We present an efficient modular algorithm for solving the coupled nonlinear system G(u,t) = 0

and N(u,t) = 0 where u € R*, t € R™, G : R®* x R™ ~— R" and N : R®* x R™ — R™. The
algorithm is modular in the sense that it only makes use of the basic iteration S of a general
solver for the equation G(u,t) = 0 with t fized. It is therefore well-suited for problems for which
such a solver already exists or can be implemented more efficiently than a solver for the coupled
system. Local convergence results are given. Basically, if S is sufficiently contractive for G, then
convergence for the coupled system is guaranteed. The algorithm is applied to two applications:
(1) numerical continuation methods and (2) constrained optimization. Numerical results are given
for the case where G represents a nonlinear elliptic operator. Three choices of S are considered:

Newton’s method, a two-level nonlinear multi-grid solver and a supported Picard iteration.
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1. Introduction
This paper is concerned with numerical algorithms for solving coupled nonlinear systems of

the form: (G0
1= () =0

where v € R*, t € R™, G : R® x R™ — R™ and N : R" x R™ + R™. We assume that a solution

2* exists and that the Jacobian
Gu Gt
J =
Nu Nz

is nonsingular at z*. We consider two applications in this paper. One is to continuation methods
where G represents a nonlinear system in u with dependence on some parameters t and N represents
an arclength condition constructed to follow the solution manifolds. Another application is to
constrained optimization problems, where G represents the Lagrangian function, ¢ the Lagrange
multipliers and N the constraints.

In this paper, we are primarily interested in the case where G is large, sparse and structured,
such as discretizations of partial differential equations. Very often, efficient techniques exist for
exploiting such structures when one solves G(u,t) = 0 for u with ¢t fixed. If m < n, it is desirable
to be able to solve C(z) = 0 with about the same efficiency. However, while many conventional
iterative algorithms can be applied directly to C(2) = 0 to solve for 2*, they often fail to exploit
structures in G. Consider the use of Newton’s method, for example. The Jacobian J of C(z) does
not necessarily inherit the following properties which the Jacobian Gy of G may possess: symmetry,
positive definiteness, separability and bandedness [4].

In this paper, we present an algorithm for solving the coupled system which makes use of a
general solver for G = 0, for fized t. We assume that this solver is available in the form of a fixed
point iteration operator S, which takes an approximate solution u; and produce the next iterate
;41 = S(u;,t). For example, for Newton’s method we have SNewton — y — G71(u,t)G(u,t). The
algorithm is not restricted to Newton’s method, however, and in general any sufficiently convergent
solver for G can be used. Such an algorithm can therefore exploit special efficient solvers specifically
designed for solving G = 0.

In Section 2, we present the algorithm and some convergence results. In Section 3, we discuss
applications to numerical continuation methods and constrained optimization. In Section 4, nu-
merical results are presented for the case where G is an elliptic operator and for three choices of
S: Newton’s method, a nonlinear multi-grid method and a supported Picard iteration.

2. The Algorithm
Our algorithm is motivated by Newton’s method applied to C(z) = 0. At each iteration, the

following linear system
Gu Gg bu _ G
Ne Nt 6t) N

has to be solved, often by the following block Gaussian elimination algorithm.

Algorithm BE:
1. Solve Gyw = —G@ for w, where w € R".
2. Solve G,v = G for v, where v € R" x R™.
3. Solve (Ny — Nyv)ét = —(N + Nyw) for é6t.
4. Compute fu = w — vét.
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The idea in the new algorithm is to use S to approximately solve for w and v in Steps 1 and 2
in Algorithm BE. Since the vector w is precisely the change in the iterate u in one step of Newton’s
method applied to G(u,t) = 0, it seems natural to approximate w by S (u;,t;) — u;, where u; and
t; are the current iterates. The situation for approximating v is slightly more complicated since
it does not directly correspond to an iteration based on G(u,t) = 0. In [3], it is argued that it
is reasonable to approximate v by —S;. In particular, if S = GNewton then this approximation is
exact. In practice, we can approximate S; by a difference approximation. We therefore arrive at
the following :

Algorithm ANM (Approzimate Newton Method) : Given an initial guess (uo,t0), iterate the
following steps until convergence:
1. Compute w = S(u;,t;) — u;.

2. For j =1, m compute
S(ug, t; + €je5) — S(ui ti)
’
€

vj = —

where v; denotes the j-th column of v, ¢; denotes a small finite difference interval and e;
denotes the j-th unit vector.

