

2%
ikr' 1 [ o 'COS -_ ! + !
K”PP'%ﬁofdwxp[—lw—m—lkpp @9 zz]
ikr' ' ikzz'
~ pp' an, 275]1(1(?? )exp(— 1 rz'z) 1)

On using (14) it is easily established from (1), (13), (17), and (19) that asymptotically as
r'/t = o0
eikr'
E(p'z) ~ 1) (20)

where cos0'=z'/r' , and the "scattering amplitude" is

1 (ds 0¥ d b4 )
o) =5 |— —_——-Y— —_—-Y—=
(0) =73 o [nP (ap ap)"'nz @Z az)]
r
[exp(—- ikzcose')] J 1(kpsin(-)') (21)

In the integrand of (19) one must evaluate all the derivatives and then express p and z in
terms of s.

3-The Tapered Waveguide, Horn, and Scatterer
The configurations with which we shall be concerned are tapered waveguides , cavities
(both closed and open), horns, and scatterers.Consider first a tapered perfectly conducting




waveguide as shown schematically in fig 1 . The metallic wall indicated by the heavy line is
assumed to have an assigned thickness and shape. The sections on the far right and left are
supposed to be long straight sections of constant radius R, on the right and R_ on the left.
They are joined by a tapered section the radius of which is R =R(z). The system is taken
to be enclosed by metallic walls which are assumed to be ideally conducting. This requires
that the tangential component of the electrical field vanish on the walls, whence, following

(1), ¥=0 on the walls.

For an infinite cylindrical waveguide of radius R+ , as can be readily determined by
separation of variables, eq. (15) has eigensolutions

Jl(%-‘l) exp(tik ) 22)

where n=1,2,3,----

1
O[i‘xi Fa()Fm(®) = 210G10)? 3 23)
2
(k) ‘(’:—’-22 Tlt? 24)

J1G1n) =0 (25)

2
Suppose that ki is positive for n=0,1,2, --- N*, and negative otherwise. Then
n

all modes with n > N+ will decay as one advances out of the taper towards the

k‘ . Thus far to the left of the

(rllegf:u) dying out in a distance of the order of (Nyt1)

taper, ¥ can be well represented by the finite series

¥(p,z) = Za Fn( exp E B‘Fn exp —1k ) (26)

Assume that the source of the radiation is on the left. This corresponds to stipulating on

the segment I"_ of the boundary curve I', that is at a point z_ sufficiently far to the left of the
taper so that the evanescent modes generated by the taper have died out, the coefficients




o of the rightward propagating modes. Moreover one must require on the segment I'; of

the boundary I", that is at a point z4 sufficiently far to the right that all the evanescent
modes generated by the taper have died out , that the coefficients B:l' of the leftward

propagating solution vanish, corresponding to the absence of a source on the right, namely
that

N

+
¥p2= ) o Fn(%:) exp| iy -2)| @7
n=0 '

Also ¥ must vanish on the segment I'y, corresponding to the perfectly conducting wall. The
task is thus to find the coefficients (x; and B; . On the perfectly conducting wall, the

segment I'y, one must require that ¥=0. As we shall see in section 4, this is accomplished
by decomposing the problem into a number of simpler problems such that the answer is the
sum of the solutions of these simpler cases.

The case of a microwave horn is shown schematically in Figure 2. The mathematical

problem is the same as that of the tapered waveguide except that the curve I'y has moved
off to infinity where ¥ must vanish , which feature is automatic because of the asymptotic

properties of the Green's function. On the outside of the horn the segment of I" there is
terminated sufficiently far to the left that the diffracted field is negligible. As in the case of

the tapered waveguide one has to stipulate the o and determine the [3; . On the perfectly

conducting wall, the segment I'y,, one must require that ¥=0.
For the case of a scatterer as shown schematically in Figure 3, the domain of interest is

that external to the object. One must give the incident wave Wiy, for example a plane wave
eikz. It is then convenient to write ¥="¥j, + ¥s . On the scatterer, the segment 'y, where
the electric field and hence ¥ must vanish, the scattered wave ¥ satisfies

