Supercomputing out of Recycled Garbage:
Preliminary Experience with Piranha

David Gelernter and David Kaminsky

YALEU/DCS/RR-883
December 1991

Supercomputing out of Recycled Garbage:
Preliminary Experience with Piranha

David Gelernter David Kaminsky
December 9, 1991

Abstract

In this paper we present a new system for making use the cycles rou-
tinely wasted in a local area network. In Piranha, we harness these cycles
to run explicitly parallel programs. Programs written for Piranha are
very similar to Linda master/worker programs[5]. We have used Piranha
to run a number of production applications.

We present a description of the Piranha prototype, briefly explain the
Piranha programming methodology, and explore different types of Piranha
algorithms.

This work was supported by the National Science Foundation under
grant number CCR-8657615 and NASA under grant number NGT-50719.

1 Introduction

As local area networks spanning large numbers of powerful workstations become
commonplace, researchers have come to realize that at most sites, many nodes
are idle much of the time. Ideally there would be some way to recapture some
of these lost cycles, which grow increasingly formidable in the aggregate as
workstations grow more powerful.

In the Piranha model, idle nodes are recycled by focusing them on explicitly-
parallel programs. The user builds a parallel program, structured as a collection
of worker processes sharing access to a distributed data structure in which task
descriptors are stored. The number of worker processes (or “Piranhas”) expands
and contracts as the program executes. Any participating workstation has the
option of joining the ongoing computation (in other words, running a worker
process) when it becomes idle. When a user reclaims his workstation, it leaves
the ongoing parallel computation and returns to normal duties.

The Piranha model makes no assumptions in the abstract about how parallel
applications are structured. In practice, Piranha is an immediate fit to the
Linda model: Linda![5] makes it easy to structure computations as collections
of workers sharing access to distributed data structures. Thus our Piranha
system is, in practice, an execution model and support system for a certain
class of Linda programs.

This paper focuses on our experience in using Piranha to deliver formidable
quantities of compute power on production codes. The data are preliminary but
(we think) suggestive. It might in fact be possible to recapture supercomputer-
or near-supercomputer-equivalents of compute power that are routinely wasted
and focus them effectively on significant applications.

2 The Piranha Model

Piranha gathers idle network nodes and uses them to execute parallel programs.
Restricting Piranha applications to idle nodes leaves slices of time typically
ranging from a few minutes to many hours or days (see figure 1). The Piranha
system is capable of making productive use of idle intervals regardless of their
length (see figure 2). (It does take Piranha some time to decide that a node is
not available and to start a Piranha job. This small amount of time is wasted.)

As nodes transition between being available and unavailable, the number
of nodes participating in a Piranha computation varies. Piranha applications
reconfigure themselves automatically when nodes are lost to owner reclamation
(a transition from available to unavailable) or gained via idleness (see figure
3). Before a reclaimed node withdraws it executes a short piece of code (called
retreat), written by the applications programmer and invoked by the system,
that restores its piece of the global state of the computation. If a workstation

1a registered trademark of Scientific Computing Associates, New Haven

Figure attached at the end of the paper.

Figure 1: Wasted Node Time
The shaded area show the time that was wasted by nodes during a twenty-four
hour period. White areas show the times a node was used by its owner. The
data begin at 6:00 pm on a Tuesday. A typical “workday” is shown at the end
of the graph.

Figure attached at the end of the paper.

Figure 2: Recycled Node Time

This figure shows a histogram of the time claimed by Piranha during a run of
the Neutrino code (see below). The run was done at 12:30 pm on a Friday.
The total run time is approximately 5.5 hours. The aggregate computation
time is 132 hours. Shaded areas show the intervals that Piranha used each
node. Unshaded areas indicate times where a node was claimed by its owner.
The retreat function (see below) was called at each transition from shaded to
unshaded.

becomes idle, some Piranha application incorporates it into its computational
ensemble.

