
In the present paper we describe a class of algorithms for the solution of Laplace’s equation
on polygonal domains with Dirichlet boundary conditions. It is well known that in such cases
the solutions have singularities near the corners, which poses a challenge for many existing
methods. We present a high-order solver for Laplace’s equation on polygonal domains
requiring relatively few degrees of freedom to resolve the behaviour near corners accurately.
Our approach is based on the observation that if the boundary data is smooth on each
edge of the polygon, then in the vicinity of each corner the solution to the corresponding
boundary integral equation has an expansion in terms of certain (analytically available)
singular powers. We construct a set of discretization nodes and weights which accurately
integrate and interpolate these singular powers, enabling the construction of high-order
Nyström schemes requiring relatively few discretization nodes. Our results are illustrated
with several numerical examples.
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1 Introduction

In classical potential theory, elliptic partial differential equations (PDEs) are reduced to
second kind boundary integral equations by representing the solutions to the differential
equations by single-layer or double-layer potentials on the boundaries of the regions.
After discretization, the resulting linear systems are generally better-conditioned than
direct discretizations of the differential equation. For regions with smooth boundaries
there exists a variety of methods, both direct and iterative, for solving these linear
systems quickly and with high precision (see [10], for example).

However, near corners the solutions to both the differential and integral equations
have singularities; these singularities pose significant challenges to many existing ap-
proaches. Generally, the singular behaviour is resolved by adding a large number of de-
grees of freedom near the corners (i.e. nested discretizations) and then compressing the
resulting discretized systems. In this paper we present a high-order solver for Laplace’s
equation on polygonal domains which completely avoids brute force discretization (see
for example [2], [3], [5], [7], [11], and [12] for alternative approaches).

The behaviour of solutions to Laplace’s equation in the vicinity of corners has been
the subject of extensive analysis (see [9], [14], [17], and [24] for representative exam-
ples). In particular, it is well-known that solutions are unique and exist in the L2-sense
(see [6], [22]) both for the differential and integral equations. Moreover, there has been
considerable work detailing both the spaces to which solutions belong, as well as the
leading-order terms of the singularity near the corner. Recently, it was shown in [20]
that if the boundary data on either side of the corners is smooth then, near the corners,
the solution to the boundary integral equation has an expansion in terms of certain non-
integer powers and non-integer powers multiplied by logarithms. Moreover, the result
is constructive: explicit formulas exist for the singular powers, depending on the angle
of the corner, and a formula is given for the mapping which takes the coefficients of the
Taylor series of the boundary data to the coefficients of the singular terms.

Our approach in this paper is based on the analysis in [20]. Specifically, we con-
struct a set of quadrature nodes and weights which accurately integrate and interpolate
these analytically available singular powers, enabling the implementation of a high-order
Nyström scheme requiring relatively few discretization nodes.

The structure of the paper is as follows. In Section 2 we describe the necessary
mathematical preliminaries. In Section 3 we present the necessary numerical prelimi-
naries. Section 4 contains the numerical apparatus. Section 5 contains numerical results
illustrating the performance of the algorithm.

2 Mathematical Preliminaries

2.1 Boundary Value Problems

Let Ω be the interior of a polygonal domain in R2 and γ : [0, L]→ R2 a counterclockwise
arc length parametrization of its boundary. Let ν(t) be the inward-pointing normal to
γ at t ∈ [0, L], and let Γ denote the boundary of Ω (Figure 1). For boundary data
g : [0, L]→ R we consider the following problems.
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Figure 1: A polygonal curve in R2.

Interior Dirichlet problem:

∇2φ(x) = 0 x ∈ Ω,

lim
x→γ(t)
x∈Ω

φ(x) = g(t) t ∈ [0, L]. (1)

Exterior Dirichlet problem:

∇2φ(x) = 0 x ∈ R2 \ Ω,

lim
x→γ(t)

x∈R2\Ω

φ(x) = g(t) t ∈ [0, L]. (2)

The interior Dirichlet problem has a unique solution for all g ∈ L2([0, L]), (see [22]).
For the exterior Dirichlet problem, we impose the additional condition that φ is bounded
as x goes to infinity, in which case a unique solution exists for all g ∈ L2([0, L]).

Remark 2.1. For ease of exposition we restrict our discussion to regions with polygonal
boundaries. The analysis and techniques of this paper easily extend to multiply connected
domains.

2.2 Integral equations of potential theory

In classical potential theory, boundary value problems are solved by representing the
solution of the differential equation inside the region as a potential induced by charges
and dipoles on the boundary. Let ψ0

x0(x) denote the potential of a unit charge at x0 ∈ R2

and let ψ1
x0,h

(x) denote the potential of a unit dipole at x0 ∈ R2 oriented in the direction

h. Specifically, ψ0
x0 , ψ

1
x0,h

: R2 \ x0 → R are given by the following formulas

ψ0
x0(x) = log(‖x− x0‖), (3)

ψ1
x0,h(x) =

〈h, x0 − x〉
‖x0 − x‖2

. (4)

where ‖ · ‖ denotes the standard Euclidean distance and 〈·, ·〉 denotes the inner product.
The potential due to a charge distribution ρ on the boundary Γ is normally referred

to as a single-layer potential and is given by
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φ(x) =

∫ L

0
ψ0
γ(t)(x)ρ(t) dt, (5)

for any x ∈ R2\Γ. Similarly, the potential due to a dipole distribution ρ on the boundary,
is referred to as a double-layer potential and is given by

φ(x) =

∫ L

0
ψ1
γ(t),ν(t)(x)ρ(t) dt, (6)

for any x ∈ R2 \ Γ.

2.3 Reduction of boundary value problems to boundary integral equa-
tions

The reduction of the boundary value problems in Section 2.1 to boundary integral equa-
tions is given by the following theorems.

Theorem 2.1. Let ρ ∈ L2([0, L]) and define g : [0, L]→ R by the following formula

g(s) = −πρ(s) +

∫ L

0
ψ1
γ(t),ν(t)(γ(s)) ρ(t) dt, (7)

for all s ∈ [0, L]. If g ∈ L2([0, L]) then (7) has a unique solution for ρ ∈ L2([0, L]).
Furthermore, the solution to the interior Dirichlet problem with boundary data g is given
by (6).

Theorem 2.2. Let ρ ∈ L2([0, L]) and define g : [0, L]→ R by the following formula

g(s) = πρ(s) +

∫ L

0
ψ1
γ(t),ν(t)(γ(s)) ρ(t) dt, (8)

for all s ∈ [0, L]. If g ∈ L2([0, L]) such that∫ L

0
g(t) dt = 0, (9)

then (8) has a unique solution for ρ ∈ L2([0, L]). Furthermore, the solution to the exterior
Dirichlet problem with boundary data g is given by (6).

The following corollary follows immediately from Theorem 2.2.