¥(p(s),z(s)) = — Win, where s denotes arc length along the curve I, the intersection of

the outside of the scatterer and a plane of constant azimuth ¢. Clearly one can deal with the

case where the scatterer is inside a waveguide or horn in a parallel way by combining the
problems already described.
For a closed cavity the domain is the interior of the object, the hatched region of Figure

2. In this case the frequency  is not determined by an external agency, rather it is found to
be an eigenvalue, of which there are an infinite denumerable set. It is is readily seen that the

eigenvalues @ are all real and positive. One multiplies (5) by ¥* and integrates over the




volume of the cavity, whence on using Gauss's theorem and the requirement that ‘¥ vanish
on the metallic wall it follows, even when € and W are functions of position, that

d3r IV\PZIZ
= -L”" >0 (28)

2
J 3
p?

For the cavity the term ¢(s") in (15) vanishes, the integral equation is homogeneous, and

has solutions only for characteristic values of @?2.

For the case of an open cavity, like the open resonator shown schematically in Figure
4, the associated integral equation is homogeneous, but the eigenvalues are complex
because of radiation loss. The most interesting case of low loss systems where the
eigenvalues are almost real, can be dealt with very efficiently and the least lossy
eigenvalues found efficiently.

4. Reduction of Problems I and II to Sequences of Dirichlet Problems
While the problems presented in section 3 are well-posed, the analytical and numerical

apparatus for dealing with them is not as well developed as that for classical problems of

mathematical physics, such as Dirichlet and Neumann problems for the Helmholtz

equation3. Therefore, we will reduce them to finite sequences of Dirichlet problems for (5)
on perspicuously constructed regions, and later deal with them numerically .
Consider the case of the horn depicted in Figure 2. Recall that one stipulates the waves

incident from the left on I'_ (at z=z_) by giving the coefficients a; in (26), and requires

that ¥ vanish on the metallic wall corresponding to the curve I'yy. In order to deal with this

situation and determine the unknown coefficients [3; characterizing the reflected waves we

construct a finite sequence of auxiliary functions ®; defined in the domain €2 in p,z interior
to the curve I'=I"_+Ty, + the sector of a circle the radius of which tends to infinity, as
indicated in Figure 2. The desired solution ¥ can be expressed as a linear combination of

these and the coefficients determined in a convenient manner.The ¢; are solutions of the
following Dirichlet problem (where for the horn problem we suppress any unnecessary

superscripts and subscripts —).

a) Forallm=1,2,...2N, @y satisfies Equation (32) inside Q.
b) Forallm=1,2,...,2N, ®p vanishes on I'y. 29)
¢) Foral m=1,2,...,.N, onI-




Oy =Fp (%) exp(ikm z) (30)
d) Forallm=n+1,n+2,...,2n,0on I

Oy = Fm (%) exp(ikN_mz) 31

Far to the left of the end of the horn each of the ¢, must have a representation of the form
of (26), namely

N N-
Oulpd) = D, Ama Fal i) + D B Fa R Jrotcikr) (32)
n=1 n=1
Write
2n
¥(p.2) = Zlvm Om(p.2) (33)
=

Then on using both (26) and (32) combined with (33) to express ¥ there results
2n N 2n N
Z Ym z Am,nFn(%) exp(iknz) + Z Ym z Bm,nFn(%) exp(—iknz)
m=1 n=1 m=1 n=1
N N
=Y o) Y aFa(f)owcin G4
n=0

n=0

Multiply (34) by Fs(‘-?lc Then in virtue of the orthogonality condition (23) it follows on

replacing s by n that for n=1,2,3..N
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2N_ 2N
Z YmAmm exp(ikn) + 2 'YmBm,n exp(—iknz) (35)
m=1 m=1

= o exp(iknz)+ PBn exp(-iknz)

The coefficients of exp(ikyz) and exp(—ikyz) in (35) must vanish separately, as can be seen
by multiplying (35) by exp(+ikyz) and integrating with respect to z over a distance 21/kp.
Thus for n=1,2,3...N_

2N_
Z'YmAm,n =0Opn

m=1
(36)
2N

Z'YmBm,n =P
m=1

Eqgs. (36) are a system of 2N_ linear equations for the unknown N_ coefficients Ym and the

unknown N_ coefficients Bp,. With the coefficients thus determined (33) is the desired
solution since it satisfies the differential equation (6) and all the boundary conditions.

