
Yale University

Department of Computer Science

Spectral Clustering with Limited Independence

Anirban Dasgupta
Cornell University

John Hopcroft
Cornell University

Ravi Kannan
Yale University

Pradipta Mitra
Yale University

YALEU/DCS/TR-1340
December 6, 2005

Updated September 5, 2006

Pradipta Mitra is supported by NSF’s ITR program under grant number 0331548. Ravi
Kannan is supported by NSF Award CCF 0310805



Abstract

This paper considers the well-studied problem of clustering a set of objects under a proba-
bilistic model of data in which each object is represented as a vector over the set of features,
and there are only k different types of objects. In general, earlier results (mixture models and
“planted” problems on graphs) often assumed that all coordinates of all objects are independent
random variables. They then appeal to the theory of random matrices in order to infer spectral
properties of the feature × object matrix. However, in most practical applications, assuming full
independence is not realistic.

Instead, we only assume that the objects are independent, but the coordinates of each object
may not be. We first generalize the required results for random matrices to this case of limited
independence using some new techniques developed in Functional Analysis. Surprisingly, we
are able to prove results that are quite similar to the fully independent case modulo an extra
logarithmic factor. Using these bounds, we develop clustering algorithms for the more general
mixture models. Our clustering algorithms have a substantially different and perhaps simpler
“clean-up” phase than known algorithms. We show that our model subsumes not only the
planted partition random graph models, but also another set of models under which there is a
body of clustering algorithms, namely the Gaussian and log-concave mixture models.



1 Introduction

In a wide range of applications, one analyzes a collection of m objects, each of which is a vector in
n-space. The input consists of a n×m matrix A, each column representing an object and each row
representing a “feature”. An entry of the matrix then stands for the numerical value of an object
feature. Term-Document matrices (where the entries may stand for the number of occurrences of
a term in a document) and product-customer matrices (where the entries stand for the amount of
a product purchased by a customer) are two salient examples. An important question regarding
such data matrices widely analyzed in Data Mining, Information Retrieval and other fields is this:

Assuming a probabilistic model from which each object is chosen independently, can one infer the
model from the data?

In an easier version of the above question, we set out by assuming that the probabilistic model
is a mixture1 of k simple distributions (where k is very small, in particular, k � m,n). What is
then the required condition on the probability distributions so that we can group the objects into k
clusters, where each cluster consists precisely of objects picked according to one of the component
distributions of the mixture?

There has been much success in this and also in the so-called “Planted Partition” models,
but only under a restrictive assumption that all the entries of the matrix A are independent.
We will refer to this as the full independence assumption. Indeed, the work of Azar, Fiat,
Karlin, McSherry and Saia [5] formulates the above questions (starting with similar examples) and
tackles the problem under the full independence assumption. The method has received considerable
attention in the planted partition graph models as well [7, 2, 3, 11]. More directly relevant to this
paper are the papers [19, 8], which show that assuming full independence and certain separation
conditions between the means of the component distributions, the projection of objects to the
space spanned by the top k singular vectors of A leads to a clustering based just on distances which
clusters most objects correctly. Then, as in earlier algorithms, there is a “clean-up” phase which
now correctly clusters all the objects. The clean-up phase turns out to be technically complicated.

The general reason for the full independence assumption is that with this in hand, one may rely
on the theory of random matrices, initiated by Wigner [22, 23]. The central result of this theory is
that for an n×n symmetric matrix X, whose entries in the upper triangular part are independent
random variables with mean 0, there are very good upper bounds on the largest eigenvalue (as
proved by Füredi and Komlos [15] and Vu [25]). Indeed, such bounds play a crucial role in all the
spectral algorithms in answering the above questions. Let A denote the input matrix generated
by a random process that has k component distributions and Ā denote the expectation of A. The
matrix concentration result applied to the matrix X = A − Ā, the difference between A and its
expectation, implies that the span of the top k eigenvectors of A is very close to the span of the k
centers of the k component distributions. This in turn says that after projecting the data onto the
span of these k-eigenvectors, a simple clustering algorithm recovers almost all points in the original
clusters.

Another direction in learning mixture models, and, one that has been more successful in dealing
with dependence, is to assume the distributions to be general Gaussians or log-concave in which the
coordinates of one object can depend on one another. While there has been quite some success in
this model [9, 4, 24, 17, 1], the spectral algorithm in these papers work mainly for Gaussians and/or

1A mixture of k probability densities P1, P2, . . . Pk is a density of the form w1P1 + w2P2 + . . . + wkPk, where the
wi are fixed non-negative reals summing to 1.
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log-concave distributions. (But the inter-center separation one needs to assume for Gaussians is
better than what we will get here in the general case.) This also means that this line of work
does not include the case of the planted partition graph models, where the distributions tend to be
discrete. A main observation we use in this paper is that in many discrete distributions, one gets
tight concentration around the mean only when a lot of coordinates are considered, ie, when the
direction being considered is “balanced” (we make these notions precise later).