3. Solve the following m by m system for d:
(Ne(ui, t:) — Nu(ui, t;)v)d = —(N(ui, t:) + Nu(ui, ti)w)

4. Compute t;4; = t; +d.
5. Compute u;4; = u; + w — vd.

In [3], it is shown that if S is sufficient contractive, then the matrix in Step 3 of Algorithm
ANM is nonsingular and thus the algorithm is well-defined.

The convergence of Algorithm ANM is analyzed in [3]. If we ignore the truncation error in
the finite difference approximation to v in Step 2 of the algorithm, we have the following local
convergence result:

Theorem 2.1. Algorithm ANM converges (locally) iff p(PSy) < 1, where P = I+v(N;— Nyv)~IN,.
The following sufficient conditions for convergence follows immediately:

Theorem 2.2. Algorithm ANM converges if ||Su|| < "}.q], in any vector induced norm.

Theorem 2.3. If S, is normal, then Algorithm ANM converges if p(Sy) < “ﬂl];. If P and S, are

both normal, or are simultaneously diagonalizable, then Algorithm ANM converges if p(Su) < 7(17’7'

If for a particular S, S, does not satisfy any of these bounds, then we can define a modified
iteration operator :

k times
a et ——
S(u’t) = S(S'“S(S(u1t)at)7"'at)»t)a
i.e. iterate S k times. Since Sy = S¥,, we can choose k large enough to make p(8) or ||Sy]] small

enough for convergence.
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3. Applications

3.1. Continuation Methods

Here G represents a system of parameterized nonlinear equations, with u playing the role of
the main variable and ¢ the parameters. The goal is to trace solution manifolds of G = 0. This
is often done by freezing all parameters except one (and therefore we restrict our attention to the
case m = 1) and curve-following continuation methods [1, 5, 7, 8] are used to trace the branches
corresponding to this one parameter. Usually, a predictor-corrector method is used. A predicted
value is generated from a known solution (u,t) and the local unit tangent (u, t) defined by:

||a])3 + 2 = 1.

The corrector is defined to be the solution of a coupled nonlinear system:

G(u(ds),A(68)) =0
N(u(és),A(6s)) =0,

where N defines a local parameterization of the solution curve with parameter és. Two typical
N’s that are widely used in the literature are:

Nl = ug(u - U()) + t.o(t - to) — s,

u—u .
N2=e}'<t t°>—6s, 1<73<n+1,
— 1

where (ug,?o) is a known solution on the solution curve, 68 is a continuation step and e; is the j-th
unit vector. For more details the reader is referred to [7] for N and [8] for NZ.

Algorithm ANM is especially well-suited for this application. First, for large problems, the
solution of the coupled nonlinear system often constitutes the most costly part of the overall
continuation process and Algorithm ANM does this efficiently by making it possible to exploit
structures in G. A second advantage is that Algorithm ANM allows the continuation procedure
itself (such as the step length control, the predictor, the tangent computation) to be separate from
the specific solver for G, making it much easier for general purpose continuation codes [9] to be
applied efficiently to application areas with specialized solvers (e.g. the Navier-Stokes equations).

Since the functions N' and N? are related to G itself, the convergence results of the last
section can be refined further [3].

Theorem 3.1. For N, as 6s — 0, Algorithm ANM converges locally if any one of the following
conditions holds:

1. ||Sullp < §, for p = 2 or co.

2. ||Sull2 < 1, if P is normal.

3. p(Su) < %, if Sy is normal.

4. p(Sy) < 1, if P and Sy are either both normal or simultaneously diagonalizable.

Theorem 8.2. For N2, assuming that the index j is chosen such that |(v);| = maxi<i<n |(v)i],
Algorithm ANM converges if any one of the following conditions holds:

1. “Su”OO < %.
2. ||8u]l2 < ﬁ/‘-,;



Page 4

3. ||Sullz < 1, if P is normal.
4. p(S4) < i+‘—\/ﬁ, if Sy is normal.

5. p(Sy) < 1, if P and S, are either both normal or simultaneously diagonalizable.

These sufficient conditions are very conservative in general and it is argued in [3] that in
practice Algorithm ANM is convergent whenever S is convergent for G.

3.2. Constrained Optimatization
Another application of Algorithm ANM can be found in equality constrained optimization.
Consider the problem:

min F(u)
subject to N;(u)=0 ¢=1,..,m.