A standard way to design a Piranha program is to have a set of worker pro-
cesses consume a collection of tasks (see figure 4). A free node spawns a process
to consume tasks from the collection. The more nodes available, the faster the
tasks are consumed. This type of program structure easily accommodates the
dynamically changing node set intrinsic in the Piranha model. Other types of
program structures will be discussed below.

In deciding how best to support these programs, the tight conceptual fit
between the needs of Piranha and the resources provided by Linda become
apparent immediately. Linda’s tuple spaces easily support Piranha’s task col-
lections, other global state objects, and general communication among processes
whose identities are mutually unknown and whose lifetimes might not overlap.

Figure attached at the end of the paper.

Figure 3: Piranha State Diagram
Starting in the Available state, if a Piranha application is submitted, a Piranha
is spawned and the system state becomes Ezec Piranha. Completion of the
application leads to a transition back to the Awailable state. If an owner de-
mands the node in the Ezec Piranha state, the retreat function is called. After
retreat completes, the systems transitions to Ezec User. When the owner no
longer needs the node, the system returns to the Available state.

AN /

O o O 0

Figure 4: A dynamically changing set of Piranha share access to a global pool
of tasks. In the Linda implementation, the “global pool of tasks” is a single
tuple space.

3 Piranha in Context

It has long been understood that computations can be run profitably on idle
network nodes [15]. Over the last few years, many projects have focused on of-
floading jobs from heavily loaded nodes to idle ones. Examples include Amoeba
[17], Butler [12], Condor [11], Sprite [13], and V [6]. Such systems deliver job
level parallelism: a collection of (essentially) independent and unrelated sequen-
tial programs can be run simultaneously.

Some studies suggest that job level parallelism may not be a very effective
way to soak up idle cycles. (The Sprite developers report that over two-thirds
of their workstations are idle during the middle of the day, yet less than five
percent are used by migrated processes [8].) At any rate, Piranha’s goals are
different: it attempts to deliver maximum performance on a single job, assuming
that this job can be expressed as a parallel program of the appropriate type.

Piranha, in short, provides a mechanism for solving large problems via par-
allel programs on idle workstations. Systems such as Condor or Sprite provide
a more pleasant working environment by keeping per node workload down.

NeXT’s Godzilla system [7] is probably Piranha’s nearest neighbor among
existing systems. Godzilla allows a user to fork worker processes on idle network
nodes. Each process computes a result and passes it back to a master process.
Interprocess communication is severely restricted: Parameters are passed from
the master to the worker when the process is started, and results flow back
on task completion. No communication takes place among workers. Piranha,
on the other hand, supports (via Linda) full interprocess communication. This
capability is important: many Linda applications rely on mutable state objects
stored in tuple space, and Piranha itself relies on tuple space in ways to be
discussed below.

4 Implementation

The Piranha kernels manage the system’s behavior. They run as low priority
daemons, one per participating node. Each kernel monitors the environment on
its node and determines whether Piranha applications should be hosted locally.
Using a set of user defined criteria (with system-supplied defaults), the node is
declared either available to host Piranha applications or unavailable. If a node
is available, its kernel consults a global table of pending Piranha applications
stored in a system tuple space (not the tuple space through which applications
communicate). In our prototype, the kernel chooses an application from the
list at random and forks a process to execute it. If a node running a Piranha
application switches from being available to unavailable, the retreat function
(see below) is called and the computation on that node suspends.

Piranha programs consist of three basic functions: feeder, piranha, and
retreat. The feeder runs on the so-called “home node”, the node belonging
to the user who submitted the job. Our current implementation requires that
a user who submits an application donate his node for the duration of the
computation, so that the feeder is never suspended. Its functions often include
distributing tasks (creating the task collection) and gathering the results. It
may also join in consuming tasks.

The piranha function is automatically executed on all nodes that join a
computation, except for the home node. Typically, a piranha function executes
a loop that reads tasks and consumes them until none remain. The code to
consume a task is application-dependent.

If a node aborts a computation in the middle of a task, the retreat function
restores the global state of the system. In the simplest case, retreat returns
the uncompleted task to tuple space. More complicated retreat functions pass
accumulated state from a retreating process to some other Piranha process.

