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I. Introduction

In this paper, we explore the use of neighborhood
gearch tecaniques for finding cptimal solutions
to the symmetric Traveling Salesman Problem.
These techniques have been dramatically successful
in obtaining near-optimal solutions to this
problen for a reasonable expenditure of effort
(1,2,3,4,5,6,9,10,12). Extensions of these
techniques can be used to obtain the globally
optimum solution, but the effort involved is at
Jeast an exponential function of the number of
cities, n. Indeed, as this paper demonstrates,
all local search algorithms that are- capable of
finding the optimal solution to an arbitrary
n-city problem must grow at least as fast as

—%a 1. Thus for large problems, these algorithms

are computationally inefficient.

In the following sections we show that any
exact neighborhood saarch algorithm for the
Traveling Salesman Problem must inspect a
prohibitively large number of feasible solutions.
We begin with a brief discussion of the Traveling
Salesman Problem (TSP) and neighborhood search
techniques in section II. In section III we
develop a necessary condition for neignborhood
search to converge Lo an optimal solution. We use
this result in sections IV and V to obtain a lower
bound on the effectiveness of neighborhood search
as applied to the TSP.

11. The TSP and Heuristic Search Algorithms

The TSP can be described briefly as follows.

Given a set of n cities, consider the weighted
graph formed by taking the cities as nodes, with
the arc length between nodes 1 and j defined to be
the distance between cities i and j. The feasible

(n-1)!
2
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circuits. The cost'of a feasible solution is the
sum of the lengths of its arcs, .or inter-city

links. Given the (2] arc lengths, the optimal

feasible solution is the Hamiltonian circuit of
minimum cost. We refer to a particular assignment
of arc lengths as the parameter x of the problem,
and assume for simplicity that x can take on any

set of C;) real values. Although the use of some

other reasonable parameter set might cause seriouc
technical difficulties, it would not strongl
affect the conclusions reached below. It is easy

to show, forhexample, that restricting the (3)

values of x to be positive is of no consequence i
the following theory. We write c(s,x) for the
cost of the feasible solution s with respect to
the parameter x. For a more detailed discussion
of the TSP we recommend (13).

As with any combinatorial problem, it is of
interest to determine the growth rate of proposec

algorithms as a function of a key variable, here
taken to be the number of cities, n.

To date, there is no known algorithm for
solving the TSP that grows less than
exponentially with the nurber of cities. It is

not surprising that a number of fast—running

_heuristic procedures have been developed that

produce solutions that may not be optimal. Ue
refer to those algorithms that always find the
optimal solution as exact algorithms, and to the
heuristic procedures as approximate algoritams.
A particularly effective class of approximate
algorithms may be described as netghbornood sear«
algorithms.

We now give an informal definition of
More discussion can be fouw

in (11), (15), and (17). Let Sn denote the set -
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feasible solutions assoclated with the n-city

problem.. Fur every solution s < Sn, a subset or

neignbornsod of Sq? H(s), is defined. Uhen such a

neighborhood has been defined for each s € Sn’ we

say that a neignsornood structure N has been

defined on S . Given a specific parameter, X, a

sequence of solutions in Sn is then generated as

follows.
S1» the initial solution, is arbitrary.
Si41 can be any point in N(si) such that
c(si+1,x) < c(si,x).

< c(s,x) for all

When for some k, c(sk,x)
s € N(sk), s, is said to be locally optimal with
respect to the structure N. WNote that Sk is not

necessérily globally optimal, but the cost of
elements of the sequence is strictly decreasing.

We have not discussed the procedure by which
81 is chosen, or the order in which the solutions
“in N(si) are searched for the improvement s, -

In practice, these choices are usually pseudo-
random. Indeed, the algorithm may be repeated on
many different randem starts, producing in
general several different local optima of which
the best is chosen as the final solution.

A local search algorithm developed by Lin (12)
in 1965 is one of the best computational methods
for the TSP known today. At roughly the same
time, Reiter and Sherman (15) also had some
success with similar algorithms and formalized
the concept of neighborhood search.