For the case of the tapered waveguide the procedure is similar. The domain Q is defined by
the z axis and the curve I'=I"_ U I'y, U I';. (see Figure 1). One defines auxiliary functions
@, as follows.

a) Forallm=1.2,...,2N_, ®n, satisfies Equation (32) inside Q.
b) Forallm=1.2,...2N_, ®p, vanishes on 'y + ;. (37
¢) Forall m=1,2,...N_, onI_

@y = Fpy (—5 exp(ikl_nz) 38)

d) Forallm=N_+1,N_+2,....2N,onI_

+

®n= Fnm (.IPL_) exp(—ikm_N_z) (39)




One defines auxiliary functions functions Wy, such that

a) Forallm=1,2,...2N,, ¥, satisfies Equation (32) inside Q.
b) Forallm=1,2,....2N;, Wp vanisheson Iy +I"—. (40)
¢) Forall m=1,2,....Ny, onI}

¥, = Fn (ﬁp;) exp(ik:;l z) (1)

d) Forallm=N,;+1,N,;+2,...2N,;,on I,

+
¥ = Fn ("1&) exp(—ikm_N+z) 42)
Then far to the right of the taper
N+ N+
- =t 5 (L) et z —t (L) ot
Om(p,2) 2 At F,,(R+) exp(lknz)+ B+ FolgJexp(-ik'z)  (43)
n=1 n=1
N, N,
_ ++ g (P o+ ++ g (P _at
Pu(p2) = Z At F,,(R+) exp(lknz) + 2 B} FH(RJ exp( 1knz] (44)
n=1 n=1
and far to the left of the taper
N. N-

Om(p,z) = 2 A Fn(%) exp(ik;z)- Z B~ F,,(% xp(—ik;z) (45)

n-1 n-1




N. N_
Yn(p.2) = E At Fn(ﬁ”-_-) exp(ik;z)- E Bt Fn(%) exp(—ik;z) (46)
n-1 n-1

The coefficients in (43) - (46) are determined by evaluating the solutions of the integral

equations for @, and ¥y, at an appropnate number of suitably chosen points.
Next one writes

2N_ 2N
Y0 = D Pt D MNP 1)
m=1 m=1
On equating the asymptotic representations (26) and (27) on their respective domains of

validity , and using the orthogonality of the F; and integration over z as was done for the
horn , one obtains the algebraic system

2N_
—t

EtAm,nYnrl ¥ ZAm alm =ty “8

m=1
2N_ 2N,

—— +r— ' el

EAm,n'Ym + ZAm,nnm = an (glven) 49)
m=1 m=1

ZB"*vm *2  im=Bf =0 (50)
ZB vm+ZB+”‘nm SN (51)
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Eqgs. (48) - (51) are a set of 2(N_+ N,) linear equations for the N_ complex numbers Y,

the N complex numbers N, the N_ complex numbers Br_l’ and the N, complex numbers

oc:; . Once these have been found the solution ¥(p,z) is completely known via (47), and

transmission and reflection are determined by the coefficients oc;: and B;.