Corollary 2.3. Let ρ ∈ L2([0, L]) and define g : [0, L]→ R by the following formula

g(s) = πρ(s) +

∫ L

0

(
c+ ψ1

γ(t),ν(t)(γ(s))
)
ρ(t) dt, (10)

for all s ∈ [0, L], and an arbitrary constant c. If g ∈ L2([0, L]) then (10) has a unique
solution for ρ ∈ L2([0, L]). Furthermore, the solution to the exterior Dirichlet problem
with boundary data g is given by the following formula

φ(x) =

∫ L

0

(
c+ ψ1

γ(t),ν(t)(x)
)
ρ(t) dt. (11)
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2.4 Properties of the double-layer potential

The following lemma establishes the regularity of the function ψ1
x0,h

(x) when x0, x ∈ Γ
and h is normal to Γ. It can be found in [1], for example.

Lemma 2.4. Let γ : [0, L] → R2 be a curve parametrized by arclength and ν(t) be the
normal vector to γ(t) = (γ1(t), γ2(t)), 0 < t < L, satisfying

ν(t) = (−γ′2(t), γ′1(t)). (12)

Suppose that for some integer k ≥ 2, γ is Ck in a neighbourhood of a point s, 0 < s < L.
Then

ψ1
γ(s),ν(s)(γ(t)), (13)

ψ1
γ(t),ν(t)(γ(s)), (14)

are Ck−2 functions of t in a neighborhood of s and

lim
t→s

ψ1
γ(s),ν(s)(γ(t)) = lim

t→s
ψ1
γ(s),ν(s)(γ(t)) = −1

2
κ(s), (15)

where κ : [0, L] → R is the signed curvature of γ. Similarly, if γ is analytic in a neigh-
borhood of a point s, where 0 < s < L, then (13) and (14) are analytic functions of t in
a neighborhood of s.

The following lemma describes the behaviour of ψ1 in the vicinity of a corner.

Lemma 2.5. Under the same assumptions as the previous lemma, if γ has a corner with
interior angle πα at t0 then

lim
s→t+0
t→t−0

ψ1
γ(s),ν(s)(γ(t)), (16)

lim
s→t+0
t→t−0

ψ1
γ(t),ν(t)(γ(s)), (17)

do not exist. In particular, along s− t0 = −(t− t0) = h,

ψ1
γ(t0+h),ν(t0+h)(γ(t0 − h)) =

( cosπα

2 sinπα

) 1

h
+O(1) (18)

if γ is smooth in a neighbourhood of the corner.

We conclude this section with the following definition which will be used in the
remainder of the paper.

Definition 2.1. For a given boundary Γ, we define the kernel, K : Γ × Γ → R by the
formula

K(x, y) = ψ1
y,ν(y)(x). (19)

Here, by a slight abuse of notation, we denote the normal derivative to Γ at a point
y ∈ R2 by ν(y), instead of ν(γ−1(y)). For the exterior Dirichlet problem it is convenient
to introduce a modified kernel, K̃ : Γ× Γ→ R defined by

K̃(x, y) = c+ ψ1
y,ν(y)(x), (20)

where c is an arbitrary constant. We note that both K and K̃ are smooth away from the
corners of Γ.
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2.5 Representation of solutions in the vicinity of corners

The following lemma gives an explicit formula for the kernel when Γ is an open wedge
with interior angle πα and sides of unit length (Figure 2). In order to simplify the
formulas, the arclength parametrization of Γ, denoted by γ, is defined for t ∈ [−1, 1]
rather than [0, 2].

Figure 2: A wedge in R2.

Lemma 2.6. Let Γ be an open wedge of side lengths one and interior angle πα with
0 < α < 2. Let γ : [−1, 1]→ Γ be an arc length parametrization of Γ and ν : [−1, 1]→ R2

be the inward-pointing normal to Γ. Then

ψγ(t),ν(t)(γ(s)) =
s sinπα

t2 + s2 + 2st cosπα
, (21)

if s < 0, t > 0 or s > 0, t < 0. For all other values of s and t, ψγ(t),ν(t)(γ(s)) = 0.

The following theorem gives an explicit representation of solutions near corners in
the case where Γ is the wedge defined in the previous lemma.

Theorem 2.7 ([20]). Suppose that 0 < α < 2 and that N is a positive integer. Let d·e
and b·c denote the ceiling and floor functions, respectively, and define L, L, M, and M
by the following formulas

L =

⌈
αN

2

⌉
, (22)

L =

⌊
αN

2

⌋
, (23)

M =

⌈
(2− α)N

2

⌉
, (24)

M =

⌊
(2− α)N

2

⌋
. (25)

Suppose further that ρ is defined via the formula

ρ(t) =b0 +

L∑
i=1

bi|t|
2i−1
α +

M∑
i=1

bL+i|t|
2i

2−α (log |t|)σN,α(i)

+

M∑
i=1

ci sgn(t)|t|
2i−1
2−α +

L∑
i=1

cM+i sgn(t)|t|
2i
α (log |t|)σN,(2−α)(i) (26)
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where b0, b1, . . . , bN and c1, c2, . . . , cN are arbitrary real numbers and the function σα,N (i)
is defined as follows

σN,α(i) =

{
1 if 2i

2−α = 2j−1
α for some j ∈ Z, 1 ≤ j ≤

⌈
αN
2

⌉
0 otherwise.

(27)

If g is defined by

g(t) = πρ(s) +

∫ 1

−1
ψ1
γ(t),ν(t)(γ(s))ρ(t) dt. (28)

then there exist sequences of real numbers β0, β1, . . . and γ0, γ1, . . . such that

g(t) =
∞∑
n=0

βn|t|n +
∞∑
n=0

γn sgn(t)|t|n, (29)

for all −1 ≤ t ≤ 1. Conversely, suppose that g has the form (29). Suppose further that N
is an arbitrary positive integer. Then, for all angles πα there exist unique real numbers
b0, b1, . . . , bN and c0, c1, . . . , cN such that ρ, defined by (26), solves equation (28) to
within an error O(tN+1).

Remark 2.2. A similar result holds for the case where the factor of π in (28) is replaced
by −π; the change in sign corresponds to replacing the boundary integral equation for
the exterior Dirichlet problem (8) with the boundary integral equation corresponding to
interior Dirichlet problem (7).

The following corollary characterizes of the behaviour of the solutions to (7) and (10)
in the vicinity of a corner.

Corollary 2.8. Let Γ be the boundary of a polygonal region and suppose one of its
corners has interior angle πα where α ∈ (0, 2). Let ψ : (−δ, δ) → R2 be an arclength
parametrization of Γ in the vicinity of the corner, with ψ(0) coinciding with the corner.
If the boundary data, g, is analytic on either side of the corner on an interval of length
R > δ > 0, then there exist unique real numbers b0, b1, . . . , bN and c0, c1, . . . , cN such
that the density, ρ, defined by (26) satisfies equation (7) to within an error O(tN+1) for
t within δ of the corner.