It is important to note that with all

. meighborhood search algorithms the neighborhood
structure is fixed prior to presenting a given
instance of the problem (that is, the parameter)
to the algorithm. Particular algorithms will

differ in the method used to select Sy and in the
strategy used to search N(si) for any giveh

solution Sy

In comparing different algorithms, we choose
to count the worst-case number of solutioms
examined as the complexity measure. While the
inherent pseudo-random nature of neighborhood
gearch algorithms makes this measure difficult
to determine precisely, we can bound it with the
following observation. Suppose that our
algorithm is fortunate enough always to pick the

optimal solution as s, (a friendly demon is at

wprk!); We would still have to explore all of

N(sl) before terminating to ascertain that s, was

indeed optimal. The symmetry or the parameter
set Lrmplies that all feasible solutions have a

* chance of beimg optimal, so the worst-case

behavior is bounded from below by
Max |N(si)|.*
feasible sy
We use this fact to bound the complexity of exact
local search algorithms in section V.
Definitiom: A neighborhood structure N is

exact.if for any parameter x and any s € Sn,
c(si,x3 < e(s,x) fof all s € N(si)
= sy i; optimal.
In other words, a neighborhood structure N is

exact provided any local optimum with respect to
N is a global optimum. It is easy to see that if

N(si) ='Sn‘f9r all Sg» the corresponding

algorithm is in fact exact, but that the
complexity of this algorithm is bounded from

~131
- below by {o-1)1 for the TSP. For smaller

2

neighborhood structures, the search algorithm may
not be exact, and it becomes possible to produce
locally optimum solutions. Our desire to
consider those neighborhood structures that are
just sufficient to correspond to exact algorithms

-motivates the next section.

III. A Theorem Concerning Exactness

We now introduce. a result relating to the
exactness of neighborhood structures (16,17).
Although this result actually applies to a wide
class of problems of which the TSP is but one
example, we phrase it here in terms of the TSP.
See (16) for more general statements of both
Theorem 1 and Theorem 2 below.

Definition: Given a feasible solution Sy ve
define as O(sj) that set of solutions s, € Sn for

which there exists an x such that

c(sk,x) < c(sj,x) ;tc(si,x) for all i # j,k.

.. In other words, O(Sj) consists of those

- golutions that can be uniquely optimal when sj is

second to optimal.

The feasible solutions of the TSP are uniquely
determined by the order in which the cities are

‘arrived at in the Hamiltonian circuit. By merely

renaming the cities of the problem, we can
transform any feasible solution to any other
feasible solution. This symmetry implies that
the size of 0(s) does not vary with s.

Theorem 1: The minimal exact neighborhood

* We use |P| to denote the cardinality of the
set P.



gtructure for the TSP s unique and consiiuts of

0(s) for each s €& Sn.

Proof: We first show that if ¥ {s exact, then
0(s) < l(s) for every s € S. le prove the
contrapositive. For some s, assume that there is
an s' € 0(s) for which s' € 4(s). Then by the
definition of O(s) there exists a parameter x such
that s' is uniquely optimal and s is second to
optinmal. Uow suppose for this x, s happens to be
chosen as the initial feasible solution. Then s
will be locally optimal with respect to N, but it
is not globally optimal, a contradiction.

We have thus shown that if the neighborhood
structure N is exact, ¥(s) must contain 0(s) for
each s. We now show that the neighborhood
structure comprising O(s) for each s is in fact
exact. This is equivalent to showing that if s is
non-optimal then some element of O(s) has lower
cost than s. Assume therefore that there exists a

parameter X for which s is non-optimal and for
which all solutions in 0(s) have higher cost. For
the sake of contradiction, we construct another

parameter for which some s' € O(s) is uniquely
optimal with s second to optimal. Throughout the

construction we denote the length of the kth

inter-city link by x[k], which gives

c(s,x) = Ix[k].
© kE€s

We define as Ls(x) the set {silc(six) < c(s,x)},

and assume for the moment that the solutions in

Ls(x) are not all tied in cost.

We néw construct a finite sequence of xi‘s such
that lLs(xi)I monotonically decreases until for
some x., ILs(xj)I = 1. This implies that the one
solution s' remaining in Ls(xj) belongs to 0(s),

contradicting the hypothesis.
Start with the parameter xy above, and proceed

.th

iteratively as follows. At the i~ stage we let

sy denote some solution with maximum cost within
Ls(xi)' (By assumption if there are no solutions
in Ls(xi) with cost less than Sys then s; is the
only solution left, and we are done.) Since the
feasible solutions all consist of exactly n links,

every solution in Ls(xi) contains some link not

Let k denote such a link
We can raise x[k]

contained in s.

