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‘Abstract

In this paper we examine the pOpular'CuthiIIQMéKee algorithm foriordering
rthe unknowns and equations in sparse, positive definite linear systems of
equations. For a given linear system Ax = b, this algbrithm is designed fo
produce a permutation matrix P such that PAPT has a émall bandwidfh. If we
iwish fo exploit zeroé in the band of A which oécur before the first nonzero
in each row and column, it has been experimentally observed that reversing
lthe ordering produced by the Cuthill-McKee aigorithm is often verf much better
than the original ordering in terms of the amount of stor&ge and work required
to factor A. We prove that for band elimination methods, the two orderings
are equivalent and that, surprisingly, the reverse ordering is always at least
as good as the original one when envelope elimination’ techniques are used. We
give a condition on the matrix A under which the reverse ordering is strictly
better than the original one, and we include several numerical experiments and

analyses of practical examples to illustrate our results.



1. Introduction

Consider the N by N sparse linear algebraic system
Ax = b ‘ ‘ | (1.1)
where A is symmetric and positive definite.. To solve (1.1) we faEtor'A
into the product LDLT, where L is unit lower triangular and D is a positive
diagonal matrix. We then solve Lz = b, Dy = 2z, and LT§ =‘z. Direct methods
such as this fall into two basic classes: the general sparse methods, which
ignore all the zé&os in L, and the band or envelope methods; which ignore
oﬁly those zeros outside a particular region of L. In this paper we
Consider mainly methods in the latter group, particularly with respect to
the effect on such methods of various ordering stratégies for the variabies
and equations of the system (1.1).

Let P be any permutation matrix. The permutéd 1inear system

PAPT (Px) = Pb o o 1.2)
remains sparse, symmetric, and positive defini;e; It ié well known that
PAPT poésésses a triangular factorization LDLT and that the factorization is
numerically stable [8], so that we may solve (1.2) rathef than (1.1). The
possible advantage of solving the permuted system is that the solution might
require a smaller number of arithmetic operations and/or storage locations.
For the methods with which we deal in this paper, this means that the band
or envelopg of PAPT may be smaller than the corresponding structure of A.

A popular ordefing strategy for band solution of (1.1) is the Cuthill-

McKee algorithm [2]. It tries to find a permutation matrix P for which PAPT has



a small Bandwidth. The reverse of thg Cuthill—McKée.ordexing has been
obsefved to produce a permutation métrik P for which PAPT has a small
envelope [3,1]. In this paper we give a‘detgiled aﬁalysié of these two
.ordéring stréfegies for band and envelope methods. In particular, we will
~ show that the Reverse Cuthill-McKee algorithm (RCM) always produces an
ordering at least as good as that produced with-fhe Cuthill-McKee algorithm
(CM); and we will give.estimates of the improvement with RCM for several

classes of problems arising in the application of the finite element method.



2. Definitions

let A be a given N by N symmétric or lower triangular matrix. ‘For the
:i—th row of A, i = 1,2,...,N, we define

= 0, - o T (2.1)

£,(4) = min {j:A,,
B (A) =i~ £ (4), | | (2.2)
‘w; (A) = [{kik>i and T2<i such that A, 2 0} ; (2.3)

that is, fi(A) is the colum subscript of the first non-zero element of the
i-th row of A, Bi(A) is the "bandwidth" of the i-th row of A, and wi(A) is
the "frontwidth" of the i-th row of A (see Figure 2.1). Following Cuthill
and McKee [2], we define the bandwidth éf A by
b(A) = max {|'i—j|:Aij + ¢} | | (.4)
and note that
Cb(A) = max {8, (&) | | | (2.5)

The band, envelope, and transpose envelope structures of A are now defined by

B(A) = {Aij: j<i and |i-j|<b(A)}, ' - 2.6)
Env(A) = {Aij:fi(A)SjSi}. 2.7)
Tenv(A) = {Aij:jsi and dk2i such that Akj z @}, | (2.8)