2.6 Quadratures

In this section we introduce terminology and definitions related to quadratures to be
used in this paper.

Definition 2.2. Suppose that f1, . . . , fm is a sequence of square-integrable functions
defined on the interval [a, b]. An n-point quadrature rule is a sequence of n distinct points
a ≤ x1 < · · · < xn ≤ b, called nodes, and a sequence of n real numbers w1, . . . , wn, called
weights. We say that the quadrature rule x1, . . . , xn, w1, . . . , wn integrates the collection
of functions exactly if∫ b

a
fi(x) dx =

n∑
j=1

fi(xj)wj , i = 1, . . . ,m, (30)

7



and with precision ε > 0 if∣∣∣∣∣∣
∫ b

a
fi(x) dx−

n∑
j=1

fi(xj)wj

∣∣∣∣∣∣ < ε, i = 1, . . . ,m. (31)

Three classes of quadrature formulas, called generalized Chebyshev quadratures, gen-
eralized Gaussian quadratures, and inner product quadratures, are defined as follows.

Definition 2.3. A quadrature formula will be referred to as a generalized Chebyshev
quadrature with respect to a set of 2n functions f1, . . . , f2n : [a, b] → R and a weight
function ω : [a, b]→ R+ if it consists of 2n weights and nodes and integrate the functions
fi exactly with the weight function ω for all i = 1, . . . , 2n.

Definition 2.4. A quadrature formula will be referred to as a generalized Gaussian
quadrature with respect to a set of 2n functions f1, . . . , f2n : [a, b] → R and a weight
function ω : [a, b] → R+ if it consists of n nodes and n positive weights, and integrates
the functions fi with the weight function ω exactly for all i = 1, . . . , 2n.

Definition 2.5. A quadrature formula will be referred to as an inner-product quadrature
with respect to a set of k functions f1, . . . , fk : [a, b]→ R and a weight function ω : [a, b]→
R+ if it consists of n nodes and n weights, and integrates the k(k + 1)/2 functions fifj ,
i, j = 1, . . . , k, exactly with respect to the weight function ω.

Remark 2.3. The classical n-point Gauss-Legendre quadrature is both a Gaussian quadra-
ture for the Legendre polynomials P0(x), . . . , P2n−1(x) and an inner product quadrature
for P0(x), . . . , Pn−1(x).

2.7 Interpolation

In this section we introduce terminology and definitions related to interpolation schemes
which will be used in the remainder of this paper.

Definition 2.6. A k-point linear interpolation scheme on the interval [a, b] is a collection
of linearly independent functions α1, . . . , αk : [a, b]→ R, a set of k nodes a ≤ x1 < x2 <
· · · < xk ≤ b, and a linear map T : L2([a, b])→ span{α1, . . . , αk} such that

(Tf)(xj) = f(xj) (32)

for all j = 1, . . . , k. The functions α1, . . . , αk are called the interpolation functions, the
points x1, . . . , xk are called the interpolation nodes, and the mapping T is called the
interpolation mapping. The coefficients c1, . . . , ck of Tf(x) with respect to the basis
{α1, . . . , αk} are called the interpolation coefficients for the function f.

The following definition describes the stability of an interpolation scheme.

Definition 2.7. Let α1, . . . , αk and x1, . . . , xk be an interpolation scheme with interpo-
lation operator T. Let U be the k × k matrix with entries

Uij = αi(xj), i, j = 1, . . . , k. (33)

We say that the interpolation scheme is numerically stable if

κ(U) ≤ 10, (34)

where κ(U) is the condition number of the matrix U.
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Remark 2.4. In [16] it shown that given k bounded linearly-independent functions
α1, . . . , αk : [a, b] → R, there exist interpolation nodes x1, . . . , xk ∈ [a, b] such that the
resulting interpolation scheme is stable in the sense of Definition 2.7.

The following definition describes the relationship between an interpolation scheme
and a collection of functions.

Definition 2.8. We say that an interpolation scheme on the interval [a, b] interpolates
a collection of functions f1, . . . , fk : [a, b]→ R with precision ε if

|Tfj(x)− fj(x)| < ε, (35)

for j = 1, . . . , k and all x ∈ (a, b).

2.8 Singular value decompositions

In this section we describe the singular value decomposition (SVD) of real matrices and
finite collections of square-integrable functions.

Lemma 2.9 ([8]). Suppose A is a real n × m matrix. Then there exists an n × n
orthonormal matrix U, an m×m orthonormal matrix V, and an n×m diagonal matrix
Σ with positive real entries such that

A = UΣV ∗. (36)

Here V ∗ denotes the transpose, the entries of Σ, denoted by σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥
0, are called the singular values of A, and the columns of U and V are the left and right
singular vectors, respectively.

The following definition connects the singular values of a matrix A to its rank, see []
for example.

Definition 2.9. Let A be an n×m real matrix, n ≥ m, with singular values σ1 ≥ σ2 ≥
· · · ≥ σm ≥ 0. For ε > 0 we define the ε-rank of A to be the smallest integer k such that
σk+1 < ε.

An analogous decomposition can also be defined for collections of functions, ie. when
the columns ofA are replaced by square-integrable functions, and is given by the following
Theorem (see [4]).

Theorem 2.10. Suppose f1, f2, . . . , fm are real-valued functions in L2([a, b]). Then there
exist orthonormal functions u1, . . . , um : [a, b] → R, an m × m orthonormal matrix
V = [vij ], and an m × m real diagonal matrix Σ with non-negative diagonal entries
σ1, . . . , σm such that

fj(x) =

k∑
i=1

ui(x)σivij , (37)

for all a ≤ x ≤ b and 1 ≤ j ≤ m. By convention we order the functions u1, . . . , uk and
choose the matrix V so that σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0.

Remark 2.5. Using Theorem 2.10, the definition of ε-rank extends to finite collections
of functions.
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3 Numerical preliminaries

In the following four sections we describe several numerical tools to be used in the
remainder of this paper.

3.1 Nested Gauss-Legendre discretizations

A nested Gauss-Legendre discretization is a collection of classical Gauss-Legendre nodes
and weights on a binary partition of [a, b]. In this section we describe an algorithm
which constructs a nested Gauss-Legendre discretization which adaptively discretizes a
collection of functions to within a given tolerance ε. For each function the interval is first
bissected and a Legendre expansion of the function is computed up to some fixed order
2K on each of the subintervals. For each subinterval, if any of the last K coefficients is
greater than a pre-specified tolerance ε, the subinterval is subdivided once again. The
process continues recursively until no subinterval has more than K coefficients of size
greater than ε in its Legendre expansion.