The point of departure of this paper is that the assumption of full independence is probably
the most important impediment to applying these results in practice; indeed in the two examples
mentioned above, while one may assume that the documents are independent of each other, it
is certainly not true that the occurrence of different terms inside a document are independent
(the same thing can be said about the product-customer case). Indeed the generative model of
Papadimitrou, Raghavan, Tamaki and Vempala [20] illustrates this point well. Similarly, in the
product-customer model, while different customers may be reasonably assumed to be independent
of each other, one customer does not choose various products independently. At the minimum,
the customer is subject to budget constraints. The main contribution of this paper will be to
replace the full independence assumption with a limited independence assumption, namely,
positing that the objects are independent, but the features may not be. (So the columns of A are
independent, but the rows need not be.)

Our model in this paper starts out by assuming that the input points are samples from a prob-
ability distribution that satisfies certain concentration properties, and obeys the limited indepen-
dence assumption. The concentration properties that we assume are general enough to encompass
both the planted partition and the log-concave distribution models. Under these set of assumptions,
we solve the mixture learning problem using spectral methods. The most important ingredient in
our proofs is the matrix inequality of Theorem 6 and Corollary 7 that may be of independent
interest in the theory of random matrices - namely, we prove a bound on the spectral norm of
(possibly rectangular) matrices under limited independence. Surprisingly, the bounds are similar
to the ones proved under full independence, except for logarithmic (in n) factors. The separation
conditions that we require for our algorithm are similar to the best known results in the planted
partition model by [19] and differs by logarithmic factors from the best results in the log-concave
distribution model [17, 1].

The general method used for proving bounds under full independence originated with Wigner’s
work - it consisted of bounding the trace of a high power of the square matrix. Our matrices being
rectangular, such an approach cannot be carried out in a simple fashion. Instead, we rely on certain
techniques recently developed in Functional Analysis (see Rudelson in [21]) to prove our theorem.
These techniques were developed as a means to solving a different problem - namely, what is the
minimum number of independent identically distributed samples from a n-dimensional Gaussian
density with the property that the variance-covariance matrix of the samples approximates the
variance-covariance matrix of the actual density to within small relative error? The result presented
here is similar to that presented in [21], but as the higher moment bound we require is not easily
recoverable from the results there (which are proved in the context of vectors in isotropic positions),
we provide a separate proof and cast our result in a way easily applicable to clustering problems.

On the algorithmic side, the basic difference of our technique with earlier algorithms is in the
cleanup phase. The cleanup phase of earlier algorithms was either easy, as in the case of log-
concave distributions [17, 24], or had to be done by constructing a combinatorial projection for the
planted partition case, as in [19, 8]. The construction of the combinatorial projection in the planted
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partition case exploits the fact that since we are dealing with graphs, both rows and columns of the
matrix represent vertices and so one can alternately cluster rows or columns. This symmetry is not
present in our general model; here we are able to cluster just the objects using the features, but not
cluster the features themselves. Because of this and the dependency of the coordinates, cleaning
up the solution appears to be technically a much harder task. The cleanup phase constructed in
this paper is, on the contrary, arguably simpler than the previous constructions of combinatorial
projections [19, 8].

2 Model and Result

We start with a set of k distributions P1, P2 . . . Pk in Rn. The center (i.e. expectation) of the rth

distribution is denoted by µr. There is also a set of mixing weights {wr | r = 1 . . . k} associated
with the k distributions, such that

∑
r wr = 1 and each wr = Ω( 1

k ). The minimum of the weights
is denoted as wmin. The data is generated as follows. In generating the ith sample, denoted as
Ai, we first pick a distribution, say Pr with probability wr. Then, the sample Ai is chosen from
distribution Pr independently from all the other samples. The m samples Ai form the columns
of the input matrix A ∈ Rn×m. Thus, the columns of A are chosen independently, while there is
no assumption on the independence on the coordinates of each sample Ai. The expectation of the
sample Ai is denoted as E [Ai] = Āi. An important notion for us is the definition of balance of a
vector. Define the balance of a vector v as η(v) = ‖v‖2

