A Proof-Stream Semantics for Lazy Narrowing

Paul Hudak and Juan Carlos Guzman

Research Report YALEU/DCS/RR-446
December 1985

Work supported in part by NSF Grant DCR-8403304 and Fundacion Gran Mariscal de Ayacucho
(fellowship contract F-EX-84.1044)




A Proof-Stream Semantics for Lazy Narrowing
Paul Hudak and Juan Carlos Guzmian

Research Report YALEU/DCS/RR-446
December 1985

Yale University
Department of Computer Science
Box 2158 Yale Station
New Haven, CT 06520

This research was supported in part by Fundacién Gran Mariscal de Ayacucho
(fellowship contract F-EX-84.1044)
and the National Science Foundation (grant DCR-8403304).




A Proof-Stream Semantics for Lazy Narrowing

Paul Hudak Juan Carlos Guzmain

December 1985

Yale University
Department of Computer Science!

Abstract

Proof-streams provide a convenient way to express the operational semantics of
languages with logical variables and backtracking, and indeed can be viewed as the
abstract machine of some existing Prolog interpreters. In this paper we use proof-
streams in a denotational setting to express the operational semantics of Prolog and a
simple language based on lazy narrowing. Narrowing can be viewed as a generalization
of reduction in the lambda calculus that permits logical variables. Lazy narrowing is
simply a non-strict version of narrowing akin to lazy evaluation in functional languages.
The non-strict semantics introduces non-trivial complications that are captured in the
proof-stream semantics using delayed objects called conditions.

1 Introduction

In recent years there have been many efforts at combining functional and logic program-
ming languages in such a way as to capture the best characteristics of both. The most
obvious approach is to design a language that allows both functional and logical expres-
sions, and that provides an appropriate interface between them. We refer to such solutions
as hybrid, and they include the languages LOGLISP(20], QLOG(13], FPL[3], Qute[21],
POPLOG(17], FUNLOG|24], and LEAF[2].

Although hybrid languages are practical, and achieve the goal of being able to write
programs using either, or both, programming paradigms, they are unsatisfactory for sev-
eral reasons. First, from the viewpoint of programming style, such languages require the
programmer to “shift” between “thinking logically” and “thinking functionally.” Surely

1This research was supported in part by Fundacién Gran Mariscal de Ayacucho (fellowship contract
F-EX-84.1044) and the National Science Foundation (grant DCR-8403304).
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this is undesirable when writing a program, and is equally so from a standpoint of program
readability and maintainability. Furthermore, this dichotomy in the language is usually
manifested directly in the semantics, where rather different semantic concepts are required
to capture each evaluation strategy. When coupled with the interface specification, the
resulting semantics becomes rather unwieldy.

A seemingly better approach is to develop a language with a single coherent evaluation
strategy, reflected directly in the semantics, that captures the best characteristics of both
classes of languages. We refer to such solutions as direct, and they include languages such as
EQ-LOG(8], TABLOG16], and the languages found in [5,9,18]. In this paper we explore
the operational semantics of a particularly promising direct approach called narrowing.
Narrowing was first introduced by Fay(7] in the context of equational theories, and is also
the basis of work found in [11,14,22]. More recently it has been studied by Reddy in the
context of functional languages, where more efficient implementations are possible than
with unrestricted equational languages [18,19]. It has now been used as the operational
semantics of at least two language implementations [5,15].

Before describing narrowing further, we might ask just what are the “best character-
istics” of functional and logic programming languages? Clearly one wishes to have the
power of the logical variable [26] — it is noticeably absent from functional languages. One
would also like to have the directionality afforded by reduction in functional languages —
not only does this provide the opportunity for more efficient programs, but it also allows
expressing functions (or predicates) in their intended mode (without extraneous annota-
tions). A third useful feature is lazy evaluation, permitting computation with unbounded
data structures, and found most typically in functional programming languages. Although
there are other possible features of interest, these are the ones that we concentrate on in
this paper, and indeed are not found collectively in any existing programming language.