We summarize this procedure in the following algorithm (see [4] for a more detailed
discussion). As input it takes a collection of functions f1, . . . , fn : (a, b)→ R, a precision
ε, and an integer K which controls how many of points are used on each subinterval. It
outputs a collection of discretization nodes and weights defining a nested Gauss-Legendre
discretization.

Algorithm 1.
Initial discretization:

Step 1. Construct the 2K Gauss-Legendre nodes x1, . . . , x2K on the interval (a, b).

Step 2. Let Pk denote the kth order Legendre polynomial. Determine the coefficients,
α1, . . . , α2K , in the expansion of fj in terms of the Legendre polynomials Pk,
k = 0, . . . , 2K − 1, by solving the following linear system,

fj(xi) =
2K∑
l=1

αl

√
2

b− a
Pl

(
2
xi − a
b− a

+ a

)
, i = 1, . . . , 2K. (38)

Step 3. If
∑2K

i=K+1 |αi|2 < ε, then the Kth order Legendre expansion for fj on [a, b] is
sufficient. If the sum of the squares of the last K coefficients is greater than ε, then
subdivide (a, b) into two intervals [a, a/2 + b/2], and [a/2 + b/2, b] and repeat the
procedure recursively on each subinterval.

Step 4. Repeat steps 1-3 for each function fj , j = 1, . . . , n. Merge the resulting partitions of
[a, b] and form a discretization with K Gauss-Legendre nodes on each subinterval.

Remark 3.1. The nested Gauss-Legendre discretization with nodes x1, . . . , xN ∈ [a, b]
and weights w1, . . . , wN of the collection of functions f1, . . . , fk : [a, b]→ R, produced by
Algorithm 1 provides the following:

a) an ε-accurate quadrature rule for f1, . . . , fk (see Definition 2.2),

b) an ε-accurate inner-product quadrature for f1, . . . , fk (see Definition 2.5),
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c) a stable, ε-accurate interpolation scheme for f1, . . . , fk, where the interpolating func-
tions are Legendre polynomials on a binary partition of [a, b] (see Definitions 2.7 and
2.8).

3.2 SVD of a collection of functions

In this paper we use the following algorithm, adapted from [23], for computing the SVD
of a collection of functions. The input of the algorithm is a set of functions f1, . . . , fm :
[a, b] → R together with a user-specified precision ε. The outputs of the algorithm are
the left singular functions u1, . . . , uk : [a, b] → R and the corresponding singular values
σ1 ≥ σ2 ≥ · · · ≥ σk > 0, see Theorem 2.10. In fact, the algorithm produces the vectors
(ui(xj)), j = 1, . . . , N, i = 1, . . . , k, where x1, . . . , xN are the nodes of the nested Gauss-
Legendre discretization of the functions f1, . . . , fk on [a, b] (see Remark 3.1).

Algorithm 2.

Step 1. Construct a nested Gauss-Legendre discretization x1, . . . , xN and w1, . . . , wN of
functions f1, . . . , fk : [a, b]→ R via Algorithm 1.

Step 2. Construct the n×m matrix, A, with (i, j)th entry defined by

Aij =
√
wifj(xi).

Step 3. Compute the singular value decomposition of the matrix A to obtain the factoriza-
tion

A = UΣV ∗, (39)

where U is an n×m matrix with orthogonal columns, V is an m×m matrix with
orthogonal columns, and Σ is an m×m diagonal matrix whose jth entry is σj .

Step 4. For each j such that σj ≥ ε, form the vector uj ∈ Rn with ith entry (uj)i given by

[uj ]i = Uij/
√
wi.

3.3 Generalized Chebyshev quadrature and interpolation

In this section we outline an algorithm which generates a generalized Chebyshev quadra-
ture and interpolation scheme. It takes as input a set of orthonormal functions u1, . . . , un,
an interval [a, b], and a precision ε > 0. The algorithm outputs an n-point generalized
Chebyshev quadrature and interpolation scheme which is accurate to within the specified
precision.

Algorithm 3.

Step 1. Using Algorithm 1 construct a nested Gauss-Legendre discretization of u1, . . . , un to
tolerance ε. Let x1, . . . , xN denote the discretization nodes and w1, . . . , wN denote
the corresponding weights.
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Step 2. Form the n×N matrix X with entries defined by

Xij = ui(xj)
√
wj , (40)

and the vector r ∈ Rn with entries

ri =
N∑
j=1

ui(xj)wj ≈
∫ b

a
ui(x) dx, (41)

where the last approximation is accurate to within ε.

Step 3. Perform the pivoted Gram-Schmidt algorithm with reorthogonalization on the ma-
trix X as follows:

a) Set X0 = X. For i = 1, 2, . . . , n let σi denote the index of the column of Xi with
the largest `2 norm.

b) Let Xi be the matrix obtained by interchanging the σith and the ith columns
of Xi−1. Orthogonalize the ith column of Xi to the previous i − 1 columns.
Orthogonalize the remaining N − i columns of Xi to the ith column.

Step 4. Let x̃i = xσi , i = 1, . . . , n and form the n× n matrix U with entries

Uij = ui(xσj )
√
wσj . (42)

Step 5. Solve the linear system Uṽ = r for ṽ = (ṽ1, . . . , ṽn) ∈ Rn. Return the nodes
x̃1, . . . , x̃n and corresponding weights w̃1, . . . , w̃n, where w̃i = ṽi

√
wσi .

Remark 3.2. Since the rows of the matrix X are orthonormal, it can be shown that the
condition number of the matrix U given in (42) is approximately one (see [3]).

Remark 3.3. Algorithm 3 produces an interpolation scheme which is stable in the fol-
lowing sense. Suppose that f ∈ L2([a, b]) and that the values of f at the points x̃1, . . . , x̃n
are known. Let Ũ be the n× n matrix with entries given by

Ũij = ui(x̃j)
√
w̃j . (43)

Then the operator Ũ−1 maps the vector (f(x̃1)
√
w̃1, . . . , f(x̃n)

√
w̃n) to the vector of in-

terpolation coefficients c1, . . . , cn (see Definition 2.6). Furthermore, this operator is well-
conditioned [3].

3.4 Generalized Gaussian quadratures

In this section we describe an algorithm, first introduced in [4], which constructs a
generalized Gaussian quadrature for a collection of functions. In particular, given a
sequence of functions f1, . . . , f2n : [a, b]→ R which are square-integrable with respect to
a weight function ω, it returns a set of n nodes x1, . . . , xn and weights w1, . . . , wn which
integrate the functions f1, . . . , f2n with precision ε.