Clearly '
= Env(A#) (2.9)

Tenv(A)
where A# is the transpose of A about its minor diagonél.
We may easily express the size of the envelope of A in terms of the

B, (A) or the w, (A):
i i N N
|Env(a)| = N+ I B, (A) = N+ I u (a). - (2.10)
i=1 i=1 &
Assuming that A has the symmetric factorization LDLT, we define



PLLLG) = (4 14 = 0 and gy = O). @
“Since Fill(A) ¢ Env(A)‘(see [S]), the number of locations required to store
all of the nonzero entries of L is always}less'tﬁan or equel to |Env(A)].
Methods of the‘class considered in this paper do not exploit zeros within
‘the envelope (resp. band) of A, so that the storage for L will be exactly

IEnV(A)l (resp. |B(A)]). |

The following lemma on general sparse symmetrlc decompositions which

exploit all of the zeros in L is due to George.[4].

Lemma 2.1: If the symmetric factorization of metrix A into the product
LDLT requires 6(A) multiplicative operations, then

6(a) <3 i§1w (8) [, (4)+3] | - | (2.12)
with equality exactly when L has a full envelope.

In order to facllitate what follows, we lntroddce the'undirected
graph G(A) = (X(A) E(A)) associated with the symmetric matrlx A. Here
X(A) = {xl,xz,...,xN} is the set of vertices correspondlng to and labelled
as the rows of A, and E(A) is the set of edges, where {xi,xj} e E(A) if
and only if Aij # . The adjacency and the degree of a vertex xi e X(4)
are then defined by

Deg(x,) = |Adj(x)| = [{x;:lx;,%,) ¢ B - (2.13)
For any permutation matrix P, the graphs G(A) and G(PAPT) are structurally

identical, but the node labels in G(PAPT) have been permuted according to P.

We now restate several of our definitions in terms of the graph G(A):

fi(A)'s min {j:x; e Adj(x;)}3 (2.14)
Env(4) = {{xi,xj}:fi(A)sjsi}; , (2.15)
Tenv (A) = {{xi,xj}:jsi and 3 k>i such that x € Adj(xj)}; | (2.16)
Fill(A) = {{Xi,xj}t{xi,xj} ¢ E(A) and {xi,xj} e E(L)}. (2.17)




3. The Cuthill-McKee Algorithm

The ordering algorithm proposed by Cﬁthill andAMcKee [2] is most
easily described in terms of labelling the graph strud;ure'G(A) associated
with the N by N matrix A. Although our resﬁlts and the Cuthill-McKee:
élgorithm apply_t§ graphé with any number of connected components, we shall
hénceforth assume that G(A) is connected, or, equivalently, tﬂat the matri#
A is irreducible. In the following algorithm, Q, R, and S are first-in-
first-out data structures known as queues. The operation of addiﬁg an
element to a queue (denoted by Q <« Q,xi) is always performed by placing the
element at the end or back of the queue. The operation of removing the first
elemeﬁt of the queue (denoted by X * Top(Q)) éssigné the first or oldeét
element of the queue to x; and deletes that eiement frém the queue. Whenever

a set of vertices is assigned to a queue, the vertices are assumed to be

ordered by increasing vertex degree in G(A). The empty set is denoted by A.

Step 0: i« 1; Q+« A; R+ X(A);
x, « Top(R); S « Adj(x;) n R; R« R - §;

Step 1: while S # A do (i <« 1i + 1; x, « Top(S); Q <« Q,xi);
1f R = A then stop;

z < Top(Q); S « Adj(z) nR; R+« R - S; go to Step 1;

As noted in [2], the Cuthill-McKee (CM) ordering algorithm corresponds
to the generation of a spanning tree for the graph G(A) in .a breadth-first
or level-by-level fashion. Such a spanning tree is formed by adding each

new vertex as far to the top and left as possible.



