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1. Introduction

Ritchie and Springsteel [14] have proved that the one-sided Dyck language (the set of all
well-formed expressions over two pairs of matching left and right parentheses) has
deterministic logspace complexity. Surprisingly, the argument, based on a "level trick,"
does not easily generalize to the two-sided Dyck language (where parentheses may balance
on either side), even when nondeterminism is allowed.

In this paper we show that the two-sided Dyck language does -indeed have
deterministic logspace complexity. We actually prove a general theorem that the word
problem for a group of matrices over a field (i.e. a linear group) is solvable in
logspace. The result follows since the membership problem for the Dyck language is
equivalent to the word problem for free groups, and free groups are representable as
groups of matrices over a field of characteristic zero.

The word problem for a group is the problem of deciding whether a product of group
elements is equal to the identity element. It is a well-known theorem; Novikov and Boone
proved independently that the word problem for finitely presented groups is recursively
unsolvable, and Boone and Clapham showed that it can have any preassigned recursively
enumerable degree. (See the exposition in Rotman [15al].) But Rabin [13] has stated
without proof that the word problem is solvable for groups of matrices over a field. To
our knowledge, no proof of this theorem has been published. Our main result is.a strong
refinement of Rabin's theorem stating that the word problem for groups and even semigroups
of matrices over a field is solvable in logspace. As a corollary, we obtain Rabin's
result.

Since several classes of groups such as free groups and polycyclic groups have
representations by matrices over the integers, we obtain as an immediate corollary that
the word problem for these groups is solvable in logspace. This extends and sharpens
results of Cannonito's and Gatterdam's [4,5], where these word problems were shown to be

elementary recursive.



The conjugacy problem for a group G is the problem of deciding for an arbitrary
pair of words u,v in G whether there exists we G such that u = w_lvw in G. The word
problem is the special case of the conjugacy problem where v = 1. Miller [11] has shown
that the conjugacy problem is unsolvable for finitely generated linear groups. Thus the
class of linear groups has the property that the word problem is eg—solvable but the
conjugacy problem is unsolvable. This is related to a problem posed by Boone [4].

Another application is the construction of context-free languages of logspace
complexity. Finally, we show that Schiitzenberger F-recognizable languages [17] have

logspace complexity.

2. Preliminaries

Definition: A presentation of a finitely generated group G is an ordered pair (X,D)
where X = {xl,...,xm} is a finite set of generators and D is a set of words over
XlJ{XIl,...,x;l} such that G is isomorphic to the quotient group formed by the free group

on X modulo the normal subgroup generated by the words in D.

Let (X,D) be a presentation of a group G. The word problem for (X,D) is the
problem of deciding whether an arbitrary word w over the alphabet XLJ{x-l,...,x;l} reduces
to the identity element of G. In particular, the word problem for the free group is:

1

Given a word w over XlJ{XI ,...,x;l}, find whether w can be reduced to the empty word by

applications of the rules

1) xix;l can be replaced by A, the empty word (i = 1,...,m)

2) X, X, can be replaced by A. '

The word problem for (X,D) is solvable in logspace provided that it can be solved

by a deterministic Turing machine with a two-way read-only input tape and a working tape



bounded in length by log n where n is the length of the input. Our main result, Corollary
1, is that the word problem for a free group is solvable in logspace.

The following results from number theory are needed in the proof of Theorem 1.

Definition: u(n) = llp, p a prime,
pP<n
cyn
Lemma 1: There is a constant cl> 0 such that u(n) > 2 .

Proof: Hardy and Wright [7] show that log u(n) > An. The result then follows. []

Lemma 2: Let x be an integer such that |x| < p(n). Then x = 0 if and only if, for all

primes p<n, x Z 0 mod p.

Proof: Assume that x = 0 mod p for all primes p<n. Then x = 0 mod u(n), but since

Ix] < u{n) it follows that x = 0. The converse is trivial. []

Definition: For any mXm matrix A = (aij) , 1€i, j<m,

Lemma 3: For any m*m matrices A and B, A*B < m2|A| |B| (where ¢« denotes matrix product).

Proof: The absolute value of each element of AB is bounded from above by |A]|B]. ]

Ia_|.

Lemma 4: For any mXm matrices A n

2(n-1)
. - . <
/A, ]Al A ... Anl < m |Al|

- 2

Proof: By induction on n, applying Lemma 3. 0



3. Main Result

Let F be a field:r A group is a linear group over F (or an F-linear group) provided it is

isomorphic to a group of kxk invertible matrices over F for some positive integer k.