‖v‖∞ . Intuitively, η(v) indicates the number of
“significant” coordinates in v. Note that for all vectors v ∈ Rn, 1 ≤ η(v) ≤

√
n. In this paper, we

will use poly(m,n) to be a polynomial in m and n with suitably large coefficients.
The concentration result we derive in section 5 is quite general, hence the form of our as-

sumptions and conditions presented below are just an instantiation of the wide range of results
that we actually achieve. Our presentation of the bounds in terms of σ

√
log m is motivated by

the interesting case of m = n where Chernoff type results give σ
√

log n bounds for many natural
problems. We will assume m ≥ n without loss of generality to avoid cumbersome expressions like
max(

√
log m,

√
log n) in our bounds.

Mixture Model. The following are our required conditions for each of the probability distribu-
tions.

1. Maximum variance of any Pr in any direction is at most σ2. That is, for any vector v of unit
length, we have that E

[
(v · (Ai − Āi))2

]
≤ σ2.

2. There exists η∗ ∈ [1,
√

n] such that for each fixed unit vector v that has balance at least η∗,
and for each sample Ai,

Pr(|v · (Ai − Āi)| ≥ σ
√

log m) ≤ 1
poly(n, m)

. (1)

An orthonormal basis of balance Θ(
√

n) can be found for a n-dimensional space2. This, along
with the previous condition implies that, for each sample Ai, we have the following bound on

2This can be seen by finding a basis for the space Rn that consists of vectors from {−1, 1}n only. Standard results
[6, 16] show that such a basis, known as Hadamard basis, must exist if the dimensionality n is a multiple of 4. We
can increase the dimensionality n to be a multiple of 4, without losing anything on the separation conditions, and
losing only a constant factor in balance.
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the deviation
∥∥Ai − Āi

∥∥, i.e.

Pr(‖Ai − Āi‖2 ≥ σ
√

n log m) ≤ 1
poly(n, m)

. (2)

Remark 1. For Gaussian distributions η∗ can be as small as O(1) whereas for independent 0/1
distributions, we need η∗ = Θ(

√
n) for condition 2 to hold.

Separation Condition. We assume the following about the centers of the distribution.

1. The distributions are separated in the sense that for each pair of distributions Pr and Ps with
corresponding centers µr and µs, and for a large enough constant c we have that,

‖µr − µs‖2 ≥ 40cσk

√
log(k)
wmin

(√
log m +

√
n

m
log n log m + 1

)
.

2. All the pairwise difference vectors of centers i.e. all vectors µr − µs for all r and s should
have balance at least min(2η∗,

√
n) where η∗ is the balance requirement of the probability

distributions. (Having balanced centers is perhaps a more natural assumption, but note that
ours is a generalization of that).

For brevity, we will define τ as follows,

τ = cσk

√
log(k)
wmin

(√
log m +

√
n

m
log m log n + 1

)
. (3)

2.1 Result

The following is the main result in our paper.

Theorem 1. Given m samples taken from the mixture of k distributions that satisfy the above
conditions, there is an algorithm that given the values of σ, k and η∗, classifies all the samples
correctly with probability 1 − k

m − 1
n2 over the input distribution, and probability 1 − 1

4k over the
random bits of the algorithm.

Relation to previous work An important subcase of our framework is the planted partition
model. Our framework does not apply to the models for symmetric random graphs due to the
symmetry requirements. However, the models for directed graphs can be viewed in this “samples
from a mixture distribution” framework, as we can view each vertex as a sample from a component
distribution Pi, and choose its vector of outgoing edges according to Pi. Our required separation
between the centers is then similar to the best known result of [19]. The balance requirement η∗ of
the distributions is akin to saying that each cluster be large enough. When the probability distribu-
tions Pr are Gaussians or log-concave distributions, the balance condition is basically unnecessary,
and the pairwise separation between centers that we require is worse off than Kannan et al. [17]
by a factor of log n.

Our conditions for convergence of distributions is similar to the condition of f-convergence posed
by Achlioptas and McSherry in [1]. However, the important distinction is that [1] requires conver-
gence in every direction. This property is not satisfied by many discrete distributions over {0, 1}n.
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By relaxing the requirement to being valid for balanced directions only, we can encompass the
planted partition graph models and other such discrete models. The following example illustrates
the necessity of the balance condition for such distributions for our algorithm.