5 Evaluating Piranha

Evaluation of Piranha performance is difficult because the resource that drives
the system varies drastically from run to run. The standard speedup measure-
ments are not helpful, because we cannot control the number of usable Piranha
nodes (or rather we can, but the moment we do, we are no longer measuring
a Piranha system as we have defined it). Furthermore, because the production
codes presented in this paper require very large amounts of computing time,
their sequential runtimes are hard to measure directly.

Another measurement omitted from this paper is the marginal value of a
node to a Piranha computation. One would expect that adding a node to a
computation would result in a reduction of computing time. However, we have
noticed large variations in execution times. These variations are caused by dif-
fering numbers of node retreats and by different network loads. Furthermore,

—

Table 1: Piranha vs. Network Linda

Run | Network Linda | Piranha
1 322 311
2 354 330
3 339 342
4 319 336
5 324 338
Avg 332 331
Min 319 311

Piranha and network Linda run times (in seconds) for five runs of an 18 city
traveling salesman problem run on 16 Sparcstations.

the characteristics of a nighttime run differ drastically from those during the
daytime.

Our first goal is to minimize the overhead imposed by Piranha. The Pi-
ranha prototype is an enhanced version of Network Linda and runs on Unix
workstations. We tested Piranha performance against standard network Linda
on an 18 city traveling salesman problem run on 16 Sparcstations. We chose
this problem because it is compute intensive (communication-intensive jobs will
not show speedup over the Ethernet, with its low throughput and large laten-
cies, whatever the communications model) but includes inter-worker as well as
master-worker communication. The results are listed in Table 1. We ran the
tests at night to avoid network interference and Piranha suspensions. (No artifi-
cial restrictions were imposed on Piranha. Nodes happened to be and remained
idle). The differences in times easily fall within experimental error. These data
suggest that Piranha imposes very little overhead on the underlying network
Linda system for this application. (The overhead imposed by Linda itself has
also been found to be small relative to non-Linda sequential codes on a broad
range of production applications.[4] But evaluating the cost of Linda per se, as
opposed to the overhead of Piranha versus plain Linda, is outside the scope of
this paper.)

Delivering all available machines is the responsibility of the Piranha system.
The effect of adding nodes to a Piranha computation depends on the design
of the application. Well designed Piranha programs (in fact all Piranha pro-
grams that we have observed) complete more quickly if more nodes are available.
Figure 5 shows the effect on idle nodes of submitting a Piranha application.

In a third test, we measured the system’s impact on node owners. In deciding
whether a node is available, we consider one and ten minute UNIX load averages
and keyboard and mouse idle time. Watching for keyboard and mouse activity
insures that Piranha will not run when the owner is using his node interactively.
The load average measure stops Piranha from interfering with compute intensive

Figure attached at the end of the paper.

Figure 5: Free Nodes During a Piranha Run
Before a Piranha application was submitted, over 20 nodes were available. Once
the application became active, any idle nodes immediately joined the computa-
tion. After the calculation was completed, nodes once again became idle.

processes that the owner may have left running. We chose highly conservative
criteria to promote a low profile Piranha system. In principle, many more
criteria could be used in the availability decision (e.g. virtual memory use and
free disk space).

Before we can install Piranha on a node, we must be given explicit permission
by the owner. If Piranha disrupts his work, he may request that it be removed.
In order to form an initial impression of user satisfaction with the system, we
performed a blind test to see if users could tell when their nodes were hosting
Piranha applications. We submitted a Piranha application at arbitrary times
and measured whether node owners could detect the resulting effect on their
nodes. We polled three users whose nodes were running Piranha and two whose
nodes were running a similarly named program that did nothing (it executed
a UNIX sleep). We ran the Piranha program ten times and polled users five
times. Node sluggishness was reported twice. Neither incident proved to be
attributable to Piranha. These small tests agree with our general experience
to date: Over 60 node owners in the Yale Computer Science Department have
contributed their nodes (often with much reluctance after heavy persuasion);
none have withdrawn their nodes, although their right to do so was clear from
the start. Large production applications have used the system intermittently
during this period.