It proceeds by using Algorithm 3 to construct a generalized Chebyshev quadrature
for f1, . . . , f2n and then eliminating n nodes one at a time. Each time it removes a
node the algorithm performs a non-linear optimization on the locations of the nodes to
ensure that the functions f1, . . . , f2n are still integrated with precision ε. The resulting
quadrature scheme is guaranteed to integrate the collection of functions with precision ε.
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Algorithm 4 ([4]).
Generation of initial quadrature:

Step 1. Construct a nested Gauss-Legendre discretization to tolerance ε0 � ε (typically
ε0 < ε/1000 is sufficient). Let xL1 , . . . , x

L
N and wL1 , . . . , w

L
N denote the corresponding

nodes and weights.

Step 2. Use Algorithm 2 to construct an SVD of the functions f1, . . . , f2n with precision
ε0. Let u1, . . . , uk denote the resulting singular functions, where σk is the smallest
singular value greater than ε.

Step 3. Use Algortihm 3 to construct a k-point generalized Chebyshev quadrature for u1, . . . , uk
with precision ε.

Reduction to generalized Gaussian quadrature:

Step 4. Given an m-point quadrature scheme xm1 , . . . , x
m
m, w

m
1 , . . . , w

m
m integrating u1, . . . , uk

with precision ε, try to produce an (m−1)-point quadrature scheme via the following
steps:

a. Rank the nodes in order of increasing importance via the steps described in Stage
2 of [4], page 1777.

b. Remove the node flagged as least significant to obtain m− 1 nodes and weights.
Run the Gauss-Newton algorithm on the locations of the nodes and the values
of the weights to obtain an (m− 1)-point quadrature integrating u1, . . . , uk with
precision ε.

c. If the Gauss-Newton algorithm fails to converge, replace the node removed in
Step 4b and remove the next node in the ordering produced in Step 4a.

d. Continue in this manner, attempting to remove each of the m nodes in turn,
until an (m − 1)-point quadrature is obtained. If all nodes are tried and none
are successfully removed then the algorithm returns an m-point quadrature. If
an (m − 1)-point quadrature is obtained with the required accuracy, accept this
quadrature and repeat this procedure beginning at Step 4a.

Observation 3.4. We note that the algorithm occasionally fails to eliminate exactly n
nodes. However, in such cases it typically returns a quadrature with a number of nodes
close to the optimal number. Even when the algorithm fails, the resulting quadratures
are guaranteed to integrate the specified functions with precision ε.

4 Numerical apparatus

In this section we describe the main algorithm of this paper. It consists of the following
two distinct parts.

The first part is the construction of an interpolation scheme which interpolates the
densities in the vicinity of corners, described in Theorem 2.7, as well as a quadrature
scheme which integrates the kernels K and K̃ given by Definition 2.1 times the densities
near the corner.

The second part is the discretization of the integral equations (7) and (8) via a
Nyström scheme using the quadratures and interpolation scheme constructed in the
previous part.
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4.1 Corner discretization

The following observation establishes the rank of a certain collection of functions ap-
pearing in Theorem 2.7, and is used in the discretization of the functions representing
the solution to (7) and (8) in the vicinity of corners.

Observation 4.1. Consider the family of functions F ⊂ L2([0, 1/2]) defined by

F = {tµ | µ = 0 ∪ [1/2, 40] }. (44)

For ε = 10−16 the ε-rank of this collection of functions is 33 (see Definition 2.9). Hence
there exists a 33-point interpolation scheme which interpolates all functions in this family
in the L2-sense to within 10−16.

Table 1 lists the first fifty-three singular values of the family of functions, F , calcu-
lated using Algorithm 2. All singular values after the 33rd are less than 10−16.

Observation 4.2. We choose the upper limit of our range of µ in (44) to be 40, noting
that increasing this upper bound does not significantly increase the rank of the collection
of functions.

The following observation, based on numerical experiments, is useful in the construc-
tion of stable interpolation schemes for certain familes of functions. It is closely related
to the properties of the left-singular vectors of the truncated Laplace transform (see
[13]).

Observation 4.3. In practice, if Algorithm 2 is used to compress finite collections of
powers, tµi , where µi ∈ [0, 50], i = 1, . . . , N, t ∈ [0, 1/2], then the (k+ 1)st singular func-
tion has exactly k roots. The resulting roots, r1, . . . , rk, together with the first k singular
functions, u1, . . . , uk, yield a stable k-point interpolation scheme which interpolates the
family of functions {tµi}N1 with precision ∼ σk+1, where σk+1 is the (k + 1)st singular
value.

The previous observation can be used as the basis for an algorithm to construct
an interpolation scheme which interpolates the family of functions F given in Lemma
4.1. As input it takes an interval [a, b], a range of exponents [µ0, µ1], and real numbers
εquad � εsvd > 0 (typically εsvd < εquad/1000 is sufficient). As output it returns a set
of discretization nodes s1, . . . , sND , a set of discretization weights w1, . . . , wND , and an
orthonormal set of interpolation functions u1, . . . , uND : [a, b]→ R, which interpolate the
monomials tµ, µ = 0 ∪ [µ0, µ1] with precision εquad on the interval [a, b].

Remark 4.4. If εquad = 10−16, εsvd = 10−25, a = 10−16, b = 1
2 , µ0 = 1

2 , and µ1 = 40,
then the algorithm outputs a set of 33 nodes si ∈ (10−16, 1

2 ] i = 1, . . . , 33, a corresponding
set of (positive) weights wi, i = 1, . . . , 33, and a set of orthonormal interpolating functions
ui : (10−16, 1

2 ] → R, i = 1, . . . , 33. The condition number of the interpolation operator
mapping the values of ui at the discretization nodes to the coefficients of the expansion
in terms of the ui is 1.0031.

Algorithm 5.
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k σk

1 0.4093476434043761 · 101

2 0.6732190945529545 · 100

3 0.1991437561410569 · 100

4 0.4249343499170006 · 10−1

5 0.9160204770814034 · 10−2

6 0.2137216704928454 · 10−2

7 0.5318584271903745 · 10−3

8 0.1391816187224777 · 10−3

9 0.3792387773306178 · 10−4

10 0.1068481388222104 · 10−4

11 0.3096942318385288 · 10−5

12 0.9198859485549570 · 10−6

13 0.2791642683875489 · 10−6

14 0.8635018805679370 · 10−7

15 0.2717003840419811 · 10−7

16 0.8682258916589030 · 10−8

17 0.2813815939355092 · 10−8

18 0.9237895713433608 · 10−9

19 0.3069234590658991 · 10−9

20 0.1031074378345823 · 10−9

21 0.3499643548451834 · 10−10

22 0.1199340456049553 · 10−10

23 0.4147541466692028 · 10−11

24 0.1446579417390698 · 10−11

25 0.5086231278647431 · 10−12

26 0.1802078487712332 · 10−12

27 0.6431572556457143 · 10−13

k σk

28 0.2311469201117825 · 10−13

29 0.8363097810786797 · 10−14

30 0.3045467269488719 · 10−14

31 0.1116004460259128 · 10−14

32 0.4114668217771291 · 10−15

33 0.1526146413581282 · 10−15

34 0.5693364549045461 · 10−16

35 0.2135613404631228 · 10−16

36 0.8050767939545915 · 10−17

37 0.3047710412066927 · 10−17

38 0.1157380293328680 · 10−17

39 0.4403751727167243 · 10−18

40 0.1676913636789886 · 10−18

41 0.6384607793139196 · 10−19

42 0.2428980974022445 · 10−19

43 0.9230745083840269 · 10−20

44 0.3503590059042384 · 10−20

45 0.1328107460265278 · 10−20

46 0.5027813015037113 · 10−21

47 0.1900716323097294 · 10−21

48 0.7174490364875012 · 10−22

49 0.2703495093270228 · 10−22

50 0.1016764759511848 · 10−22

51 0.3815365222653915 · 10−23

52 0.1422486286856146 · 10−23

53 0.5169475795740504 · 10−24

Table 1: Singular values for the collection of functions tµ, 10−16 ≤ t ≤ 1
2 , where µ ∈