Lemma 3.1: Let Ac be the matrix A ordered by the Cuthill-McKee algorithm.

Then Ac satisfies the monotone envelope property that if i < j, then fi < fj'
Furthermore, for i > 1, fi <i.
Proof: Let G(Ac) be the labelled graph associated with Ac’ and let

X = {x ,...,xN} be the ordered vertex set of G(Ac)f Ihgn the first part

1°%2

of the lemma is equivalént to the condition that if x, precedes xj in X, then

-

| min {sz2 € AdJCxi)} < Js= mln.{lzxz € AdJ(xj)}.
But this follows directly from the breadth-first nature of the Cuthill-McKee
algorithm, for if J < I, then the algorithm would have labelled xj before .

X

T contradicting the assumption that x; precedes xj.

The second part of the lemma follows immediately from the first, for
if there were a row with fi = i, then the monotone envelope property would

imply that Ac is reducible, contradicting the assumption made earlier.

The following theorem is a restatement, in our notation, of a result

of George and Liu [5]. By Lemma 3.1, both it and its corollary apply to Ac'

Theorem 3.2: Let A = LDLT with fi(A).< i for 1 > 1. Then Env(L) is fuli.

Corollary 3.3: Let A = LDLT with fi(A) < i for i > 1. Then the number of
nonzero entries in L is exactly IEnv(A)l, and the forward and backward

~solving can be done in 2‘]Env(A)I - N multiplications.

We now turn to the problem of estimating the number of multiplications
required for the symmetric factorization of an envelope-oriented N by N
matrix A. A is assumed to satisfy the monotone envelope property and the

3.1, the results

hypothesis thatvfi(A) < i for i > 1. Therefore, by Lemma

apply directly to the matrix Ac'



The factorization process can be defined by the following equations

'for i = l,z’otn,No

aij = aij - jzl aikzjk’ j= fi,fi+l,...,i—1 ' (3.1a)
k=max(fi,fj)
2'ij a}.j/djj? j= fi,fi-ljl,...,i-l ‘ (3.1b) -
i-1
dii = a; - T aiklik . (3.1c)
. -,

It should be clear that (3.1) is simply a variant form of the conventional
defining equations for the Choleski decomposition for symmetric matrices t7].
Here in (3.1), zeros to the left of the first nonzero in each row of A are
" exploited. Since A is assumed to be a monotone envelope matrix, (3.1a) can
be re&ritten in a simpler form as:

i-1

| _ ' = _ '
aij aij kﬁfaikzjk, j fi,fi+l,...,i 1. (3.1a')
' i

Recalling that Bi =1 - fi, we have the following theorem.

Theorem 3.4: Let A be a symmetric monotone envelope matrix satisfying
fi(A) < i for i > 1. Then the symmetric factorization of A requires
N ) v

8(A) = %’ z Bi(Bi+3) multiplications.
: i=2

Proof: From (3.1la') and Theorem 3.2 we observe that the a;j are all nonzero
. . . . 1 1

at positions within the envelope of A. Thus the products aikzjk and aikzik

appearing in (3.1a') and (3.le), respectively, involve nonzero operands. In

performing the i-th step defined by (3.1a'), (3.1b), and (3.1c), it is clear

that:

a) for j = fi,fi+1,...,i—1, the computation of aij requires j - fi



multiplications. Thus the total number of multiplications for (3.la') is:
i-1 1 |
RE R it
i
b) to compute zij for j = fi,fi+l,...,i—l regﬁires i- fi multiplications;
c) to compute dii requires i - fi mulFiplicatioﬁs. |
Hence for the i—tﬁ step pf the factorization, the total number of
ﬁultiplications required is |
$E-£)U - +3)=28(8, +3).
Summing on i, then, the entirekfactorization7piocéss requires
0(a) = 5 g B, (8, + 3)

i=2
multiplications, since Bl = @.