contained in Sy but not s.
without raising c(s,x) until c(si,x) > c(s,x).
This new parameter is Xyt Note that in raising

x[k], we can only raise the cost of other

.- Definition:

golutions with respect to 3, insuring that

Ls(xi+l) is a non-empty proper subset of Ls(xi)'

so that
1s Ir"s(xm»l)l < ll"s(xi)"
Since Ls(xl) was finite, we must eventually arrive

at a parameter x,, such that [Ls(xj)l = 1.

x
J
We now justify the assumption concerning ties

1# Ls' If for any x such a tie should occur, we

can break it in the following manner. Let h

denote c(s,x) - c(si,x), where sy is any solution

in Ls(x). Every feasible solution consists of

exactly n links. So given any pair of solutioms

s, and s

i 3
such that k ¢ s

in Ls(x), there exists a link k € s;

50 If k € s we can break the tie
while preserving the set Ls(x), by adding %—to

x[k]. On the other hand if k € s we can

accomplish this result by subtracting %'from x[k].

‘QED
IV. Primary Changes
We have been unable to characterize explicitly
the complete O-neighborhoods for the TSP. In this

section we provide some important definitions and
prove some preliminary results concerning certain

- feasible solutions that must be contained in 0(s).

These results allow us in section V to calculate
a lower bound on the size of the complete
neighborhoods, and hence on the complexity of the
exact algorithms.

Definition: 1f s and s' are two TSP solutions
such that s' can be produced from s by exchanging
k links in s with k links not in's, we say that
s and s' are k-caanges of one another.

Let s' be a k-change of s where
A= {al,...,ak} is the set of inter-city links
belonging to s but not to s'. If no two
elements of A are adjacent, that is, incident to
the same city, we say that the set A is

nonadjacent, and call s' a nonadjacent k-change
of s.

Given a feasible TSP solution s, let

A= {al,...,ak} be a set of links belonging to s,
and B = {bj,...sb,} be a set of links not

belonging to s. We denote by G(A,B) the graph
whose vertex set corresponds to the set of li?ks
A, with an edge connecting node i and node j iff

arme b € B is adjacent to both link a; and link

-

We write s — A + B to mean the set of



{nter-city links obtained b',? the removal of the . But we have chosen = so that 2ke < ldc, so by (2)

set A and tie additd ¥ the se he s i
set A and tie addition of the set B to the solution the cost of s, is greater than both s' and s.

S. : "1
Lemma 1: Lf s' = s - A+ B is a nonadjacent Let s, be a solution not containing some link
k-change of s, then G(A,B) consists of k edges
forming one or more disjoint cycles. ’ in s N s'. The lowest cost solution of this form
. \ must replace some link in s' of cost 0 with a link
Proof: Assume that s’ is a nonadjacent change of cost lte, yielding
of s, and assume that some b € B is the link ’
between cities m and m. In order that these cities - elsy,x) 2 c(s',x) + (1+e) = 0 > c(s',x) + 2Zke
end up with exactly two incident links both m and n = c(s,X).
must have had exactly one link removed. Thus we :
have each end of b adjacent to a link of A which So 52 has a cost greater than both s and s'.
implies that each of the k b's appears in G. Now
assume that some element a € A links cities i and Thus for a solution to lie between s and s' in
j. Since we assume that no other elerent in A is " cost, it must be of the form s =s-A' +8',
incident to either i or i, and since in a feasible 1 )
solution every city must have exactly two incident where A" € A and B' € B. Hence by Lemma 1 B

links, B must.contain exaf:tly one link i_ncider}t to forms a cycle in G(A,B). But by hypothesis B
i and one to j. Thus each end of the link a is forms the only cycle in G(A,B) because s' is a
adjacent to exactly one link in B.. This implies primary change of s. We ma;v comclude that the
:hu:;eiliftﬁc‘{zzitcz: Zi)col‘fla:::oa 3§§Z§ei§tzim preceeding assignmzf_nt of link costs renders s'
{mplies that G consis% £ dis‘o:;.nt: N cle.s v uniquely optimal with s uniquely second in cost

P s 0o J ¥ . QED to s', implying that s' € 0(s).

QET

Definition: 1f s' is a nonadjacent change of '

s such that G(4,B) consists of a single cycle then

s' is a primary change of s. V. A Lower Bound on the Size of 0(s)
- . .