6 Experience with Piranha

The prototype has been used to run a number of scientific and industrial codes.
In this section we will discuss different types of Piranha algorithms characterized
by the type of retreat function they require.

6.1 Solar Neutrino

A maximally simple Piranha application consists of processes consuming an
unordered bag of tasks. When a Piranha is active, it removes a task, consumes
it, and returns a result. When a process retreats, it returns the task to tuple
space. A neutrino simulation code [9] run under Piranha takes this form.

The problem is described as follows:

The program assumes a set of parameters (mass differences, mix-
ing angles and magnetic moments) for the neutrinos and solves nu-

Table 2: Time delivered to the Solar Neutrino code

Elapsed time | Compute time | Avg Nodes
13.0 558.5 43.0

8.0 320.2 40.1

6.1 252.9 41.4

] 5.7 132.4 23.4

Piranha time (in hours) over four runs of the Solar Neutrino code. The elapsed
time is wall clock time. Compute time is the sum of the times delivered by each
participating Piranha; that is, it is aggregate delivered compute time.

merically the quantum mechanical equations for the propagation of
the neutrinos from their point of origin, through the Sun, to the
Earth. The properties of the Sun are taken from the standard solar
model. Comparison of the experimentally observed event rates with
our predictions for various parameter sets allows us to constrain, sta-
tistically, the possible neutrino parameters, providing information
about possible extensions to the standard model of particle physics.

(19]

The sequential version of the Solar Neutrino code, written in Fortran, con-
sists of four nested DO-loops. Each iteration is independent of the others. We
parallelized the code by creating a task (consisting of four parameters) for each
loop iteration.

The Piranha version consists of a Piranha-Linda front end, a Fortran back
end, and a retreat function. The front end performs task management using
tuple space. The back end receives the parameters from the front end and does
the computation. The Fortran code for the back end was taken directly from
the sequential version. The retreat function simply returns the active task (a
set of parameters) to tuple space. Since each task depends only on the four
parameters, nothing more is required of retreat. As shown in Table 2, we
have delivered over 1,250 cumulative hours of recycled computation time to the
neutrino code in less than 33 elapsed hours.

6.2 Dipole Localization

A second example of the bag-of-tasks paradigm is a dipole localization code.?
The Piranha program has two phases, each solved using a bag-of-tasks. The first

2The biomagnetic imaging problem can be stated as follows: given a set of magnetic field
measurements from a discrete array of sensors with a known geometry, find the positions and
magnitudes of N test dipoles such that the squared error between the magnetic field produced
by these test dipoles and the given magnetic field measurements is minimized. This amounts
to minimizing an objective function (the squared error) in a 3-N dimensional search space.

phase locates the minima in subspaces, and the second phase further localizes
them. Within each phase a task defines a search region described by a set of
coordinates. Each search is independent, so no global state is retained. The
retreat function returns the task (again a set of coordinates) to tuple space.
In two runs of the Dipole code, Piranha yielded in total over 800 computation
hours in a total of less than 20 clock hours.

6.3 Freewake

In a slightly more complicated class of Piranha program, tasks must be com-
pleted in some order. Rather than an unordered bag-of-tasks, we use an ordered
bag (i.e. a task queue). Processes continue to remove tasks from the head of
the queue until all have been consumed. When a process retreats, it places its
active task at the head of the queue.

It should be noted that we are not working with a strict task queue. If the
tasks must be finished in strict order, then the program is inherently sequential
at the task level (i.e. we cannot introduce parallelism at the task level). Instead,
we are concerned with problems that allow parallel execution of the tasks within
a sliding window. In other words, given a window of size k, if tasks 1 through
i—1 have been completed, tasks i through i+ k& — 1 may be executed in parallel.
Task ¢ + k cannot be started until task ¢ is completed. The window of tasks
that may be consumed slides as earlier tasks are completed. Retreated tasks
are placed at the head of the queue so the window can continue to slide.