Example. Suppose both P1 and P2 are probability distributions over {0, 1}n with centers µ1 =
(p, . . . , p) and µ2 = (Cp, p, . . . , p), for any C such that Cp < 1. Each sample Ai from Pr is
generated by choosing each coordinate Aij independently to be one with probability µrj and zero
otherwise. The distributions are separated along the direction (1, 0, . . . , 0) which is not a balanced
direction. Furthermore, since the distributions are different only along the first coordinate, even
with knowledge of the centers, we are bound to misclassify Θ(1− Cp) fraction of the points.

3 Algorithm

In this section, we present our algorithm to separate mixtures of distributions. The algorithm needs
an estimate of the separation between clusters, the balance η∗, and the knowledge of k, the number
of clusters into which to partition the set of samples.

The main idea of the algorithm Cluster is as follows. We really would like to find the subspace
spanned by the k centers {µr} and project all points onto that space. This projection would pre-
serve the distance between the centers and concentrate all the samples around their corresponding
expectations. Unfortunately, we do not know this subspace. Instead, we take the spectral rank-k
approximation to the data, and get a subspace that is close to the expected subspace. Then we
cluster the rank-k representations A

(k)
i , that are the projections of points Ai onto this subspace.

A large (but constant) fraction of the points are now correctly classified. At this point, in order
do cleanup and classify the rest of the points, different techniques have been employed for different
mixture models, none of which can be applied to our model.

The misclassification error occurs because the subspace spanned by the singular vectors might
not be balanced and hence the points might not be concentrated around their respective centers.
The same is true for the subspace spanned by the approximate centers obtained from the first stage.
To overcome this difficulty, we draw a set of

(
k
2

)
lines through the pairs of approximate centers.

We then use a “smoothening” procedure, the subroutine Balance, to find a set of balanced lines
that are close to each of these lines. Projecting onto each of the balanced lines results in the
points being concentrated around their centers, and the distances between corresponding centers
being preserved. Points belonging to a certain cluster will be close to the corresponding center on
each of k − 1 lines that pass through that center. In order to decondition the construction of the
projection vectors from the actual classification, the algorithm uses two sets of samples A and B.
The Balance subroutine takes in a vector v′ and an error measure ε and tries to find a vector ṽ
that is ε-close to v′ and has a good balance.

4 Proofs for General Separation

Before stating the actual lemmas, we motivate the broad picture. The rank-k approximation of
a matrix A is denoted as A(k), and projection matrices are denoted by π (suitably subscripted).
First, we will show that for distributions that obey the stated assumptions, A(k) is indeed a close
approximation to the expectation matrix Ā. In doing so, we have to prove that the error matrix
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Algorithm 1 Balance(v′, ε)
1: Sort the entries of v′ in absolute value, say |v′i1 | ≥ . . . ≥ |v′in |, and pick the t such that∑

j≤t−1(|v′ij | − |v′it |)
2 < ε2,

∑
j≤t(|v′ij − v′it+1

|)2 ≥ ε2. (easily done by binary search)
2: Now find |v′it | ≥ a ≥ |v′it+1

| such that
∑

j≤t−1(|v′ij | − a)2 = ε (using any standard numerical
algorithm)

3: Return sign(v′i1)a, . . . sign(v′it)a, v′tt+1
, . . . v′tn where sign is 1/ − 1 depending on whether v′i1 is

positive or negative.

Algorithm 2 Cluster(S, τ, k)
1: Randomly divide the set of samples into two sets A and B.
2: Find A(k), the rank-k approximation of the matrix A.
3: Find out a set of pseudo-centers from the (initially all unmarked) columns of A(k) using the

following method.

a. Randomly choose an unmarked column i as a new pseudo-center.

b. For all columns j such that ‖A(k)
i −A

(k)
j ‖ ≤ 2τ , mark the column j.

c. Continue the previous steps (a)-(b) till we get k centers or till there are at most wminm/4
columns left to mark that are not assigned anywhere.

4: Call each of the l columns Ai1 , . . . , Ail chosen in step (b) to be the l center estimates µ′1, . . . , µ
′
l.

5: For each of the pair of centers r, s construct v′rs = µ′r − µ′s.
6: We will correct the balance of each difference vector v′rs. Individually balance all the vectors

v′rs by invoking ṽrs = Balance(v′rs, 2τ).
7: For all r, s, project each center µ′r and µ′s onto ṽrs. Then project each Bi ∈ B onto each of the

vectors {ṽrs} and classify it as belonging to either cluster r or cluster s depending on whether
it is close to the projection of µ′r or µ′s on ṽrs.

8: A sample Bi is classified finally as belonging to cluster r if it is classified under r in the all tests
{v′rs} (for every s).