2 Narrowing

Following [18], we refer to a language whose operational semantics is narrowing as an N-
language, and furthermore we refer to an N-language with non-strict, or lazy semantics as
an NL-language.

Prolog and N-languages are similar in that both support logical variables through unifi-
cation (this is essentially what differentiates an N-language from a conventional functional
language). However, there is an important difference: a Prolog program is represented as
a set of Horn clauses which are interpreted as statements in first-order logic, whereas an N-
language program is a set of equations interpreted as equivalences between values in some
primitive domains. Operationally, even though an N-language supports logical variables,
its semantics is primarily one of reduction, whereas Prolog is based on resolution.




An N-language is more “expressive” than a functional language because it supports
logical variables. In conventional functional languages equation choice is based on pattern-
matching rather than unification. With pattern-matching, the reducing expression passes
information to the reduced one in the form of actual parameters, but the reduced one can
only pass back the result of its evaluation. An N-language, on the other hand, replaces
pattern-matching with unification, allowing the well-known “two-way communication” be-
tween logical variables.

An N-language is also more “expressive” than Prolog. Indeed, any Prolog program
can be trivially translated to an equivalent N-language program by interpreting the Horn
clauses as rewrite rules manipulating values in the Boolean domain. For example, consider
the following prolog program:

append([],C, C).
‘append([A|B],C,[A|D]) :— append(B,C, D).
reverse([], [])-
reverse([A|B],C) :— reverse(B,D),append(D,[A],C).

which, when translated into an N-language, becomes:

append([],C,C) = true.
append(A"B,C,A’D) = append(B,C,D).
reverse([],[]) = true.
reverse(A’B,C) = and(reverse(B, D), append(D,[A],C)).
and(true,B) = B.

(Note that we use " to denote list construction in an N-language.) As this example suggests,
any Prolog clause can be translated into a boolean-valued equation. But one of the powers
of an N-language is that a program may be written in a variety of other ways; in particular,
ways that reflect the intended input-output “mode” of the logical variables. For example,
the above program can be written as:

append([],C) = C.
append(A"B,C) = A’append(B,C).
reverse([]]) = |[].
reverse(A"B) = append(reverse(B),[A]).
which, in fact, is a typical functional program, but has no direct counterpart in Prolog.

When performing reduction in the lambda calculus, there are several strategies for
choosing the next expression to reduce [23]. The most common strategy is applicative-order
reduction, and is used in languages with “strict,” or call-by-value semantics (operationally,
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Prolog uses such a strategy). But a more powerful strategy is normal-order reduction,
which is used in modern functional languages with “lazy,” or call-by-need semantics, such
as SASL(25], ALFL[10], and FEL[12]. A similar choice in reduction-order arises in nar-
rowing: N-languages use applicative-order narrowing, and NL-languages use normal-order
narrowtng. NL-languages thus bring to a language with logical variables the standard ben-
efits of lazy evaluation: one may write programs with “infinite data structures,” one gains
certain run-time efficiencies because “evaluate only when necessary” often amounts to no
evaluation at all, and one is freed from concerns about sequencing that typically clutter
up conventional programs [6].

3 Semantics

There are several suitable frameworks for expressing the operational semantics that we
require. We have chosen a method based on proof-streams(4], in which the set of all “proofs”
of a goal is represented as a “lazy list,” or stream, of environments, each environment
containing the bindings necessary for one proof. Demand-driven evaluation of the list
provides a convenient tool for expressing backtracking, where exploration of a particular
branch in the search tree directly corresponds to evaluation of one of the elements of the
proof-stream.? Another advantage is that a proof-stream semantics lends itself well to
the construction of an interpreter. Indeed, we have built interpreters that exactly mimic
both of the semantics presented in this paper, and proof-streams were first used (to our
knowledge) to derive a Prolog interpreter in an introductory text on programming [1].