5-Nystrom method for the solution of second kind integral equations
(SKIEs)
We have reduced the problem of determining the electric field to consideration of (15),
a second kind integral equation (SKIE). This can be dealt with numerically by
discretization via an appropriate quadrature formulae.
We will define an n-point quadrature rule on the interval [0,L] as a finite sequence of

pairs {x1 W1}, i=1,2,....n, where x1€[0,L] for all i €[1,n]. For a function y :
[0,L]-R1, we will look upon the sum

n
nw = X, wiy(x) (52)

i=1

as an approximation to the integral

O[\y(x)dx . (53)

For the cases considered, we treat L is the length of the arc I'. We will say that the family
of quadrature formulae{ny = {xlll,‘wlll },i=12,..n},n=12,..., has a convergence

rate m (m=>1) for the function y : [0,L]>R1 if there exist numbers A>0 and integers N>0
such that

L
|yt~ Jwwex | <& (54)
for alln > N.
In order to solve the integral equation
L
o(x) + O[ F(t,x) o(t) dt = ¢(x) (55)

the Nystrom algorithm replaces (32) with a system of linear algebraic equations

13
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n
oi+ Zw{ F(xjxi) 0j = (x), (56)
j=1

oy 1 2 n . .
withi=1,2,...,n, and W, W}, ..., W; the coefficients of an appropriately chosen

quadrature formulae. We will denote the matrix of the system (27) by Ay, and view the
solution 61,02,...,0n of (27) as an approximation to the solution ¥ of (26) at the nodes
X1,X2,...> Xn.

Note that in general, the coefficients wll , ‘wiz,. . .,‘wlil of the quadrature formula depend

on the point x; at which the integral (32) is being approximated. When the kernel F is
smooth, this can be avoided by choosing a single quadrature formula, such as the end-point
corrected trapezoidal rule, that will perform well for all i=1,2,...,n. However, in many
applications the kernel is singular, and the distribution of its singularities usually forces a
special choice of a quadrature formula for each node.

The following theorem 4 is the principal justification for the use of the Nystrom
algorithm for the solution of SKIEs . Suppose that Equation (32) has a unique solution,

and that its kernel F and right-hand side ¢ are continuous. Suppose further that a family

{n;} of quadrature formulae is such that for some B >0

P PHES:! (57)

for all n=1,2,.... Then there exists a number C > 0 such that for any n>2 and
i= 1,2,..,n,

li- o) 1< (58)

where k is the convergence rate of the formulae {11;l } .

5. Description of the Algorithms

Now, armed with the apparatus developed in the preceding sections, we are prepared to
construct algorithms for the solution of the original problems in Section 3. First, we
describe an algorithm for the solution of the horn problem.




Algorithm [
Step 1. Construct the curve I' by appending the segment I'_ to the user-specified
waveguide boundary (see Figure 5). Use spline package FITPACKS to construct an equi-

spaced discretization of the resulting curve. Select the N nodes into which the boundary T”
is to be discretized.
Step 2. Convert the problem into a sequence of exterior Dirichlet problems in the

region Q as described in section 4. For each i = 1,2,...,2N, convert the corresponding

Dirichlet problem into a second kind integral equation (SKIE) on I
Step 4. For each i = 1,2,...,2N, discretize the obtained SKIE via the Nystrom
method based on the quadrature formulae of Appendix C, obtaining a system of linear
- algebraic equations of dimension 2N .
Step 5. Foreach i= 1,2,...,2N, solve the linear system obtained on the preceding

step by means of a standard Gaussian elimination subroutine from LINPACK 6 . View the
solution as an approximation to ¢ on I solving the underlying Dirichlet problem.

Step 6. Find the coefficients Y, Y,....,YaN in equation (33) by solving (36)

Step 7. Linearly combine the solutions of the 2N linear systems obtained on the

preceding step according to the formula (33). The result is a distribution G on Y, whose
field is a solution of the problem .

Step 8. For each point x€R2 where the solution of the horn problem is desired,
evaluate it by approximating the integral

[owy Gxtydt (59
r

| by the trapezoidal sum

N
h 3,00 Gtx)  (60)

with {tj},i = 1,2, - N, the nodes in the discretization of T, and h the sampling distance
between the adjacent nodes tj,tj_1.
Next we describe an algorithm for the solution of the tapered waveguide problem .