A − Ā has a small 2-norm, which indicates that the errors Ai − Āi cannot mislead the search for
the “best rank-k” subspace. This is done in Lemma 2.

Once we establish this closeness, it will follow that the center estimates that we construct are
close approximations to the original centers. That is, we will show that in the steps (2a)-(2c) of
the algorithm Cluster, we create k center estimates µ′1, . . . , µ

′
k, one for each distribution, and each

of them is not very far off from the corresponding µr. Unfortunately, this is not enough to show
that we can label all the points correctly. We still have to guarantee that balance of the subspace
spanned by the approximate centers {µ′1, . . . , µ′k} is at least η∗ so that the samples are concentrated
around their expectations upon projection to this space. This is shown in Lemma 4 and corollary
5. These lemmas lead the the final proof of Theorem 1.

Lemma 2. Under the stated assumptions about the probability distribution, with probability 1 −
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1
poly(m,n) −

1
n2 , the rank-k approximation matrix A(k) satisfies

‖A(k) − Ā‖F ≤ cσ
√

k
(√

m +
√

n log m log n
)

.

where c is a large enough constant.

Proof. This lemma follows by a standard argument from corollary 7. Corollary 7 is a special case
of a concentration result of independent interest, the proof of which will be presented in Section 5.
The proof of Lemma 2 itself is in the appendix.

The proof of the following lemma is akin to similar results from [19] and [8]. Note that at this
point we are interested not in a complete clustering, but in choosing good centers only.

Lemma 3. Given the matrix bounds from Lemma 2, with probability 1 − 1
4k , we choose only k

columns in step (2a) of Cluster. Further, the k columns {A(k)
ir

| r = 1 . . . k} chosen are each from

different clusters, and each satisfies ‖A(k)
ir

− µir‖ ≤ τ where µir is the center of the cluster that
column ir belongs to.

Proof. See appendix.

We now show that the Balance algorithm actually balances each vector v′rs = µ′r − µ′s.

Lemma 4. Suppose we are given a vector v′ with ‖v′‖ > 20τ . Then, if ṽ =Balance(v′, 2τ), and x

be such that ‖x− v′‖2 ≤ 2τ , then η(x) ≤ 2η(ṽ)‖v
′‖+2τ

‖v′‖−2τ ≤ 2η(ṽ).

Proof. Let us assume wlog that all vectors involved have only positive entries. Also, assume wlog
that the indices in both v′ and x are sorted according to the same order, i.e. v′1 ≥ v′2 . . . and
x1 ≥ x2 . . ..

First we claim that for any such x, ‖x‖∞ ≥ ‖ṽ‖∞. It is clear that x1 = ‖x‖∞. If x1 < ṽ1,
then xi < ṽi for i ≤ t (t is the index found in the algorithm Balance), and it is clear that
‖v′ − x‖ > ‖v′ − ṽ‖ = 2τ . This is a contradiction.

Now, ‖ṽ‖2 ≥ ‖v′‖2 − 2τ and ‖x‖2 ≤ ‖v′‖2 + 2τ . Hence, η(x) = ‖x‖2
‖x‖∞ ≤ ‖x‖2

‖ṽ‖∞ ≤ ‖ṽ‖2
‖ṽ‖∞

‖x‖2
‖ṽ‖2 ≤

η(ṽ)‖v
′‖+2τ

‖v′‖−2τ ≤ 2η(ṽ)

Corollary 5. For each pair of center r, s found in the step (3) of the algorithm, the vector ṽrs =
Balance(v′rs, 2τ) satisfies η(ṽrs) ≥ η∗.

Proof. Let vrs = µr − µs. Now from lemma 3, ‖µr − µ′r‖ ≤ τ . Clearly ‖vrs − v′rs‖ ≤ 2τ . Now by
the balance condition stated in Section 2, vrs has balance at least 2η∗, and invoking lemma 4, we
get that ṽrs has balance at least η∗.

Thus finally, we can prove the theorem 1.

Proof. We first give a sketch of the proof. By the results of Lemma 3, we know that each of
the k approximate centers µ′r is not too far from the actual center µr. We also know that after
balancing, each vector ṽrs is at most 2τ distant from the vector v′rs. Thus, we can show that the
difference between the approximate centers µ′r and µ′s will be well preserved on projection to ṽrs.
Also, by virtue of balancing, each sample will be close to its expectation upon projection to ṽrs.
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Thus, projecting all samples onto ṽrs and using the projection of the centers µ′r and µ′s to label the
points, the points that are actually from Pr and Ps are labeled correctly. For a single sample Bi

from Pr, testing for all
(
k
2

)
projections, pairwise comparisons will reveal the actual pseudo-center

r.
Here are the details. For each r, s, let the projection matrix onto ṽrs be denoted by π̃rs = ṽrsṽT

rs
‖ṽrs‖2 .