Notationally, to express proof-stream semantics, we adopt the standard conventions of
denotational semantics: an abstract syntax is defined, semantic domains are established,
and semantic functions are given mapping syntax to elements of appropriate semantic
domains. This provides a clean specificational tool that frees us from the intricacies of a
particular programming language (such as Lisp as used in [4]). Streams are constructed
using ~ and ", infix operators for (lazy) cons and append, respectively. We have also found
the following two mapping functions to be quite useful with proof-streams. The first is the
traditional map, defined by:

map f () = ()
map f a’seqg = (f a)’(map f seq)

The other is different only in that the elements returned from the function application are
themselves lists, and are thus appended together:

appmap f () = ()
appmap f a’seq = (f a)"(app_map f seq)

2A more primitive encoding might use continuations to explicitly represent the search; however we find
streams simpler and more intuitive.




3.1 Proof-Stream Semantics for Prolog

To introduce the reader to the notion of proof-stream semantics, we first use it to describe
the operational semantics of a simple version of Prolog. This has the added advantage of
being able to make meaningful comparisons between resolution-based and narrowing-based
semantics.

Abstract Syntax

Pair = cons Ezpr Expr

Ezpr = LogVar | Const | Pair
goal € Pred := Const Sexpr"
c € Clause ::= Pred Pred*
P € Program := Clause’

Note that we do not allow cut in this syntax, nor are we concerned with the semantics
of pre-defined predicates. However both of these could be added without much difficulty;
see, for example, [4].

Semantic Domains and Auxiliary Functions

Kk € Context = Naturals

e € Dexpr = Ezpr x Context
goal € Dpred = Pred x Context
6 € Env = Ezpr — (Ezpr + {unbound})

T€ Prf.Strm = {(}} + (Env x Prf_Strm)

Note that syntactic, or static expressions (Ezpr) and predicates (Pred) are “coerced”
into run-time, or dynamic expressions (Dezpr) and predicates (Dpred) by attaching a
“context,”® which we represent as a natural number. Env is the domain of environments,
and Prf_Strm is the domain of proof-streams. Environments map logical variables to
expressions. but for convenience they also behave as the identity function when applied to
something other than a logical variable. More specifically, application of an environment
6 to an expression e is defined by:

6 e = wunbound, if e is a logical variable but has no binding in 4
0 e = ezxp, if e is a logical variable whose value in 4 is exp
60 e = e, otherwise

Note that although § indirectly stores the values of all structures, in order to completely
dereference a list recursive calls to 6 are needed for all its components.

3This is a more-or-less standard implementation technique.
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void is a special environment that denotes “failure.” Its definition is not important as
long as it is a unique, distinguishable environment. It may be considered as Tg,, (the
top element in the domain of environments). Furthermore, tnitenv denotes the initial
environment where all variables are unbound (consider this as L Env). More formally:

initenv e = unbound, if logvar?(e)

tnitenv e = e, otherwise
The functions hd and ¢! have type (Pair x Context) — Dezpr and are defined by:

hd {(cons s, s3,k) = (s1,K)
tl (cons s; 83,k) = (s9,K)

Finally, the function to_pair is defined to coerce dynamic predicates (Dpred) into dynamic
pairs (in Dezpr). (The details are omitted.)

Semantic Functions

U: Ezpr— Ezpr — Env — Env

S: Pred’ — Program — Env — Prf_Strm

R: Pred — Clauses’ — Program — Env — Prf_Strm
P: Pred’ — Program — Prf_Strm

U e, ey 6 returns a new environment resulting from the unification of e; and e; in
environment §. § goals P @ returns a proof-stream representing solutions to the conjunctive
goal goals in program P with environment 4. Similarly, R goal c¢* P 0 returns a proof-
stream for the resolution of goal with respect to clauses ¢* in program P. Finally, P is a
top-level function for evaluating a set of goals with respect to an entire program.