{0} ∪
[

1
2 , 40

]
.
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Step 1. Sample the powers in the range [µ0, µ1] using suitably rescaled (N − 1) Gauss-
Legendre nodes to obtain a discrete set of N powers ν1 < ν2 < · · · < νN where
ν1 = 0, and µ0 ≤ νj ≤ µ1 for j = 2, . . . , N.

Step 2. Use Algorithm 2 to compute the SVD of the set of functions fj(t) = tνj , j =
1, . . . , N, a ≤ t ≤ b, with precision εsvd, and obtain a set of singular values σ1 ≥
σ2 ≥ · · · ≥ σM and corresponding singular functions u1, . . . , uM .

Step 3. Let k denote the number of singular values greater than εquad. Compute the roots
of the (k+ 1)st singular value and denote them by r1, . . . , rs (see Observation 4.3).
If s 6= k then Algorithm 3 should be used instead to determine suitable points
r1, . . . , rk.

Step 4. Construct the k × k matrix U with entries Uij defined by

Uij = ui(rj), (45)

and the vector Y of length k with entries

Yi =

∫ b

a
ui(x) dx. (46)

Step 5. Solve the linear system UW = Y for the vector W = (w1, . . . , wk) ∈ Rk. For
N sufficiently large (typically N ≤ 200) the k-point interpolation scheme with
roots r1, . . . , rk, weights w1, . . . , wk, and functions u1, . . . , uk interpolates the in-
puted family of functions to the desired precision.

4.2 Quadrature in the vicinity of corners

In light of Lemma 2.6, in order to integrate the kernels K and K̃ times density, it will
also be necessary to approximate integrals of the form∫ 1

2

0

si sin(πα)

s2
i + t2 − 2sit cos(πα)

tµdt, (47)

where si, i = 1, . . . , ND are the discretization nodes constructed by Algorithm 5, and
µ = i/α, i/(2− α), i = 0, 1, . . . ,M. The integer M is a cut-off on the maximum number
of terms in the expansion of the density in singular powers. In practice it is chosen
sufficiently large so that the resulting quadrature scheme does not change when M is
increased.

The following algorithm constructs a set of quadrature nodes for each discretization
node si which approximates integrals of the form (47) with the specified precision ε.
Specifically, it takes as input a discretization node si with corresponding weight wi, a
range of angles [πα0, πα1], two integers and a precision ε. It returns a set of quadrature

nodes t
(i)
1 , . . . , t

(i)
Ni

and weights w
(i)
1 , . . . , w

(i)
Ni

which integrate (47) for all α ∈ [α0, α1].

Algorithm 6.
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Step 1. Sample the range [α0, α1] at K points a1, . . . , aK ∈ [α0, α1]. Typically, the points
{aj} are obtained using suitably-scaled Gauss-Legendre nodes. The integer K is
chosen sufficiently large so that adding an additional point does not increase the
ε-rank.

Step 2. For each discretization node si with corresponding weight wi, use Algorithm 4 to
obtain a Gaussian or near-Gaussian quadrature for the functions

si sin(πak)
√
wi

s2
i + t2 − 2sit cos(πak)

tj/ak ,

si sin(πak)
√
wi

s2
i + t2 − 2sit cos(πak)

tj/(2−ak), (48)

where k = 1, . . . ,K, and j = 1, . . . ,M, t ∈ (0, 1
2).

For each angle πα, by combining the results of Algorithms 5 and 6, we construct an
ND ×ND matrix Kα which maps the density near a corner (evaluated at the discretiza-
tion nodes s1, . . . , sND) to the integral of the kernel times the density evaluated at the
discretization nodes on the opposite side of the corner. The following lemma gives an
explicit formula for the entries of this matrix.

Lemma 4.1. Let u1, . . . , uND be the functions produced by Algorithm 5 and s1, . . . , sND ,
and w1, . . . , wND be the corresponding nodes and weights, respectively. Let Uij denote
the ND ×ND matrix with entries

Uij =
√
wj ui(sj). (49)

Define the ND ×ND matrix Kα
ij by

Kα
ij =
√
wi
√
wj

Ni∑
k=1

K
(
γ(si), γ(t

(i)
k )
)
w

(i)
k

(
ND∑
`=1

u`(t
(i)
k ) (U−1)`j

)
, (50)

where t
(i)
j , w

(i)
j , i = 1, . . . , ND, j = 1, . . . , Ni are the nodes and weights, respectively,

generated by Algorithm 6 for a given range [α0, α1], see Figure 3. If α ∈ [α0, α1] then
Kα maps the density near a corner with angle πα to the potential generated on the
opposite edge of the corner in an L2 sense.

Figure 3: Quadrature and discretization nodes near a corner.
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Remark 4.5. Note that rescaling the interval from (0, 1/2) to (0, c), where c > 0 is some
arbitrary real number, does not change the entries of the matrix Kα.

Remark 4.6. The interpolation scheme constructed via Algorithm 5 is universal in the
sense that the set of discretization nodes, weights, and functions is independent of the
angle of the corner. The quadrature rules obtained using Algorithm 6 are valid for a
range of angles; using six such ranges of angles we obtain sets of quadratures which work
for all angles in the range

(
π
32 ,
(
2− 1

32

)
π
)
.

4.3 Nyström discretization

In this section we discretize the boundary integral equations (7) and (8) using a Nyström
method. In the following we restrict our attention to the interior Dirichlet problem
(7); the exterior Dirichlet problem is solved in a similar fashion. We first construct a
discretization of the boundary with nodes s1, . . . , sN , and weights w1, . . . , wN , which
enable interpolation of the left- and right-hand sides of (7) with precision ε. We proceed
by enforcing equality at the discretization nodes, which yields the system of equations

g(si)
√
wi = −πρ(si)

√
wi +

√
wi

∫ L

0
K(γ(si), γ(t)) ρ(t) dt, i = 1, . . . , N.

(51)

Scaling by the square root of the weights is equivalent to solving the problem in the
L2 sense, and results in discretized operators with condition numbers which are close to
those of the original physical systems [3].