The projection on v′rs is similarly denoted as π′rs. The algorithm projects each sample Bi onto the
vector ṽrs and classifies it as belonging to distribution r or s depending on whether it is closer to
π̃rsµ

′
r or π̃rsµ

′
s. We first show that the projection of the approximate centers are separated.

‖π̃rs(µ′r − µ′s)‖ = ‖(π′rs + (π̃rs − π′rs))(µ
′
r − µ′s)‖

≥ ‖π′rs(µ
′
r − µ′s)‖ − ‖(π̃rs − π′rs)(µ

′
r − µ′s)‖

≥ ‖µ′r − µ′s‖ − ‖π̃rs − π′rs‖‖µ′r − µ′s‖ (4)

Using a simple consequence of of Stewart’s theorem (see Fact 13 in the Appendix), ‖π′rs − π̃rs‖ ≤
‖ṽrs−v′rs‖

‖ṽrs‖−‖ṽrs−v′rs‖
≤ 2τ

10τ−2τ ≤
1
4 . Employing this in equation (4), and noting that ‖µ′r − µr‖ is small,

‖π̃rs(µ′r − µ′s)‖ ≥ ‖µ′r − µ′s‖ − ‖π̃rs − π′rs‖‖µ′r − µ′s‖ ≥
3
4
‖µ′r − µ′s‖

≥ 3
4
(
‖µr − µs‖ − ‖µr − µ′r‖ − ‖µs − µ′s‖

)
≥ 3

4
(40τ − τ − τ) ≥ 20τ

Because each of the vectors ṽrs is η∗-balanced, we have that, for each sample Bi in B, with proba-
bility 1− 1

poly(n,m) , ‖πrs(Bi − E [Bi])‖ ≤ σ
√

log m. Thus, if the sample Bi is from the distribution
Pr, then the distance of πrs(Bi) from the projected center estimate πrs(µ′r) is at most

‖πrs(Bi − µ′r)‖ ≤ ‖πrs(Bi)− πrs(E [Bi])‖+ ‖πrs(E [Bi])− πrs(µ′r)‖

≤ σ
√

log m + ‖πrs(µr − µ′r)‖ ≤ σ
√

log m + 2τ

Also, the distance of πrs(Bi) from the other projected center estimate πrs(µ′s) is at least

‖πrs(Bi − µ′s)‖ ≥ ‖πrs(E [Bi])− πrs(µ′r)‖ − ‖πrs(Bi)− πrs(E [Bi])‖

≥ ‖πrs(µs − µ′r)‖ − σ
√

log m

≥ ‖πrs(µ′s − µ′r)‖ − ‖πrs(µs − µ′s)‖ − σ
√

log m

≥ 20τ − 2τ − σ
√

log n log m

Thus, ‖πrs(Bi−µ′r)‖ < ‖πrs(Bi−µ′s)‖, and hence, in the test that involves projection onto ṽrs, each
sample Bi that belongs to Pr is actually classified under Pr and each sample Bj belonging to Ps is
actually classified under Ps. Any sample belonging to other clusters may be classified under either
one of them. Thus, for each sample Bj , only one center µ′rj

beats all the other centers in pairwise
tests, and hence this is the actual cluster that Bj belongs to. The probability of correctness of the
algorithm is controlled by the following factors. The random matrix bound in Corollary 7 holds
with probability 1− m

poly(n,m) −
1
n2 . As per Lemma 3 the greedy clustering on the columns of A(k)

gives us a good set of centers with probability 1− 1
4k . All the projections of the m samples on

(
k
2

)
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balanced vectors are all concentrated with probability 1 − mk2

poly(n,m) . Thus the total probability of

success over the random matrix model is at least 1 − k2

n − 1
n2 and the (boostable) probability of

success of the random bits of the algorithm is 1− 1
4k .

Remark. Our clean-up phase is quite different compared to previous work in planted partition
model[8, 19]. The main paradigmatic changes are the following. We move from projecting on a
k-dimensional subspace to a number of one dimensional subspaces, and thereby avoiding so-called
“combinatorial projections”, which implicitly needed the fact that feature-space is clusterable (true
in the graph models, as “objects” and “features” are the same, they are vertices). We also avoid
upper bounding ‖π(µr) − µr‖ (Here, π is whatever the relevant projection is), and rather lower
bound ‖π(µr−µs)‖, r 6= s. The lower bound is implied by the earlier upper bound, and hence often
easier to prove and applicable in a wider range of situations.