It should be noted that for a general sparse matrix, the operation.
count derived in Theorem 3.4 is only an upperAbound fof its sparse symmetric
factorization. Only for irreducible monotone envelope matrices whose
triangular factors have a full envelope is the bound achieved exactly. As
an immediate corollary of this observation, we have the well-known result

for band matrices [8].

Corollary 3.5: The number of multiplications required fof the symmetric

factorizationbof a band oriented matrix with bandwidth m is bounded by
2 mla + I)N.

Proof: For all i, Bi < m.



4. The Reverse Cuthill-McKee Ordering

In his study of envelope methods, George [3] considered the Reverse
Cuthill-McKee algorithm (RCM) which renumbers theACM'ordering in the reverse
way. Surprisingly, this simple modificatién often yields an ordering suéerior
to the original.ordering in terms of efficiency, although the bandwidth remains
ﬁnchanged. Experimental evidence of the superior performancé of the reversed
-ordering for matrices arising from the finite element method has been reéorted
_in the thesis of George [3] and in the survey paper by Cuthill [1]. In this
section we shall prove that the reverse scheme is always at least as good, as
far as storage and operation counts are concerned.

| Much of what we will develop in the remainder of this paper may be most
easily seen by examining several examples. .Thereforé, we now introduce three
graphs, and their associated systems of equations (1.1), which will be used to
f1lustrate our results. The simplest of these is the star graph with N vertices.
For any ordering of the vertices of.such a graph, we obtain an N by N system
# p if and only if the nodes x, and x  are connected in

ij i 3
the graph. Figure 4.1 illustrates a star graph with seven nodes ordered by

(l.l) in which A

ﬁoth the CM and RCM algorithms.

Our other two examples arise in the use. of finité difference or finite
element methods for the solution of partial differential equations. Consider
the mesh graph obtained by subdividing the unit squarevinto N = n2 small square
elements of side % (see Figure 4.2). We may derive an N’by N system (1.1) from
any ordering df the mesh points of the n by n square mesh by using one of

‘several techniques. A five-point finite difference system is obtained by
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consideriﬁg each meshvpoinﬁ to be adjacent to those vertices to which it is
" joined by a line in the mesh. Then the matrix A asSgciated with sqch a system
satisfies the condition that Aij # ¢ if and only if the hodes Xy and xj are
connected by a line in the mesh.
Alternatively, we may derive a nine-point finite element system by
" considering any @esh point X, to be adja?eﬁt to all those vertices which
‘border on small squa:ebelements containing X, The matrix A associated with
the system will then be such that Aij # § 1f and only if the‘nodes X and"xj
‘are both in the same small square element of the mesh. Figures 4,2 and 4.3
- respectively illustrate the CM and RCM orderings of the five- and nine—ﬁoint
square meshes. |

As before, we denote by Ac the matrix A ordered by the Cuthill-McKeé
algorithm. Let Ar be the matrix obtained by reversing the ordering. It

is easy to see that

_ Wt _ 33T _
Ar = Ac = PAP (4.1)
where
™ 1]
~ 1
P = .
‘ 1
1

The following lemma is immediate.

Lemma 4.1: Env(Ar) = Tenv(Ac).
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It is.helpful to cdnsider the labelled symmetric grapﬁs
G(A) = (X(4,),EA)) and G(A) = (X(A),E(A))) associated with the matrices
A and A_ respegtively. Let X(Ac) = {xl,xz,.Qt,xN} aﬁd X(Ar) = {yl,yz,...,yN},
where x; is thé i-th node in the Cuthill-McKee ordering and yj is the j-th .
node in the reverse ordering. As may be seen from Figures 4.1-4.3, G(Ac) and
G(Ar) are identical structurally, and x; and yN—i+l represent the same node
in fhe underlying unlabelled graph structure. We now have the following

theorem and its corollaries.