An example is a computational fluid dynamics code used to simulate a he-
licopter rotor. The code, called Freewake, is an n-body problem run for a
succession of timesteps [3]. The steps within an iteration are run using sliding
window parallelism. It is possible to rewrite this code using a bag-of-tasks, but
we chose sliding window to preserve the program structure.

Table 6 presents the times to run a Linda version of Freewake on Piranha,
a network of Sparcstations running TSnet?, and the Intel iPSC/860.5 Forty-
six nodes were in the Piranha pool (but only a fraction were idle). The data
show that Piranha on an average of 36 nodes was slower than standard Network
Linda on 32 nodes. However, the Network Linda runs were done when the

It was found that a number of search techniques would yield reasonable results for N = 1..4
even when applied “blindly”. But for N > 4, all of the search algorithms converged incorrectly
to local minima for all but a few carefully contrived examples.

Thus, we decided to do a thorough investigation of the energy surface, focusing specifically
on the local minima: where they are located, and their width and depth (relative to the global
minima). The program breaks the search space into a number of subspaces, and a coarse-grid
local-minima search is performed on these subspaces. The local-minima are then localized
using a factorial-pattern search. [14]

3Freewake was written by Alan Egolf of United Technology Research Center, Hartford,
CT.

4TSnet, a registered trademark of Scientific Computing Associates, New Haven, CT, is a
network version of Linda.

5Data from TSnet and the iPSC/860 was provided by Robert Bjornson(3].

Figure attached at the end of the paper.

Figure 6: Freewake Data
Bjornson [3] ran an 8k Freewake problem for five time steps on a network of
Decstations and the Intel iPSC/860. The run times (in seconds) are given for
runs on four to 128 nodes. A scatterplot of Piranha runs is also shown. The
data show that the Piranha runs were competitive on a per node basis both
within the Decstations and the iPSC/860.

machines and network were idle, while the Piranha data were collected midday
on a weekday. We attribute the performance differences to network traffic and
to work lost by Piranha retreats. Of course, a significant advantage of Piranha
is the freedom it gives users to run parallel codes on networks during times of
high node use without interfering with owner activity.

6.4 More Complex Cases

The following is a preliminary discussion of more complez Piranha program
struclures. Runtime data are not yet available, but algorithm design is complete.

Thus far we have focused our discussion on bag-of-task type computations.
There is an important class of Piranha algorithms that does not fit this model.
Consider a problem in which data is repeatedly transformed until an answer
is derived. For example, in an LU decomposition program the columns of a
matrix are scaled once per row. We could code such a problem by ining a
column, scaling it, and outing it back to tuple space. However, if the dimension
of the matrix is large the communications overhead of the tuple space operations
quickly becomes unacceptable.

A more efficient solution statically assigns each worker an equal number of
columns. A worker is responsible for repeatedly updating its columns. However,
a process may be forced to suspend and transfer its columns to another worker.
A column imbalance will result. Furthermore, new nodes are not assimilated in
this static partitioning scheme. This defeats the goal of making maximum use
of idle resources.

We have experimented with a dynamic rebalancing approach that has shown
promising results.® The key to the algorithm is redistributing work among the
active Piranha when the load is out of balance. When a process P is ready
to balance, it chooses another Piranha Q. If P has a greater load than @, P
passes half the difference to Q. P and @ are now in balance. If @ had been
more loaded (or the loads were equal), no columns would have been transferred.
Column transfer is initiated only by the more loaded nodes. This algorithm is
attractive insofar as data is moved only when necessary to restore balance.

6Joint work with Sandeep Bhatt and Jeffery Westbrook of the Yale Computer Science
Department.

10

Table 3: Column Balancing over Five Piranha

Column range | 50-150 | 75-125 | 95-105 | tolerance
Balances 3.2 53 10.7 14.8

Table 3 shows the number of balances needed to bring all of the workers within
the range given at the top of the column. Tolerance means that neighbors are
within a given tolerance of each other (in this case, neighbors are less than
2 columns apart). Initially, one worker was assigned all 500 columns. Four
workers were then allowed to join.