Algorithm 2

Step 1. Construct the curve I" by appending the segments I';. and I'_ to the desired part
of the boundary of the user-specified waveguide I (se¢ Figure 1). Use spline package
FITPACK 3 to construct an equispaced discretization of the resulting curve. Select the

number N of nodes into which the boundary I is to be discretized.
Step 2. Convert the problem into a pair of sequences of interior Dirichlet problems in

the region Q.

15
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Step 3. Foreach i= 1,2,...,2N_, convert the corresponding Dirichlet Problem into a
second kind integral equation on I". :

Step 4. Foreachi= 1,2,...,2N_, convert the corresponding Dirichlet Problem into a
second kind integral equation on I'.

Step 5. Foreach ; = 1,2,...,2:N_, discretize the obtained SKIE via the Nystrom
method based on the quadrature formulae of Appendix C, obtaining a system of linear
algebraic equations of dimension N

Step 6. Foreach i= 1,2,...,2N., discretize the obtained SKIE via the Nystrom
method based on the quadrature formulae of Appendix C, obtaining a system of linear
algebraic equations of dimension N.

Step 7. Foreach i= 1,2,...,2N_, solve the linear system obtained on the preceding

step by means of a standard Gaussian elimination subroutine from LINPACK 6. View the
solution as an approximation to the density ¢ on I solving the underlying Dirichlet Problem

Step 8. Foreach i= 1,2,...,2N,, solve the linear system obtained on the preceding
step by means of a standard Gaussian elimination subroutine from LINPACK. View the

solution as an approximation to the density of dipole distribution on I" solving the
underlying Dirichlet problem.

Step 9. Find the coefficients y; Yo, YoN_ and My M,....,N2n-— in the expansion (47)
Step 10. Linearly combine the solutions of the 2(N_ + N,) linear system obtained on

the preceding step according to the formula (47). The result is a distribution ¢ on I" whose
field is a solution of the tapered waveguide problem.

Step 11. For each point x€€2 where the solution of problem is desired, evaluate it by
approximating the integral

j o(t) F(x,t) dt (61)
r
by the trapezoidal sum
N
h Zi o(t) F(t;,x) (62)
1=

with {tj},i=1,2,...,N the nodes in the discretization of G3, and h the sampling distance
between the adjacent nodes tj,tj-1.

6-Results

A fortran program has been written implementing algorithms I and II of this paper. The
program has been tested on a variety of problems. We present a detailed description and the
results of four such numerical experiments.




Example 1 - Tapered Waveguide

The waveguide defined in fig. 5 has a left hand asymptotic radius of 0.524 cm. and a
right hand asymptotic radius of 0.743 cm . The shape was assigned by stipulating a dense
set of points, which were then fitted to a spline, a convenient design procedure. The
transition distance is roughly 2.5 cm. The operating frequency chosen is 3.2X1011 sec-1,
This leads to one propagating mode on the far left of the tapered section , and two
propagating modes on the far right. The boundary employed for the calculation was first
approximated as shown in fig. 6, adding the piecewise linear curves I'y and I'"_ to provide a
closed bounding surface for the three dimensional domain obtained by rotating the
boundary around the z axis. This shape was then resampled to provide the smooth curve of
fig.7, which was then discretized into 90 roughly equally spaced nodes. Also indicated
are the test points employed in computing the modal expansion of the solution. The results
for the lines of constant real part of ‘¥ are displayed in fig. 8. The calculation took six
minutes of CPU time on a VAX 780.

Example 2 - Open Waveguide
This calculation uses a semi-infinite waveguide of 2 cm. inner radius and 0.25 cm.

thickness. The operating frequency is 6x1010 sec1, resulting in one propagating mode on
the far left. The resampled boundary is shown in fig. 9. This was discretized into 180
nodes, with the points most dense in the neighborhood of the return in the boundary curve
at the end of the waveguide . The calculation took 17 minutes of CPU time on a Vax 8600.