Theorem 4.2: lLet Ac be the matrix A ordered by the CM algorithm. Then
Tenv(A ) ¢ Env(A ).

Proof: Assume that for some i 2 j, (Ac)ij € Ten&(Ac) and (Ac)ij ¢ Env(Ac).
(Ac)ij e'Tenv(Ac) implies that Ak > i such that x € Adj(xj), (4.2)

and

3, @, # Ad3(x,). (4.3)

But (4.2) and (4.3) together imply that fk(Ac) < fi(Ac); contradicting Lemma

3.1. This proves the theorem.

Corollary 4.3: For all i, w (A ) < B (A )

“N-1i+1

Proof: If for some i, w (A ) > Bi(Ac), then there would be some element

N -i+1
(Ac)ij such that (Ac)ij € Tenv(Ac) Env(A ) and (A ) . f Env(A ) both held

This would contradict Theorem 4.2.

Corollary 4.4: lEnv(Ar)I < lEnv(Ac)l.

Proof: Theorem 4.2 and Lemma 4.1 together imply that
Env(A ) ¢ Env(A ).

The corollary follows immediately from this.
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Corollary 4.5: IFiLI(Ar)| < |F111(Ac)|_.
gsgggz- Let n(A) be the numbef of nonZeroé in the lower triangle of the
matrix A. By Lemma 3.1 and Theorem 3.2, the symﬁetriﬁ factorization of Ac
into the produét LDLT yields an L having a full envelope, so that
IFill(Ac)I = |Eav(@a) ]| - n(a). |
On the other hand, we have that
| IFill(Ar)l < lEnv(Ar)l - n(a).

With Corollary 4.4, this proves the result.

Corollary 4.6: e(Ar) < e(Ac).

Proof: On combining Lemmas 2.1 and 3.1, Theorem 3.4, and Corollary 4.3,

we have: :
1 X
O(Ar) =3 ki‘- mk(Ar)Iwk(Ar) + 3]
=1 .
1 ¥
S5 T By BBy (A + 3]
k=1 .
L N
-7 BB Q18 () + 3]

= e(Ac).
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5. Comparisons of CM and RCM

In the'previous section we saw that the RCM ordering was always at
least as good as the CM ordering for solving (1.1).. In this section we
~give a theorem concerning the conditions under which the RCM ordering is
actually strictly’better than the CM orderiﬁg. We alsé present several
examples and numerlcal experlments which illustrate the results of this
paper. Finally, we give an analysis of certain special cases of the finite
.element method in order to demonstrate the savings which are actually
 achievable in practical problems.

For a graph G(Ac) associatéd with the CM ordering, we will say that
G(Ac) has Property P if there exist vertices X xj, and X with 1 < j < k
such‘that X € Adj(xi) and for all % > Kk, X, £ Adj(xj). Then we have the

following theorem.

Theoreh 5.1: IEnv(Ar)l < lEnv(Ac)l if and only if G(Ac) has Property P.
Proof: G(Ac) has Property P if and only if there exist i < j < k such that
(Ac)kivs Env(Ac), (Ac)kj € Env(Ac), and (Ac)kj £ Tenv(Ac). But this is

equivalent to lTenv(Ac)I < lEnv(Ac)l, and the result follows by Lemma 4.1.

By examining Figure 4.2, we see that the five-point finite difference mesh

cannot satisfy Property‘F, so that we have the following corollary.

Corollary 5.2: For a rectangular five-point finite difference mesh,

lEnv(Ar)l = lEnv(Ac?I.
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In contrast, we can let 1 = 14, j = 21, and k = 23 in the CM ordering of the
nine-point finite element mesh shown in Figure 4.3. Then we see that the

mesh graph has Property '15', so that we have:

Corollary 5.3: For a rectangular nine-point finite element mesh,

lenv(Ar)I < lEnv(Ac)l. |

For both meshes, similar results hold for the storage requirements and

operation counts for the solution of the associated system of equations.
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" Example 1

For our first example we use the unlabeiled star graph with N nodes.
The best possible CM ordering is to start with one of the "planet" vertices,
and the resulting CM and RCM orderings for N = 7 are shown in Figure 4.1..