This approach can be extended to allow for entering and exiting nodes.
When a node P balances, it first looks for a node @ with no work. If it finds
one, P transfers half of its work to @. Any imbalance between P or @ and other
processes is removed using normal balancing. Node suspension is also handled
using the balancing routine. When a node suspends, it passes its load to some
other process. Normal balancing is used to equalize the load.

We measured the rate at which this algorithm balanced a load among work-
ers. We started with 500 columns assigned to one worker. Four other workers
then joined the computation. Table 3 shows the results. 5.3 balances were
necessary, on average, to bring the allocations to within 25% of the ideal. 10.7
balances brought them to with 5%. The algorithm required four additional
iterations to achieve optimality. These are small numbers of balances when
compared to the large number of iterations usually required by Piranha appli-
cations.

This algorithm was fairly complicated to design and code. However, the
Linda environment allows the user to slot it into place automatically using the
Linda Program Builder[1].

6.5 Rayshade

Rayshade, a ray tracing program, is another example of a program that requires
partitioning and dynamic rebalancing. Rayshade renders an image row by row
starting at the bottom of the frame. The value of a pixel is dependent on the
values of some of the pixels below it.

The Piranha implementation of Rayshade divides the columns of the image
among the active Piranha workers. Each Piranha shades its columns up to a
row barrier. When every Piranha completes the row, a balancing routine is
invoked. Since transfer of columns between processes is costly (a worker must
do a precomputation for each new column), we move columns among workers
only to correct an imbalance. Rayshade requires that each Piranha have a
contiguous block of columns, so balancing occurs only between neighbors. As
described above, if a Piranha has more columns than a neighbor, half of the

11

difference is passed to that neighbor. After the balancing is completed, the next
row is updated.

When a Piranha suspends, it first checks for Piranha that do not have any
columns (i.e. those that have recently restarted). If one exists, all of the columns
are passed from the suspending process to the new Piranha. If no clean Piranha
exist, the suspending process passes its columns to one if its neighbors. Any
resulting imbalance is corrected using standard balancing.

Similarly, a balancing Piranha P looks first for a clean one Q. If one exists, P
passes half of its columns to Q. This leaves P and Q in balance and insures that
all available Piranha will be used in the computation. If P and @ then have
fewer columns than their neighbors, normal balancing will restore the global
balance. P will only balance with a neighbor if no clean Piranha exist.

7 Future Work

While evaluating the Piranha prototype, we identified a number of issues for fu-
ture study. The current system runs on a homogeneous network of Sun Sparcsta-
tions. (We ported an earlier version to a network of Decstations.) To introduce
heterogeneity to Piranha, we must address the issues of data representation
and binary incompatibility of executables. Heterogeneity will require network
Linda to convert to a standard network byte ordering. Binary incompatibil-
ity problems can be overcome by maintaining a separate executable for each
architecture.

Also important to Piranha is reliability. We have enhanced network Linda
to include an open tuple space called Interp that provides reliability for certain
types of tuples. The Piranha kernels use Interp to survive node failure. However,
since Interp is slow and does not provide general reliability, it is insufficient for
Piranha applications programs. Work has been done on reliable Linda systems
(e.g- [2][10)), but none have demonstrated adequate performance. We consider
this an important area for future work.

An interesting application of Piranha technology is in scheduling multipro-
cessor machines. When two programs are run on a multiprocessor (e.g. an Intel
iPSC/860), each process is statically assigned some portion of the nodes. If one
of the programs completes before the other, some of the processors sit idle. It
would be beneficial if a program could use these extra nodes. We believe that
the concepts developed in Piranha might be helpful here.

12

References

[1] Ahmed, S., Carriero, N., Gelernter, D., “The Linda Program Builder”,
Proc. Third Workshop on Languages and Compilers for Parallelism (Irvine,
1990), MIT Press 1991.

[2] Anderson, B. and Shasha, D., “Persistent Linda: Linda + Transactions +
Query Processing”, Proc. Research Directions in High-Level Parallel Pro-
gramming Languages, June 17-19, 1991, Mont Saint-Michel, France, pp.
129-142.