Define the Lagrangian L(u,t) = F(u) + Y_i=, t;N;(u). The first order condition for a minimum is:

G(u,t) = VL(u,t) = VF(u) + it,-VN;(u) =0

=1

and
Nl(u)
N(u,t) = : =0,
Np(u)

which is in the form of a coupled nonlinear system. Algorithm ANM is well-suited for this problem
if m < n (ie. relatively few constraints) and an efficient method is available for solving the
unconstrained problem VF(u) = 0. For linear constraints, the second term in G is constant and
such a solver can easily be adapted to define an efficient S for solving G(u,t) = 0 for fixed ¢.
Nonlinear constraints are more difficult to handle and we shall not dwell on that here. Thus,
Algorithm ANM allows the addition of constraints to an unconstrained problem to be treated in a
very efficient manner.

4. Numerical Results

4.1. Continuation Methods
We have applied Algorithm ANM to solve the following parameterized nonlinear equation:

Uzy + tcu = 0, 0 S T S 1 (41)

with the boundary conditions
u(0) = u(1) =0,

by the pseudo arclength continuation method using the parameterization N!. This problem has one
simple turning point at (||u]|c &~ 1.3,¢ ~ 3.5), separating two branches of solution. Problem (4.1)
is discretized on a uniform mesh with n interior grid points by a standard second order centered
difference approximation. The resulting discrete system of nonlinear equations G(u,t) = O has
dimension n.

We present numerical results for three solvers S. The first is simply GNewton  The second is a
two level full-approximation-scheme multi-grid method for solving (4.1) [2]. Briefly, two nonlinear
Gauss-Seidel smoothing sweeps are used before the correction problem is injected onto and solved
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on a coarser grid (one with % grid points, n odd), after which the correction is interpolated
(linearly) and added to the solution on the original grid which is then smoothed again with two
more smoothing sweeps. In our implementation, the coarse grid problem is solved by 4 iterations of
Newton’s method. The two-level multi-grid algorithm is representative of many multi-grid solvers
in terms of convergence properties and extends to higher dimensional problems in a straightforward
way. The third solver implements a supported Picard iteration [6]. The system G = 0 for (4.1)
can be written as Au = F(u,t), which naturally suggests the following Picard iteration:

't — ATVF(u)t).

Structures in A can be exploited, for example, a fast elliptic solver can be used for A~L. Unfortu-
nately, this iteration is convergent if and only if p(A"1F,) < 1 and this does not necessarily hold
for a given problem. In many applications, however, there are only a few divergent eigenvalues
of A-1F,. The main idea in the supported Picard iteration is to apply Newton’s method in the
subspace spanned by the eigenvectors of A~!F, corresponding to eigenvalues with magnitude ex-
ceeding 1. This can be implemented in an efficient manner because the dimension of this subspace
is small. This method is ideally suited for our problem because there is only one divergent eigen-
value on the upper solution branch and therefore the Newton’s method is effectively applied to a
scalar problem. For more details on the implementation, the reader is referred to [6].

To illustrate the convergence behavior of Algorithm ANM on this problem, we have chosen
to show the iterations for two points on the solution branch, one on the lower branch and the
other on the upper branch, both with t; = 3. An initial guess to the solution is obtained by an
Euler predictor based on the unit tangent (1o, to) and the finite difference interval ¢ is chosen to be
0.0001. The iteration is stopped when max{||62||oo, ||Gllco, |N|} < 107°. The results for the case
n = 31 are tabulated in Tables 1 and 2. It can be seen that the convergence is quite satisfactory
for all the solvers.

4.2. Constrained Optimization
We have also applied Algorithm ANM to the following minimization problem:

n
minimize F(u)=uTAu+ ) Z e

=1

n
subject to Zl.-u; =0

=1

where A is the discrete Laplacian in one dimension with zero Dirichlet boundary condition.

Note that the first order condition for the unconstrained problem is exactly the discretization
of (4.1) and since the constraint is linear, any one of the three solvers considered so far can easily
be adapted to construct a solver for VL(u,t) = 0 for fixed multipliers .