The resulting lines of constant real part of ‘¥ are shown in fig. 10. The resulting radiation

pattern is shown in fig. (11) where If(6)I2 = [EI2/r2 is plotted vs. the polar angle 6 that the
direction of observation makes with the axis if the waveguide.

Example 3 - Microwave Horn
The internal far left radius of the horn is 2 cm., and its wall thickness 0.25 cm. The

frequency employed is 6x1010 sec-1, yielding one propagating mode on the far left. The
resampled boundary is shown in fig. 12. It was discretized into 180 nodes, with the nodal
density greatest near the return in the curve. The calculation took 17 minutes of CPU time

on a Vax 8600. The lines of constant imaginary part of ¥ are shown in fig. 13. The
radiation pattern is displayed in fig. 14, where If(8)I2 = [EI2/r2 is plotted vs. the polar angle
0 that the direction of obervation makes with the axis if the waveguide.

Example 4 - Injection Trough a Hole in a Metallic Wall
The far left radius of the waveguide is 3 cm. and its wall thickness is 2 cm. The

frequency employed is 6x1010 sec-1, yielding one propagating mode on the far left. The
resampled boundary is shown in fig. 17. It was discretized into 180 nodes. The calculation

took 13 minutes on a Vax 8600. The lines of constant real part of ¥ are shown in fig. 17
and the lines of constant imaginary part of ¥ are displayed in fig. 17. The radiation pattern

is displayed in fig. 18, where If(8)2 = [EI2/r2 is plotted vs. the polar angle 6 that the
direction of observation makes with the axis if the waveguide.

Appendix A - The Green's Function




Recall that R =Ir —r'l = [p2+p'2—2pp'cos(¢—0')+(z—2z')2 | /2 where p,0,z are
cylindrical coordinates. Then the three dimensional Green's function

kR
G=77x (A1)
satisfies
V2G+k2G = — 8(r — r') = —2P = P)OC ak )3(6 — 9" (A2)
p
Write
G(p.p'.9—9'.z-7) = F(p.p',0-¢',z—z) €i(¢-9¢) (A3)
Then it is readily calculated on using the properties of the Dirac delta function that
V2F+.2_i£+(k2__1_)F=_ 8(p—p)8(z_"z')8(¢_¢) (A4)
p 00 p2 p
Let
2n
F(p,p',2—2) = 0[d¢ F(p,p',0—¢'2-2) (AS)
Then it follows from (A4) on integrating over one period in ¢ that
VI + (kz - -1-2-)15 - - Yp=p)z-z) (A6)
P p

Define

2n
K(p.p'z—Z) = pp' F(p,p',z—2) = pp’ofdfb e i¢-G(p,p',0—0',z-2") (A7)

Note that K is invariant under interchange of primed and unprimed arguments. Then (A6)
implies

e
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But
V. _K)_E _20K
p2) P pPop
while
Ky V2K 29K K
Y6) e
p) p p*op p?
whence (A8) implies

pVv: (V—K) 2R 50-p)8(z-2)
p? P
and on using the properties of the Dirac delta function

K) . k2 8(p—p)8(z—2)
L{K} = V(= |+ <K= -
K (sz) p? (pp"H172

We wish to derive an integral representation for ¥ of the form

¥ =W (p'z) = f ds 6(s) [n-VK(p,p',z-2")]
r

where I is that curve which when rotated around the z axis generates the surface S

p=p(s) z=z(s)

(A9)

(A10)

(A11)

(A12)

(A13)

enclosing the volume V containing the point r'. The element of arc length along C is ds.
Note that in virtue of its invariance under interchange of primed and unprimed arguments it

follows from (A11) that K satisfies L'{K}=0, whence it is evident that ¥ as defined by

(A16) satisfies L'{'¥"} at all points p',z' interior to the domain enclosed by I'.