We obtain the discretization in the following manner. Suppose the boundary of Ω
is a polygon composed of K edges Γ1, . . . ,ΓK , with lengths `1, . . . , `K , respectively. We
denote the corners by Ci, i = 1, . . . ,K, indexed so that Cj is adjacent to Γj−1 and Γj ,
where we define Γ0 to be ΓK . We proceed by dividing Γ into a set of panels (intervals)
each of which is contained entirely within one of the edges. Let P ci denote the corner
panels (those which terminate at a corner) and P si denote the remaining panels. For
a given corner panel P ci , let P̄ ci denote the corner panel which is adjacent to the same
vertex as P ci (here we define ¯̄P ci = P ci ). An illustration of this process is shown in Figure
4, noting that in Figure 4b, P

c
1 = P c5 .

We choose the lengths of the corner panels so that for each corner, Ci, the two panels
which meet at Ci (P ci and P̄ ci ) are of equal length. Typically, their lengths are chosen
to be a fixed fraction of the minimum of the lengths of the edges to which they belong.
Let P si denote the remaining panel on Γi, Nc = 2K denote the number of corner panels,
and Ns = K denote the number of non-corner panels.

Since the panels P si are separated from the corners, the density is guaranteed to
be smooth on each of them, and hence Gauss-Legendre quadrature nodes (or nested
Gauss-Legendre discretizations) can be used to interpolate the densities as well as to
integrate the kernel times the density. On the corner panels P ci , the density is singular
and thus a specialized discretization is required. On these panels we use rescaled sets of
the discretization nodes generated by Algorithm 5.

Next, to discretize (51) we require a quadrature scheme which approximates integrals
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(a) (b)

Figure 4: Discretization of a polygonal domain in R2.

of the form ∫ L

0
K(γ(si), γ(t)) ρ(t) dt =

Nc∑
j=1

∫
P cj

K(γ(si), γ(t)) ρ(t) dt+

Ns∑
j=1

∫
P sj

K(γ(si), γ(t)) ρ(t) dt, i = 1, . . . , N.

(52)

If si /∈ P cj for some 1 ≤ j ≤ Nc, then the kernel is smooth and the discretization nodes
can be used as quadrature nodes on all panels. Similarly, if si ∈ P cj , then the integrals
over the Gaussian panels P si as well as the integrals over the corner panels which are not
adjacent to P cj can once again be computed accurately using the discretization nodes as
quadrature nodes.

If si ∈ P cj , in order to compute the contribution to the integral from the panel P̄ cj ,
we use the quadrature nodes generated by Algorithm 6. To write the system in terms
of the density evaluated at the discretization nodes we use our interpolation scheme to
interpolate from the discretization nodes to the quadrature nodes. With the tolerances
given in Remark 4.4 and the ranges of powers given in Remark 4.6, the result is a 33×33
matrix whose entries are given by Lemma 4.1.

The discretization procedure is summarized in the following algorithm. Here we
assume our region Γ is divided into K line segments, Γ1, . . . ,ΓK , with lengths `1, . . . , `K
respectively. We denote the unit tangent to Γj by (hxj , hyj), j = 1, . . . ,K. Additionally,
we denote the corners of Γ by C1, . . . , CK , indexed so that Cj is adjacent to Γj−1 and
Γj (defining Γ0 to be ΓK), and the location of Cj by (cxj , cyj).

Algorithm 7.
Discretization:

Step 1. For each corner determine the length ri of the corner panels. We choose

ri = σmin{Li−1, Li}, (53)

where 0 < σ < 0.5 is an arbitrary constant depending on the curve Γ (we find that
σ = 0.2 is usually sufficient).
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Step 2. Construct the corner panels P cj and P̄ cj by rescaling the discretization nodes and
weights (s1, . . . , sND , w1, . . . , wND) produced by Algorithm 5. Specifically, P cj has

ND nodes located at (x
(j)
i , y

(j)
i ) with weight w

(j)
i defined by(

x
(j)
i , y

(j)
i

)
= (cxj , cyj) + rjsi (hxj , hyj) (54)

w
(j)
i = wirj , (55)

for i = 1, . . . , ND, j = 1, . . . ,K. Similarly, P̄ cj has D nodes located at (x̄
(j)
i , ȳ

(j)
i )

with weight w̄
(j)
i defined by(
x̄

(j)
i , ȳ

(j)
i

)
=
(
cx,j , cy,j

)
− rjsi

(
hx,(j−1), hy,(j−1)

)
, (56)

w̄
(j)
i = wirj , (57)

for i = 1, . . . , ND, j = 1, . . . ,K.

Step 3. For each edge Γj, discretize the remainder P sj (ie. the portion not included in P cj
or P̄ cj+1) using a k-point Gauss-Legendre discretization or nested Gauss-Legendre
discretization.

Construction of the linear system:

Step 4. Let x1, . . . , xN , w1, . . . , wN denote the discretization nodes and weights, respec-
tively, produced by Steps 1-3 of the algorithm. Form the N × N matrix X with
entries Xij defined by

Xij = −πδij +K(xi, xj)
√
wiwj (58)

where δij is the Kronecker delta, and K is the kernel function given in Definition
2.1.

Step 5. Correct the elements of X corresponding to interactions of adjacent corner panels.
Specifically, if xi1 , . . . , xiND are the discretization nodes of the corner panel P cj
(with interior angle πα) and xj1 , . . . , xjND are the discretization of the adjacent

corner panel P̄ cj , set

Xis,jr = (Kα)sr s, r = 1, . . . , ND, (59)

where Kα is the ND ×ND matrix constructed in Lemma 4.1.

5 Numerical results

To solve the integral equations of potential theory corresponding to both the interior and
exterior Dirichlet problem on polygonal domains, we use the above approach to discretize
the integral equations. The resulting linear systems are solved using standard techniques.
To illustrate the performance of our algorithm we solve the exterior and interior Dirichlet
problem on the domains shown in Figures 5, 6, 7, and 8. The algorithm was implemented
in Fortran 77 and the experiments were run on a 2.7 GHz Apple laptop with 8 Gb RAM.
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Boundary
conditions

Curve
Number
of nodes

Maximum
error

Precom-
putation time

Total
run time

Condition
number

E Γ1 294 2.55 · 10−15 0.2012 0.2098 14.52
I Γ1 294 2.66 · 10−15 0.2222 0.2308 16.36
E Γ2 648 9.71 · 10−16 0.2159 0.3249 101.7
I Γ2 648 9.02 · 10−16 0.2278 0.3543 65.63
E Γ3 1300 4.44 · 10−15 0.2577 1.1592 129.3
I Γ3 1300 9.99 · 10−16 0.2483 1.1591 80.66

E Γ4 20736 (1561) 4.44 · 10−15∗ 1.253 44.651 391.0

I Γ4 20736 (1564) 1.41 · 10−12∗ 1.174 43.100 241.3

Table 2: Numerical results for the interior (I) and exterior (E) Dirichlet problems.