5 A Concentration Result

In this section we prove the concentration result on the spectra of the random matrix A. We prove
a general bound on the matrix AAT from which the result on the norm of A− Ā follows. Note that
AAT =

∑m
i=1 AiA

T
i , where each AiA

T
i ∈ Rn×n. We denote E

[
AAT

]
= D. We will actually bound

a high moment of ||AAT ||, i.e., we will bound EA||AAT ||l for any even positive integer l.

Theorem 6. For any even l > 0, we have EA||AAT ||l ≤ 2l+2||D||l + 24l+2n2ll+4EA[maxi |Ai|2l].

Before proving this theorem, we first give a corollary of the theorem that is useful to us. We
apply the theorem to A− Ā (instead of to A). Note that E

[
(A− Ā)(A− Ā)T

]
= E

[
AAT

]
− ĀĀT .

Recall that the maximum variance of any Ai in any direction is at most σ2. Then it is easy to
see that for any unit length vector v, vT (E

[
AAT

]
− ĀĀT )v =

∑
i E
[
(vT Ai)2

]
− (E

[
vT A

]
)2 ≤

mσ2. So, ‖E
[
AAT

]
− ĀĀT ‖ ≤ mσ2; this bounds the ‖D‖ term of the theorem. For bounding

maxi ‖Ai −E [Ai] ‖, recall that for all i, ‖Ai − Āi‖ ≤ σ
√

n log m with probability 1− 1
poly(n,m) .

Now, we apply the Theorem (with l = log n) to A− Ā to get :

Corollary 7. Under the above conditions, we have for all θ > 0,

Pr
(
‖A− Ā‖ ≥ θσ(4

√
m + 100

√
n log n log m)

)
≤ 1

poly(m,n)
+

1
nlog θ−8

.

Proof. (of the Theorem) We pick an auxiliary set of random vectors B1, B2, . . . Bm, where for each
i, Bi has the same distribution as Ai; the Bi form the matrix B, say. We also pick another set of
auxiliary random variables - ζ1, ζ2, . . . ζm where A,B, ζ1, ζ2, . . . ζm are all independent and each ζi is
±1 with probability 1/2. We let ζ = (ζ1, ζ2, . . . ζm). Let p(A) denote the probability (or probability
density) of a particular A. We allow discrete as well as continuous distributions, but we will use
integral for both (and not bother to use sums for discrete distributions). Note that p(·) induces
a probability measure on AAT - say q(AAT ) and that Ep(AAT ) = Eq(AAT ). The starting point
of this proof (like many other proofs on eigenvalues of random matrices) is to observe that for a
symmetric matrix X, ‖X‖l ≤ Tr(X l). It is the trace of a power that we bound for most of the
proof. We will use two well-known facts stated below. (See for example, [6], IV.31).
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Proposition 1. For any even integer l, (Tr(X l))1/l is a norm (called a Schatten norm). Hence it
is a convex function of the entries of the matrix X and thus so is Tr(X l). Also, we have for any
two matrices X, Y , (Tr((X + Y )l))1/l ≤ (Tr(X l))1/l + (Tr(Y l))1/l.

It is also easy to see that Tr(X l) ≤ n‖X‖l (which means that for l ≥ log n, the 2-norm and the
Schatten norm are in fact equivalent). We will need the following two lemmas:

Lemma 8. EATr((AAT −D)l) ≤ 2l+1EAEζTr
((∑m

i=1 ζiAiA
T
i

)l)
.

Proof. See appendix.

Lemma 9. There is a constant c such that, for each fixed A, we have

EζTr

(∑
i

ζiAiA
T
i

)l
 ≤ ll/2 max

i
|Ai|lTr

(∑
i

AiA
T
i

)l
 1

2

.

Proof. This result is essentially proved in [21] (in the required higher moment form, see equ. (3.4),
pp 66). We will omit details here.

Using the two lemmas, and noting the relation between the two norms,

EA‖AAT ‖l ≤ 2l‖D‖l + 2lEA‖AAT −D‖l ≤ 2l‖D‖l + 22l+1nl(l/2)+1EA

(
max

i
‖Ai‖l‖AAT ‖l/2

)
≤ 2l‖D‖l + 22l+1nl(l/2)+1

(
EA max

i
‖Ai‖2l

)1/2 (
EA‖AAT ‖l

)1/2
.