In order to derive an integral equation for the function ¢, assuming that ¥ is given on

I', we consider a point on I' corresponding to s', and a point p',z' inside the area in

question a distance € from I" as measured along the unit outward pointing normal n(s') as
shown in Figure 19 . Pick € << 8 << the radius of curvature at s', and break the domain of
integration up into a segment of width 28 straddling the point s', which segment may be

considered locally flat, and the rest of I'.
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20

As p',z' approaches I one sees from (A7) that the integrand diverges. The major
contributions to the integral come from the denominator in the neighborhood of ¢=¢' where
R2~(p—p")2 +(z—z')2+pp'(¢—9")2. On keeping only dominant terms it follows that

o'+7
47K = p'2 J d0
V (p—p')2 +(z—2)24+p2(6—0")2
o'-7
o'+

V(p—p')2 +(z-2')2+p2(0—0')2
q)!

0'+m

Al4
o (Al4)

- 20 [V (p—p 2 +z—2 2920072 + p'0~9) |

~ - 29I (p-p)+(z—2)2

Thus the contribution to (A15) of the segment of width 28 can be written to good
approximation as




s'+0
o) [as [n-v(p1yoprre27)]
s'—9

p=p(s) z=z(s)

s'+0
=—o(s")p’ fds {;% 1n[n2+(s—s')2]}n=_8 (A15)
s'—9

s'+0

= 20(s")p' st

£2+(s—s')2
S

= 26(s")p'arctan—8-
€
Clearly in the limit é—0 one has

I= 2ro(s")p' (A16)

Thus in the limit that the point p',z' lies on C eq.(15) yields

2¥(E) ) _ gy +p jds o(s) {n-v[——-—-ZK(p’p"z"Z')

o o ]}p=p(s) z=a(s) 7

r

where P denotes the Cauchy principle value of the integral. On introducing the definitions
of (21) and (23) this is the desired integral equation.
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Figure Captions

Schematic diagram of a tapered waveguide.

Schematic diagram of a horn.

Schematic diagram of a cavity or scatterer. For the scatterer the domain is
the exterior of the boundary curve, for the cavity the domain is the cross
hatched interior.

Schematic diagram of an open resonator.

The waveguide of example 1 as specified by the user.

The waveguide of example 1 after preliminary geometric processing.
Resampled waveguide with test points for example 1.

Equipotentials of the real part of the solution of example 1.

Resampled waveguide with test points for example 2.

Equipotentials of the imaginary part of the solution to example 2.

~ Far field amplitude as a function of angle for example 2.

Resampled waveguide and test points for example 3.
Equipotentials for the imaginary part of the solution for example 3.
Far field amplitude as a function of angle for example 3.
Resampled waveguide and test points for example 4.
Equipotentials for the real part of the solution for example 4.

Equipotentials for the imaginary part of the solution for example 4.

Field amplitude as a function of angle for example 4.
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Figure 5

The Wavegulde 1n Example 1 as Specifled by the User




Figure B

The Wavegulde 1n Example 1 After Preliminary Geometrical Processing




Figure 7

Resampled Wavegulde with Test Points 1In Example 1




Figure 8

Equipotential Lines of the Real Part of the Solutlon
In Example 1




Figure S

Resampled Wavegulde with Test Polnts 1In Example 2
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Figure 10

Equipotential Lines of the of the Imoglnory Part
of the Solution 1n the Example 2
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Figure 11

Far-F1eld Amplitude as a Functlon of Angle
In Example 2




Figure 12

Resampled Wavegulde with Test Polnts 1n Example 3
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Figure 13

Equipotential Lines of the Imaginary Part of the Solutton
In Example 3
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Figure 14

Far-Fi1eld Amplitude as a Functlon of Angle
in Example 3
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Figure 15

Resampled Waveguide with Test Polnts 1n Excmp{e 4
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Figure 16

Equipotential Lines of the Real Part of the Solution
In Example 4
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Figure 17

Equipotential Lines of the Imoglnory Part of the Solution
In Example 4
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Figure 18

Far-Field Amplitude as a Functlion of Angle
in Example 4 "
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