We shall present numerical results for the case A = 3 and n = 31 which corresponds to the
results given for the continuation problem. Only the results for gNewton and GPicard will be shown.
The unconstrained solution is as shown in Figure 1. The iterations for three different constraints are
shown in Tables 3 - 5 and the corresponding solutions are shown in Figures 2-4. The convergence
is rapid for all cases.
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iter Il t 116 2]]oo |Gl |V
Newton
0 0.7283397E+00 0.3190261E+01 0.0E+00 0.5E-04 0.7E-07
1 0.7308150E+00 0.3173259E+01 0.2E-01 0.2E-04 0.3E-07
2 0.7308277E+00 0.3173151E+01 0.1E-03 0.2E-06 0.5E-07
3 0.7308277E+00 0.3173151E+01 0.1E-06 0.1E-06 0.4E-07
Multi-Grid
0 0.7283397E+400 0.3190261E4-01 0.0E+00 0.5E-04 0.7E-07
1 0.7308369E+00 0.3173014E+01 0.2E-01 0.2E-04 0.2E-07
2 0.7307944E+00 0.3173375E+01 0.4E-03 0.2E-05 0.7E-07
3 0.7308255E+00 0.3173168E+01 0.2E-03 0.3E-06 0.1E-07
4 0.7308269E+400 0.3173157E+01 0.1E-04 0.1E-06 0.3E-07
5 0.7308279E+00 0.3173148E+-01 0.8E-05 0.9E-07 0.3E-07
Picard
0 0.7283341E+00 0.3190261E+01 0.0E+00 0.5E-04 0.6E-07
1 0.7308021E+00 0.3173283E+01 0.2E-01 0.6E-05 0.7E-07
2 0.7308219E+00 0.3173152E+01 0.1E-03 0.2E-06 0.7E-07
3 0.7308219E+00 0.3173152E+01 0.3E-06 0.2E-06 0.3E-07
Table 1: ||uo||oo = 0.641,ty = 3.0,68 =04
iter ll]loo t 116 2{|oo |G lloo |N|
Newton .
0 0.2075063E+01 0.2895127E+01 0.0E+00 0.3E-04 0.7E-07
1 0.2075096E+01 0.2893029E+01 0.2E-02 0.4E-05 0.1E-06
2 0.2075096 E+01 0.2893032E+01 0.3E-05 0.4E-06 0.1E-06
Multi-Grid
0 0.2075063E+01 0.2895127E+01 0.0E+00 0.3E—-04 0.7E-07
1 0.2075097E+01 0.2893288E+01 0.2E-02 0.5E-05 0.4E-07
2 0.2075093E+01 0.2892977E+01 0.3E-03 0.1E-05 0.2E-07
3 0.2075096 E+01 0.2893027E+01 0.5E-04 0.3E-06 0.4E-07
4 0.2075096E+01 0.2893031E+01 0.4E-05 0.4E-06 0.2E-07
Picard
0 0.2075073E+01 0.2895126E+01 0.0E+00 0.3E-04 0.5E-07
1 0.2075105E+01 0.2893017E+01 0.2E-02 0.4E-05 0.6E-07
2 0.2075107E+01 0.2893031E+01 0.1E-04 0.4E-06 0.5E-07
3 0.2075107E+01 0.2893031E+01 0.3E-06 0.6E-06 0.1E-06

Table 2: ||ug||oo = 1.973,tp = 3.0,65 = 0.4
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iter |fes]loo t 162]oo [1Glleo |V
Newton
0 0.9987573F — 01 0.0000000F + 00 0.0E + 00 0.1E+ 00 0.7F - 01
1 0.1170606 E + 00 —0.5526059F + 02 0.6E + 02 0.3FE - 01 0.7E - 08
2 0.1020966 E + 00 —0.5137571FE + 02 0.4E + 01 0.9FE — 05 0.0F + 00
3 0.1021055FE + 00 —0.5138050F + 02 0.5F — 02 0.1E - 07 0.0FE + 00
4 0.1021055E + 00 —0.5138050E + 02 09F - 07 0.1E - 07 0.0E + 00
Picard
0 0.9987573F - 01 0.0000000F + 00 0.0FE + 00 0.1FE+ 00 0.7F - 01
1 0.1368882F + 00 —0.5531568E + 02 0.6E + 02 0.7E - 01 0.7F — 08
2 0.1020990F + 00 —0.5137750E + 02 04F + 01 0.1E-04 0.0E +00
3 0.1021054F + 00 —0.5138047F + 02 0.3F — 02 0.2FE - 07 0.0F + 00
4 0.1021054F + 00 —0.5138047F + 02 04F — 06 0.2F - 07 0.0E +00
Table 8: Constraint: u(16) = 0.0
iter Il loo t 1162]oo I1G1loo [N
Newton ,
0 0.9987573F — 01 0.0000000F + 00 0.0F + 00 0.1E+00 0.2FE - 01
1 0.1418061F + 00 —0.5032611F + 02 0.5F + 02 0.3E - 01 0.4F — 08
2 0.1315020F + 00 —0.4681818E + 02 04FE + 01 0.1E-04 0.0E +00
3 0.1315103F + 00 —0.4682352F + 02 0.5E — 02 04F - 07 0.0F + 00
4 0.1315104F + 00 —0.4632352F + 02 0.1F -05 0.2FE - 07 0.0E + 00
Picard
0 0.9987573F — 01 0.0000000F + 00 0.0FE + 00 0.1E+ 00 0.2FE —-01
1 0.1501235E + 00 —0.5038120FE + 02 0.5E + 02 0.6EF - 01 0.4FE — 08
2 0.1315220F + 00 —0.4682264F + 02 04F + 01 0.2F - 04 0.0F + 00
3 0.1315103E + 00 —0.4682348E + 02 0.8E - 03 0.2E - 07 0.0E + 00
4 0.1315103F + 00 —0.4682349F + 02 0.7E - 05 0.2F - 07 0.0F + 00