Theorem 1: The word problem for finitely generated linear groups over a field is solvable

in logspace.

Before proving the theorem, we present the important application:

Corollary 1: The word problem for finitely generated free groups is solvable in logspace.

Proof of corollary: The free group on two generators x.,x, is isomorphic to a group of

1’72

2x2 matrices over the field of rational numbers via the correspondence

Furthermore, any finitely generated free group is isomorphic to a subgroup of the free

group on two generators [15b]. [J

Proof of theorem: The first reduction of the problem is, of course, replacing the word

problem with the problem:

Given a product Al' A2' ces ® An of matrices over F, determine whether

Al *A_- ,,.°* An = I where I is the identity matrix.

We first solve the problem when the matrices are over the ring 2 of integers.

Suppose that we consider the following problem:

Given a sequence of kxk matrices Al,...,An over Z with entries bounded by d,

determine whether Al' Az' ce. ® An = I where k is fixed and 4 = O(2n).

t All fields considered here are of characteristic O.



This problem can be done in logspace. Our algorithm (AI) is:

For each integer q < ¢ n2 (c3 is defined later), compute the product

3

Al- Az- cee An modulo g and test whether Al. Az- ces ® An— I = 0 modulo q.

If it is equal to 0 for all q, accept the input; otherwise, reject the input.

This algorithm operates in space bounded by k2(2 log n+ log c3). It also operates

correctly: If A, *A,°*...~* An- I =0, then it clearly accepts. On the other hand, if it

1 2
accepts, then for all primes p < c3n2, Al- A2- F— Anf_I = 0 modulo p. Let
B = Al- Az' cee * An— I. Then by lemma 4,
2(n-1) , 2..n n?
|IBl < k (k"d)" < ¢

2

for some constant c2. But by lemmas 1 and 2, B = 0 provided that

2
n2 c1c3n

which is clearly true for a sufficiently large 5.

We now extend the algorithm A, to the case where the matrices Ai can have elements
from Z[xl,...,xm] where, for a commutative ring R, R[xl,...,xm] denotes the set of
polynomials in the indetermines XyreoerX having coefficients from R.

Let f(xl,...,xm) be a polynomial in Z[xl,...,xm]. f is a sum of monomials

xl,...,xm with integer coefficients. Define the degree of the monomial
xll lm
1 *n
to be
m
i
=1 7

and the degree of f to be the maximum of the degrees of the monomials in f having non-zero

coefficients.



Consider the following problem:

Given a sequence of kxk matrices Ajs-..,A over Z[xl,...,xm] such that all
entries have degree at most g and have all coefficients bounded in absolute
value by b, determine whether Al- Az- cea® An = I where m, k, g, and b are

fixed.

This problem can be done in logspace. For each m-tuple v = (vl,...,vm) in Z™ and each
matrix A with entries from Z[xl,...,xm], let <I-\>V be the integer matrix obtained from A by

replacing each entry in A with its value (as a polynomial function) at the point v. Our

algorithm (AZ) is then:

For each m-tuple v = (vl,...,vm) with 0:§vj.Sgn, decide whether
. . .. > = 1 . i 3
DL R SE L <B > I by the algorithm A] If this algorithm accepts

for all (gn+1)m m-tuples, accept the input; otherwise, reject it.

This algorithm requires only logspace. We need only check that the algorithm AZ uses no
more than O(log n) space. This follows since d is bounded by b(gn+1)m. The correctness

of the algorithm relies on the following elementary result from Lipton [10]:

Suppose that f(xl,...,xm) is a polynomial of degree at most h. Then

= i < <h i i i
f(xl,...,xm) 0 for all integers O._xi._h implies that f(xl,...,xm) is

identically zero.

For any two matrices A,B over Z[xl,...,xm] it follows that <A*B> = <A>_ <B> . Hence,
if Al' A2- ces ® An- I = 0, then the algorithm accepts. Conversely, assume that the
algorithm accepts. Let B = Al- A2- —_— An-I. Then the algorithm proves that <B>v =0

for all v = (vl,...,vm) with OfSVi:Sgn. Now the maximum degree of an entry of B is gn.

Thus, by Lipton's result, B = 0.