Letting X =
√

EA‖AAT ‖l, the above gives a quadratic inequality for X; it is easy to see that the
inequality implies that X is at most the larger of its roots. This implies the Theorem.

6 Conclusion

A number of natural open questions arise from our work. One motivation for norm concentration
results in random matrix theory has been that these results are related to expansion properties in
graphs. Our theorem on matrices with limited dependence, however, does not imply a very strong
expansion property due to the extra logarithmic factors involved. It is an important question
whether these bounds can be strengthened further. Another interesting direction is to see whether
we can extend this framework to the learning of heavy tailed mixture models.

Besides the clustering problem, we may also consider a related problem in collaborative fil-
tering and matrix reconstruction [5, 10]: here one has some entries of say the product-customer
matrix A and have to infer the whole matrix assuming A was low-rank and possibly also a genera-
tive(probabilistic) model for A. There again results are for full independence. We believe our work
can be extended to tackle these problems under a limited independence assumption.
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Appendix

Linear Algebra Facts

We will use the following facts from linear algebra.

Fact 10. For a matrix X with rank k, we have that ‖X‖2
F ≤ k‖X‖2

2.

Fact 11. (McSherry). For a random matrix A, with Ā = E [A], such that Ā has rank-k, we have
that

‖A(k) − Ā‖2
F ≤ 8k‖A− Ā‖2

2.

The proof is by simple manipulation. For details, see [19].

Fact 12. Since ‖X‖2
F =

∑
i ‖Xi‖2

2, we have that the number of columns i such that ‖Xi‖2 is greater
than ‖X‖2

F /c is at most c.

Fact 13. If v and u be two vectors, and πu and πv be the projections onto these vectors, then
as long as the difference u − v is small with respect to the norm of v, the difference between the
projections can be effectively bounded as a function of the difference between the vectors.

‖πu − πv‖2 ≤
‖u− v‖2

‖v‖2 − ‖u− v‖2
(5)

The above fact is nothing but a very special case of Stewart’s Theorem [16].

Proof of Lemma 2

Proof. With probability 1− 1
poly(m,n) −

1
nlog θ−8 ,

‖A(k) − Ā‖2
F ≤ 8k‖A− Ā‖2

≤ 8k(θσ(4
√

m + 100
√

log n log m
√

n)2

≤ 8k(θσ(4
√

m + 100
√

n log n log m)2

Note that the first inequality is Fact 11, and the second is Corollary 7.

Proof of Lemma 3

Proof. Using Fact 12, it is easy to see that if the result from Lemma 2 is true, then the number of
columns i such that ‖A(k)

i − E [Ai] ‖ is greater than τ is at most ‖A(k)−E[A]‖2F
τ2 ≤ wmin

4k log k . We call a

sample “good” if it obeys ‖A(k)
i − E [Ai] ‖ ≤ 2τ . Else, it is referred to as “bad”. It is easy to see

that if a good sample is picked as center in step (2a), then all good samples from the corresponding
cluster are marked in the next step (2b) and are not picked henceforth. No good columns from any
other cluster are picked. Thus, if we show that we only pick good samples in step (2a), we will be
done, as there will then be exactly k columns picked, one from each cluster, and each of them will
be close to its center.

The probability that the first column picked is good is given by wmin/4k log k. After picking p
such columns, the total number of columns left is at least (k−p+1)wminm and thus the probability
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of picking a good column at the ith step is at most 1
4(k−p+1)k log k . Taking union bound over all the

steps, the total probability of choosing a bad node is at most

1
k log k

(
1
4k

+ . . . +
1

4(k − p + 1)
+ . . . +

1
8

)
≤ log k

4k log k
≤ 1

4k

Thus, with probability 1− 1
4k , we have that all samples picked in step (2a) are good, and hence

we have the claim in our lemma.

Proof of Lemma 8

Proof.

EATr
((

AAT −D
)l)

= EATr

((
AAT −

∫
X

q(X)X
)l
)

≤ EAEBTr
((

AAT −BBT
)l)

= EAEBTr

( m∑
i=1

(AiA
T
i −BiB

T
i )

)l


(Proposition (1)

= EAEBEζTr

( m∑
i=1

ζi(AiA
T
i −BiB

T
i )

)l


(since AiA
T
I −BiB

T
i is a symmetric random variable)

≤ 2lEAEBEζTr

( m∑
i=1

ζiAiA
T
i

)l
+ lEAEBEζTr

( m∑
i=1

ζiBiB
T
i

)l


(Proposition (1))

= 2l+1EAEζTr

(∑
i

ζiAiA
T
i

)l
 .

2
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