[3] Bjornson, R., “Linda on Distributed Memory Multiprocessors”, Ph.D. The-
sis, Yale University, 1991.

[4] Bjornson, R., Carriero, N., Gelernter, D., Kaminsky, D., Mattson, T., and
Sherman, A. “Experience with Linda”, YALEU/DCS/TR-866, 8/91.

[6] Carriero, N. and Gelernter, D. How to write parallel programs: A first
course. (Cambridge: MIT Press, 1990).

[6] Cheriton, D. “The V Distributed System”, CACM, pp 314-333, 3/88.

[7] Crandall, R., “Tales of godzilla: Adventures in Distributed Computing”,
NeXTon Campus, Summer, 1990.

[8] Douglis, F. and Ousterhout, J., “Transparent Process Migration: Design
Alternatives and the Sprite Implementation”, Software-Practice and Ex-

perience, Vol 21(8), pp 757-787, 8/91.

[9] Gates, E., Krauss, L., White, M., “Solar Neutrino Data and Its Implica-
tions”, YCTP-P26-91, Yale University, 8/91.

[10] Kambhatla, S. and Walpole, J. “Recovery with Limited Replay: Fault-
Tolerant Processes in Linda”, Oregon Graduate Institute, Department of
Computer Science and Engineering Tech Report CS/E 90-019, 9/90.

[11] Litzkow, M., Livny, M., and Matka, M.W. “Condor - A Hunter of Idle
Workstations”, Presented at the 8th Intl Conf on Distributed Computing
Systems, San Jose, CA, 6/88.

[12] Nichols, D.A. “Multiprocessing in a Network of Workstations”, PhD Thesis,
CMU, CMU-CS-90-107, 2/90.

[13] Ousterhout, J.K., Cherenson, A.R., Douglis, F., Nelson, M.N., and Welch,
B.B. “The Sprite Network Operating System”, IEEE Computer Vol 21 No
6, pp 23-36, 2/88.

[14] Rao, S. personal communication.

13

[15] Shoch, J.F. and Hupp, J.A. “The Worm Programs — Early Experience
with a Distributed Computation”, CACM, pp 172-180, 3/82.

[16] Silverman, R., “Massively Distributed Computing and Factoring Large In-
tegers”, CACM Vol 34 No 2, pp 95-103, 11/91.

[17] Tanenbaum, A.“Amoeba: A Distributed Operating System for the 1990’s”,
IEEE Computer, pp 44-53, 5/90.

[18] Waldspurger, C., Hogg, T., Huberman, B., Kephart, J., and Stornetta, S.
“SPAWN: A Distributed Computational Economy”, XEROX-P89-00025,
1989.

[19] White, M., personal communication.

14

o
e AR U ol

wwwwwwwwwww»—a»awwo-a»—»—u.-a
EORISTERONLOORID G AT

T
g g
[— M T
B " i'r'mw C R
o . HllHlI —
iz I Hlll " 'Um
%E I "Mm “L hu lIIIHIIIlI
l s wf. I ,Wm bl

28 I- ﬂml ‘h Il ,l (L Wi
I -] N lIIII l! m\ Il}“h 1 "“m

31 . N

32:
33:

35: i

36:
38 | | al ‘
0 N Il HI NN

1>, | | e I I R A U, g

43: |, ; |||mmxwll IHIIHI!IIIII! I

I]

Yy

||I iy | (-]
III i

44:
45:

Figure 5

Available Nodes During a Piranha Run
Free Nodes

| | | Set0
32 — _

30 —

| | ' Time (secs)
0 100 200 300 400 500

N
I

Figure 3

puvwa(g

43N

JI9S() 93XY

1ea11Y

puvua
48N

bvidajLD) N:&QENQ
SSaualpI 4350
S[qe[reAy
q0[
vyuvad
e 210y

eyuelIlJ 29Xy

Time (sec)

6000

N
o
o
o

2000

Figure 6

Freeche Data

1 I I U 1

Diamond = Piranha —
Square = 1PSC/860
Circle = NetworK Linda

Processors