We can now complete the proof of the theorem. Let G be generated by the finite set
Al""’Al of kxk matrices over F. Then the elements of G are matrices over the field E
generated by all the entries of the Ai's. Since E is generated by a finite set, E is a
finitely generated extension of the prime subfield P of F. By field theory (Jacobson [9]),
E is a finite algebraic extension of a transcendental extension P[xl,...,xm] of P (Wheré
the xi's are indetermiﬁes). But since E is a finite dimensional algebra over P[xl,...,xm],
it is isomorphic via the regular representation R (Jacobson [8a]) to an algebra of, say,
txt matrices over P[xl,...,xm]. Furthermore, since E is a field, each of the matrices in
the representation is invertible and they all commute. Thus by replacing each entry in .
each Ai by a txt matrix over P[xl,...,xm] and identifying the resulting block matrices
with ktxkt matrices over‘P[xl,...,xm], we see that G is isomorphic to a group of ktxkt
matrices over P[xl,...,xm]. Furthermore, by the formula for the determinant of a block
matrix [8b], the matrices are invertible.

Since F has characteristic 0, P = Q, the field of rational numbers. TILet a be the
least common multiple of the denominators of the coefficients of all the entries in the
(finitely many) generating matrices. Multiplying all generators by a, we obtain a new
set of generators that are matrices over Z[xl,...,xm], and the result follows by using

algorithm AZ’ 0

Remark: The argument used in the proof of this theorem with slight modifications shows
more generally that the word problem is solvable in logspace for any semigroup of matrices
over a field. Cannonito and Gatterdam [4,5] have investigated the computability level of
the word problem for various classes of groups with respect to the Grzegorczyk hierarchy

(52) [6]1. oOur theorem yields sharper results.

Corollary 2: The word problem for polycyclic groups is solvable in logspace.

Proof: By a result of Auslander and Swan's [2], any polycyclic group is a linear group



over Z. [}

Since as is well known the logspace-solvable predicates are a subset of the class
0 . .
€, of Grzegorczyk's, Corollary 2 improves Cannonito and Gatterdam's desult that the word

problem for polycyclic groups is ei-solvable.

It should be pointea out that our notion of e:—solvability is not equivalent to
Cannonito's notion of e:-decidability, which is defined in relation to a fixed Gdel
numbering of the free group on X ("standard indexing"), X being elementary recursive but
of space complexity higher than logspace. Thus, strictly speaking, our results do not
solve Cannonito's open problems on minimizing the degree of computability within the
Grzegoreczyk hierarchy, although they do solve modified versions of these problems.

Boone [3] has raised the question whether there exist finitely generated groups
with word problem eg—decidable and conjugacy problem ef—decidable with 8> a. Since by our
theorem the word problem for finitely generated subgroups of Z-linear groups is
sg-solvable and by a result of Miller's [11] the conjugacy problem for finitely generated
subgroups of Z-linear groups is unsolvable, the disparity between the word problem can be
even greater than expected.

Let I be an index set and let Gi be groups with presentations (Xi,Di), ieI. Then.

*
the free product HiGi of the Gi's is the group with presentation

(9 Xy v Di).
1 1

If T is finite, the free product is denoted by Gi LI Gn'

Definition: Let L be a language over an alphabet {xl,xIl,...,xn,x;l}. L is a group

kernel if and only if there exists a pPresentation (X,D), X = {x .,xn} of a group G such

17

that L is the normal subgroup generated by the words in D. Let Ll,L2 be group kernels of

Gl’G2 respectively. The free product Ll* L2 will be the kernel of the homomorphism from



*
the free group XllJX2 onto Gl G2.

Theorem 2: The class of context-free languages that are group kernals of Z-linear groups

is closed under finite free products.

Proof: By a theorem of Nixnevic's [12], the class of F-linear groups, for a fixed field F
of characteristic zero, is closed under finite free products. Furthermore, by a theorem

of Anisimov's [1], the class of context-free group kernels is closed under finite free

products.

Theorems 1 and 2 can be used to construct a large number of examples of
context-free languages that are recognizable in logspace. For example, the free product
of any finite number of Dyck languages and regular group languages will be such a
language. As a matter of fact, all known context-free languages that are group kernels

are of this form, according to J. Sakarovitch [16].

In a final application, we observe that Schiitzenberger F-recognizable languages
[17] have logspace complexity. The proof of our theorem can be adapted trivially to yield

a logspace algorithm for determining membership in such a language.
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