Table 4: Constraint: u(16) = 0.05
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iter 1] t 1620 1G]l |N|
Newton
0 0.9987573FE — 01 0.0000000E + 00 0.0E +00 0.1E+00 0.3E+ 00
1 0.2130776 E + 00 —0.1571455E + 02 0.2E + 02 0.2E -01 0.0E + 00
2 0.2104818FE + 00 —0.1573100F + 02 0.2FE - 01 0.4F — 06 0.0E + 00
3 0.2104816 E + 00 —-0.1573133F + 02 0.3F -03 0.3F - 07 0.1E - 07
4 0.2104816 FE + 00 —0.1573133E + 02 0.2E - 05 0.3E - 07 0.1E - 07
Picard
0 0.9987573E — 01 0.0000000E + 00 0.0FE + 00 0.1E + 00 0.3E +00
1 0.2200581 E + 00 —0.1502713E + 02 0.2E +02 0.2E-01 0.1E - 06
2 0.2104825F + 00 —0.1573232E + 02 0.7E + 00 0.2FE - 04 0.0E + 00
3 0.2104816 E + 00 —0.1573128E + 02 0.1E—-02 0.6E — 07 0.0E + 00
4 0.2104815FE + 00 —0.1573128E + 02 0.2E - 05 0.3E - 07 0.0FE + 00

Table 5: Constraint: u(8) + u(16) + u(24) = 0.5
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Figure 1: Unconstrained Solution
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Figure 2: Constraint: u(16) = 0.0
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Figure 3: Constraint: u(16) = 0.05
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Figure 4: Constraint: u(8) + u(16) + u(24) = 0.5

0.20

0.15

0.10 -

0.05

LI 1 I LI 1 1 l LI ] ) l LBELEEL i I i LIL L] l 1 ¥ ] i l LI ¥

11 11 I | 1 [ 1 I 1 ] 1 I 1 ] ] ! I 1 ] 1 1 l 1 1 i 1 I 1 1 1

0.00
0

S 10 15 20 25 30

35



Page 13

References

[1] E. Allgower and K. Georg, Simplicial and Continuation Methods for Approzimating Fized
Points and Solutions to Systems of Equations, SIAM Review, 22/1 (1980), pp. 28-85.

[2] A. Brandt, Multi-level Adaptive Solution to Boundary Value Problems, Math. Comp., 31 (1977),
pp. 333-390.

[3] T.F. Chan, An Approzimate Newton Method for Coupled Nonlinear Systems, Technical Report
Research Report YALEU/DCS/RR-300, Computer Science Department, Yale Univ.,
February 1984. Submitted to Siam J. Numer. Anal..

[4) ——, Techniques for Large Sparse Systems Arising from Continuation Methods, T.
Kupper, H. Mittelmann and H. Weber eds., Numerical Methods for Bifurcation
Problems, International Series of Numerical Math., Vol. 70, Birkhauser Verlag, Basel,
1084, pp. 116-128.

[5] C.B. Garcia and W.I. Zangwill, Pathways to Solutions, Fized Points and Equilibria, Prentice-
Hall, Englewood Cliffs, N.J., 1981.

[6] H.Jarausch and W. Mackens, CNSP A Fast, Globally Convergent Scheme to Compute Stationary
Points of Elliptic Variational Problems, Technical Report 15, Institute for Geometrie
und Praktische Mathematik, Rheinisch-Westfalische Technische Hochschule, Aachen,
1982.

[7] H.B. Keller, Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, P.
Rabinowitz ed., Applications of Bifurcation Theory, Academic Press, New York, 1977,
pages 359-384. '

[8] W.C. Rheinboldt, Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J.
Numer. Anal., 17 (1980), pp. 221-237.

[9] W.C. Rheinboldt and J.V.Burkardt, A Locally Parameterized Continuation Process, ACM
Trans. Math. Soft., 9/2 June(1983), pp. 215-235.