To demonstrate the accuracy of our algorithm for the interior Dirichlet problem, we
choose our boundary data g to be the result of an incident dipole placed outside the
region. We solve the linear system to obtain the potential and use (6) to construct the
solution away from the boundary. Similarly, for the exterior Dirichlet problem, we choose
our boundary data g to be the result of an incident dipole placed inside the region. The
linear system is solved to obtain the solution to the integral equations (7) and (10),
which we then use to construct the solution to the boundary value problems (1) and
(2) away from the boundary. In both cases an analytic solution exists (it is just the
potential produced by the dipole) and is used to determine the accuracy of our solution.
Specifically, the potential is evaluated analytically and numerically at a few arbitrary
points and the maximum of the difference is calculated. The results are summarized in
Table 2. All times are measured in seconds, E denotes the exterior Dirichlet problem,
and I denotes the interior Dirichlet problem. For the domain shown in Figure 8 one
level of the compression algorithm described in [15] was used; the number of nodes in
the compressed system is given in parentheses. The errors in the resulting solution are
limited by the compression rather than the quadratures, which we denote by an asterisk.

Remark 5.1. The linear systems in rows 1-6 were solved using the QR algorithm. No
attempt was made to optimize the CPU performance of our implementations; the CPU
times of these experiments could be significantly improved by using an algorithm appro-
priate to the size of the problems being solved.

As a further illustration of the algorithm, we apply the approach of this paper to
calculate the potential and equipotential lines for the geometries shown in Figures 9-11.
Here we consider the scattering problem wherein a dipole is placed inside the polygon Ω
for the interior Dirichlet problem and in the exterior of Ω for the exterior Dirichlet prob-
lem. The boundary conditions are chosen so that the solution vanishes on the boundary
of Ω. One level of the compression algorithm described in [15] is used to reduce the
number of unknowns in the final linear system. Results are given in Table 3, the total
field is shown in Figures 12, 14, and 16, and corresponding equipotential lines are shown
in Figures 13, 15 and 17. Due to the singular nature of the field at the source in Figure
14 we plot log10 |u|, where u is the total field. In all other cases the source is outside the
region shown. We denote the number of nodes in the discretization by Nd, the number
of nodes in the compressed system by Nc, the number of corners by n, the time required
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Figure 5: Γ1 - a triangle in R2.
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Figure 6: Γ2 - a chevron in R2.
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Figure 7: Γ3 - a star in R2.
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Figure 8: Γ4 - a fish in R2.
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Figure 9: Γ5 - top view of a falcon in R2.
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Figure 10: Γ6 - a falcon in R2.
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Figure 11: Γ7 - an oak branch in R2.
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to discretize and initialize the system by T0 (in seconds), and the time to solve the final
linear system by Ts (in seconds). The condition numbers reported in Table 3 correspond
to the condition numbers of the compressed systems.
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Figure 12: Scattering of a dipole from a
plane in R2.
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Figure 13: Equipotential lines of a plane
in R2.

Figure 14: Log-scaled plot of interior
scattering from a dipole for a falcon in
R2.
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Figure 15: Equipotential lines of a fal-
con in R2.
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Figure 16: Scattering of a dipole from a
branch in R2.
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Boundary
conditions

Curve n Nc Nd T0 Ts
Condition
number

E Γ5 51 725 16422 78.86 16.168 355.70
I Γ6 228 2523 29640 58.16 38.438 301.07
E Γ7 372 3318 60408 329.2 148.13 41581

Table 3: Numerical results for the interior (I) and exterior (E) Dirichlet problems.

6 Conclusions and extensions

In this paper we present an algorithm for solving Laplace’s equation in the interior and
exterior of polygonal domains subject to Dirichlet boundary conditions. The approach
is based on the observation in [20] that when these boundary value problems are formu-
lated as the boundary integral equations of classical potential theory, the solutions to
the boundary integral equations in the vicinity of corners are representable by series of
elementary functions. A central feature of our algorithm is the construction of special-
ized discretization nodes and quadrature rules to integrate these elementary functions
near corners, with arbitrarily high precision while requiring relatively few nodes. We
use these quadrature formulas and interpolation schemes as part of a Nyström method
and demonstrate that it is highly accurate and the resulting linear systems are well-
conditioned.

6.1 Neumann boundary conditions

In this paper we focus on Dirichlet boundary conditions. Similar analysis holds for
Neumann boundary conditions, see [20]. In fact, with minor modifications the discretized
linear system for the interior Dirichlet problem can be transposed to produce an accurate
and well-conditioned discretization of the exterior Neumann problem. Likewise, the
system for the exterior Dirichlet problem can be transposed to produce an accurate
and well-conditioned discretization of the interior Neumann problem. An algorithm for
Neumann boundary conditions will be described in a forthcoming paper.

6.2 Robin and mixed boundary conditions

Two additional classes of boundary conditions that have not yet been analyzed in detail
are Robin conditions and mixed boundary conditions (Dirichlet on one side of the corner
and Neumann on the other side). A detailed analysis of their properties, as well as the
construction of algorithms for their solution, is currently underway and the results will
be presented in forthcoming work.

6.3 Curved boundaries with corners

While this paper only deals with the solution of Laplaces equation on polygonal domains,
in [19] this analysis is extended to curved boundaries with corners. Specifically, if the
boundary of the domain is smooth except at a finite number of corners, then the solution
to the corresponding boundary integral equations are representable by a slightly more
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complicated series of elementary functions. In particular, the powers presented in The-
orem 2.7 are multiplied by smooth functions and powers of logarithms. The numerical
apparatus for solving Laplace’s equation on regions of this type will be decribed in a
future paper.

6.4 Generalization to three dimensions

The generalization of the apparatus of this paper to three dimensional polyhedra is fairly
straightforward, but the detailed analysis has not been carried out. This line of research
is being vigorously pursued.

6.5 The Helmholtz equation and biharmonic equation and Maxwell’s
equations on domains on corners

In this paper we consider the solution of boundary value problems for Laplace’s equation
on polygonal domains. A similar analysis holds for the Helmholtz equation [21] and the
biharmonic equation [18] on polygonal domains. In particular, when the problems are
formulated as the boundary integral equations of classical potential theory, the solutions
are representable by series of Bessel functions in the Helmholtz case and complex powers
in the biharmonic case. Papers detailing numerical algorithms that use this analysis to
solve boundary value problems for the Helmholtz and biharmonic equations on polygonal
domains are currently in preparation.
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