Tizleorim'Z. Le;ls andI,s‘_ !':e'feas1b%e 501;51215 We now find a lower bound on the number of primary
to the o CIEY propem. s' is a primary k-change  changes of a TSP solution, and hence a lower bounc
of s then s' € 0(s). :

on 0(s). .
0 1 E

Proof: W? const‘:ruct a ?arameter for which s' is Given a solution s, a nonadjacent set

uniquely optimal with s uniquely second in cost to .
g'. By hypothesis s' = s - A+ B, where A= {al,...,ak} belonging to s, and any cycle on
A= {al"“’ak}’ B= {bl"“’bk}’ and AN B = 9. the set A, a primary change of s of the form
he 1link foll L v s - A + B can be constructed such that G(A,B)
Assignuigngths lio :\ e links as fol OWS‘ - Letting € consists of that cycle (see the appendix for
be a number such t ati : ’ details). This gives us a distinct solution in
0<e < ' 0(s) for each distinct cycle on G(A,B).
2k-17 . .. . Let K(n) denote the size of the largest
set ... ...nonadjacent set that can be removed from an n-cit:
0. for L €s'N .. . .. ..._solution, and M(n) denote the number of such
s for s s nonadjacent sets. Since the number of distinct
x[1] = 1-e, for i 2 B 1y .
1+e, for i € A k poi . -1)! d
2, stherise. 7 .. - cycles on k points is 5 fa lower bound on the
This gives . . number of primary changes for an n-—city problem i:
(1) c(s',x) = ke (1-¢) : e M(n) e _(_l_(_(_r%:_l_)_'_
and
It i i 1. d 1.b that
@) c(s,x) = ke (1+€) = c(s',x) + 2ke. It is apparent from figures a an b a
Clearly s' is uniquely optimal because it contains K() 1is ';‘ or 51:_2'1 for even or odd n respectively.
the n smallest links, k of cost 1-¢ and n-k of cost
0. We now show that s is uniquely second in cost to It is also clear that M(n) = 2 for even n. For
s'. We begin by showing that if a solution contains odd n notice that the two adjacent links (1 and 2
any links outside of s Us', or does not contain all -1
links in s N s', then it must have a cost greater in figure 1.b) uniquely determine the =5=— links t
_ than c(s,x). .
e removed. The possible number of such adjacent
let sl be a solqtion containing a link outside links is n, so that when n is odd, M(n) = n.

Theref b i £0 is
of s Us' = AU s'. The lowest cost solution of erefore a lover bound on the size © (s

this form would use all the 0 cost links in s' and 2 . /2 - 1)! _ (n-Z\' n even
would replace one link of cost l-¢ by a link of 2 2 /% ?
cost 2. This would give and.
] - - .
— c(sl.x) > c(s',x) = (1-¢) + 2 a ((a-1)/2 - 1! _ o, (n—l)' 0 odd.
= c(s',x) +1+ ¢. 2 n-1 27



With this result we have established that the tire
requlred to search only the Lot neioborhood
arrived at in nn egact alnocitiv, and thuereby
guarantec optimality, is proportional to at least

-2 . .
Glf')! rendering exact neighborhoad search

impractical for this probiem.
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Appendix: The Construction of Primary Changes

A cycle on a set of vertices can be specified by
the order in which the vertices are arrived at in
a traversal of the circuit. Given a feasible TSP
solution s, a nonadjacent set of links

A= {a(l),...,a(k)}, and a permutation T;,...>Ty>
we now describe a proczdure for constructing a

solution s — A + B for which the order of the
_vertices around the circuit G(A,B) is

a(wl),a(ﬂz),...,a(ﬂk).

We proceed as follows.

- (1) Remove a(wl) from s.
(2) Denote one end of a(ﬂl) by Hl and the other
by‘Tl; Set 1 to 2.
(3) Starting at Tl traverse the links presently
in the path until a(vl) is reached. Denote the
end of a(vi) reached first by Ti and the other b:

Hi’ Remove a(ﬂi). Let bi—l be the link from Hi~

to Ti' 1f i = k go to (4). Otherwise . go to (3)

4) bk i{s the link from Hk to T,.
In figure 2 the steps above are depicted usin
elastic links. Figure 3 shows the complete

construction of a primary 4-change by the method
above.

... It is apparent from the construction that the
circuit G(A,B) can be traversed so as to arrive

the vertices a; in the same order as the links &

- -were removed in the procedure above. Since this

order was arbitrary to begin with, in this manne
.we can produce a primary solution s = A + B for

- which the vertices of G(A,B) lie in any of the

(k-1)!

2 possible orderings.
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The construction of a primavry k-change,
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