Semantic Equations

Uer e § = 6bler/ei], if de; = unbound

Ue e 8 bler/es), if fe; = unbound

Ue ead = U (hd (fe)) (hd (Be)) (U (t (Bey)) (¢ (Bey)) 6)
if patr?(fe;) and pair?(fe;)

Ue e = 6, if const?(fe,) and e, = fe,
Ue ey § = wvoid, otherwise

S goals P void = )
SpPe = (o)

S goal’rest P = app.map (S rest P) (R goal P P )
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Rgoal | PO = ()
R goal c’rest P § = let k = newcontezt|()
head body = ¢
in (S (body,x) P (U to_pair(goal) to_pair((head,«)) 6))™"
(R goal rest P 8)

P goals P = let & = newcontexzt()
in S (goals, k) P initenv

To one familiar with the semantics of Prolog, the above equations should be fairly self-
explanatory. One subtle point is that newcontezt() is intended to return a new context
unique from any used thus far.* Note the use of the higher-order function § rest P with
app-map to give a concise formulation for trying all clauses in a program. If one takes the
definition of ¥ as “given,” then the above equations for S, R, and P yield a rather concise
semantics for Prolog.

3.2 Proof-Stream Semantics for an NL-Language

Simply stated, to narrow an expression is to make a minimal substitution such that the
resulting expression is reducible, and then to reduce it. In an N-language, narrowing comes
about when a function is about to be applied (i.e., the formal parameters are narrowed
with the actual parameters), and the reductions are specified by the equations. Reddy
[18] provides such a semantics, and it can be cast easily into the proof-stream framework
as we did for Prolog. Rather than do that directly, however, we choose to proceed to
the semantics of an NL-language, in which the introduction of lazy evaluation induces
non-trivial complications.

In order to accomplish lazy narrowing we must first abandon Prolog’s depth-first prov-
ing strategy, so that we can guarantee that no single branch of an ezpression is infinitely
evaluated without trying other branches. We accomplish this by “interleaving” the eval-
uations of all of the subexpressions of a given expression. This, in turn, requires a way
to “suspend” the evaluation of an expression, which we accomplish by introducing the
notion of “environment conditions,” or just conditions. Conditions carry all the delayed
evaluations of expressions that are needed in order to generate the ultimate environment
that is the correct (intended) interpretation of the query. Conditions are “resumed” in the
future with a new environment when subsequent evolution of the solution demands it.

*The purely functional among us will have to forgive our sloppiness here!




Abstract Syntax

‘ 8 € Sexpr = Const | LogVar | Pair | Applic Syntactic Expressions
Pair = cons Ezpr Ezpr Pairs

: Applic = Ezprt Applications
Egquation ::= LHS = RHS Equations

lhs € LHS := Id Pattern® Left Hand Sides

Pattern ::= Const | LogVar | cons Pattern Pattern LHS patterns
rhs € RHS := Sezpr Right Hand Sides
P € Program := Egquation® NL Programs

Semantic Domains and Auxiliary Functions

Kk € Context = Naturals Contexts

e € Dexpr = Ezpr x Context : Expressions

6 € Env = Dezpr — (Dezpr + {unbound)}) Environments

oc€Cond = CondEnv — CPrfStrm Conditions

X € CondSet = Cond* Condition Sets

CondEnv = Env x CondSet Conditioned Environments

PrfStrm = {()}+ (Env x Prf_Strm) P.S. w/o Conditions

m € CPrfStrm: = {()} + (CondEnv x CPrfStrm) P.S. with Conditions

Because of the special action needed when evaluating applications in an NL-language,
we allow an environment to contain updateable bindings for applications as well as logical
s variables. One can think of each application node in the parse tree as having a special
‘ “tag” whose value is looked up in the environment, but we leave out such detail here. We
simply extend the definition of an environment given earlier to:

6 e = wunbound, if e is a logical variable but has no binding in §

6 e = exp, if e is a logical variable or application whose value in 6 is exp
6 e = e, otherwise

tnitenv is exactly as defined in the previous section.

Note that there are two kinds of proof-streams: ones with conditions (CPrfStrm) and
ones without (PrfStrm). An element (8, ) of a proof-stream 7 € C Pr fStrm essentially
means that 6 is a correct proof contingent upon the complete evaluation of the conditions
in .

Semantic Functions

N : Dezpr — Dezpr — Program — CondEnv — CPr fStrm Narrowing
R : Dezpr — Program — CondEnv — CPr fStrm Reduction
- ¢ : Dexpr — Program — CondEnv — CPr fStrm Evaluation
¢ ¢ CPrfStrm — PrfStrm Evaluate Conditions
P: Ezpr — Program — PrfStrm Evaluate Program




do

Semantic Equations

N €1 €2 P (9,2)
N e e, P (8, E)
N ep e P (0,2)

N €; €3 P (0,2)
Ne e P (41X
N € €2 P (0,2)
N € €7 P (O,E)

ReP (4,5)

nnu

o

((Ole2/e1], ) if fe; = unbound
((0ler/e2], Z)) if fe; = unbound
app-map (N (t! (fe1)) (¢! (6e;)) P) if pair?(Ge,)
(N (hd (6ey)) (hd (Be3)) P (6,%)) and pair?(fe;)
app-map (N e, e; P) (R e; P (4,%)) if applic?(fe,)
app-map (N e, e; P) (R e2 P (6,%)) if applic?(e,)
(6, %)) if const?(fe,)
and fe; = fe,

) otherwise

let & = newcontext()
f = A(lhs = rhs).
N (lhs,k) e P (6[(rhs,&)/e], =)
in (app-map f P)

((6,Z)) if const?(fe)
or fe = unbound
((6,Z((€ (hd (Be)) P), (€ (tL (8e)) P)))) if pair?(fe)
let F=X06,Z).(6,=7(€ e P))
in (map f (R e P (8,%))) if applic?(fe)
()
6" (& m)

(& (0 (6, )" (& m)

let x = newcontexzt()

in & (&€ (s, k) P (initenv,()))

Explanation of Equations

The predicates pair?, applic? and const? return true if their argument (in Ezpr) is

derived from the syntactic domains Pair, Applic and Const, respectively.

Narrowing (N). Narrowing an unbound logical variable v with another expression e
simply returns an environment in which v = e. Lists are narrowed by recursively narrowing
their heads and tails — note how the use of app_map simplifies this task. Narrowing an
application with an expression amounts to first reducing the application to the right-
hand-side of some (matching) equation, and then continuing the na.rrowmg process on the

resulting proof-stream (again by using app_map).

Reduction (R). The reduction of an expression e (which must be an application) is
accomplished by finding an equation € whose left-hand-side successfully narrows with e, and
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returning an environment where e is then bound (with appropriate substitutions) to the
right-hand-side of €.° Of course, this is all done at the proof stream level, since ultimately
several solutions may be found. It is important to note that reduction performs only one
step (namely, the binding of formal parameters to actual parameters in an application) -
this is crucial to maintaining the lazy evaluation semantics.

Evaluation (€). The evaluation of a constant or unbound variable immediately suc-
ceeds. The evaluation of a list, on the other hand, is immediately delayed (by adding
conditions for the evaluation of the head and tail to the existing list of conditions). The
evaluation of an application is somewhere in between - it results in a proof-stream repre-
senting the evaluation of all possible (one-step) reductions.

Evaluation of conditions (&.). £, simply “coerces” a proof stream with conditions
to one without; it is only used at the top-level of program evaluation (i.e., with P). When
a condition is resumed it is done so not only in the current environment (instead of the
one in effect when the expression was suspended), but also under the contingency of the
current conditions. This is why a condition is a function from environment/condition
pairs to proof-streams. The resumption of a condition, of course, yields another proof
stream, since several proofs may be found. Thus the coercion involves appending these
proof streams together.

Program evaluation (P). A program is run by evaluating it in the empty environ-
ment tnitenv with no conditions, and then using &, to force the evaluation of any conditions
that result.

3.3 Comparison of Prolog and NL-language Semantics

A rough analogy between the proof-stream semantics for an NL-language and that given
for Prolog is that P, &, and € in the former are collectively like P plus § in the latter,
R (reduce) is like R (resolve), and N is like 4. With this analogy one should note that in
Prolog resolution depends on unification, but unification depends only on itself. Also, by
the nature of unification, only one most general unifier is found. With an N-language, in
contrast, narrowing and reduction are mutually dependent and narrowing can return more
than one result.

5Technically, we need to coerce expressions and left-hand-sides to the same type of objects — hopefully
the context makes this clear.
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