It is clear that for the star graphiwith N nodes,

. lEnV(Ar)l _ ZN -1 . -4_
[Env(a)) | N(g—l) r2 N
and
6(a) _3
e(Ac) N

This example shows that the RCM ordering can be significantly better than

the CM ordering.

Example 2

We now analyze some examples that arise in the‘applicatiop of the
finite element method. As before, we consider.the mesh obtained by
subdividing a unit square into n2 small square elements of side %3 and the
nine-point finite element system associated with it. We nuﬁber the nodes
starting at the lower left hand corner using the CM algorithm.\ The case

for n = 4 is given in Figure 4.3.

By inductive analysis for n 2 2:

)
(1) [Eav(@)| =1+ I (4k"-3k-1)

k=2
4 3 1 2 11
3 n- + 2 n - g—'n 4+ 1



|Eav(a )|

. (ii) mzl

LA Y

~(141) 6(A ) = 1 + I (4k™-2k"-5k+2)
c’ .
k=2 _
4 4 3 5 2 _ 5
=n + 3 n 2 n 6 n+2
e(Ar')
(iv) G(Ac) h 1,

The savings for different values of n are given in Table 5.1. It is of
interest to note that for this example, the relative savings with RCM
decrease with increasing n and that the well known natural, or row-by-row

mesh ordering is better than either CM or RCM.

Example 3

The savings ip Example 2 are not particularly impressive. We now
consider the same model problem with triangular elements (that is, each
smail square invFigure 4.3 is subdivided into two right triangles), and
its corresponding mesh system. The basic mesh is shown in Figure 5.1.

With quadratic elements, each triangle haé threé vertex unknowns and
three edge unknowns. The corresponding CM ordering is shown in Figure 5.2
for n = 2. The results given in Table 5.2 show that substantial savings
in computation and storage can be achieved if the RCM rather than the CM
ordeiing is used.

In the case of cubic elements having ten nodal unknowns, the savings
are even mofe dramatic. The CM ordering for n = 2 is shown in Figure 5.3.

The storage and work requirements for CM and RCM are given in Table 5.3.
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fiﬁaily, we consider elements with thrée vertex unknowns and a variable
number pa of interior unknowns. The caée for p¢ = 1 is shown in Figure 5.4.
The results of experlments for Py = ¢ and Py = 1 are shown in Tables 5.4 and
5.5.

Ihe examples in this section have shown.that dramatic savings may be
achieved by using RCM rather than CM. ‘we Qill now give a more detailed
analysis of the last example.

The basicbfinite element mesh.to be'analyzéd is shown in Figure 5.1,
and as abéﬁe, we consider generalizations of the basic mesh with éxactly
Py interiér nodes in each triéngulaf element. These meshes may be seen to
be simflifications of the first two meshes éresented in Ekample 3, so that
‘the results which are obtained now will be closely related to the
experimental results givén.there. In fact, our investigations have led to
the conclusion that the difference between the oM aﬁd RCM orderings is only
increased by the addition of either interior or edge nodes to the regular
fight triangular mesh of Figure S.l.

As mentioned in Section 3, the CM algofithm,generates a breadth-first
spannihg tree for the mesh graph. A sample spanning'tree‘for the mesh in
Figure 5.4 is shown in Figure 5.5. The analysis below will be based upon
the characteristics of the generated spanning tree and the relationship

between CM and RCM which is formalized in the following lemma.

Lemma 5.4: Consider a spanning tree generated by the CM algorithm, numbered

top-to-bottom, left-to-right (see Figure 5.5). For any node x; on level 2

of the tree:
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-Bi(Ac) =i - fi(Ac) = (the number of nodes to the left of %, on level

2) + (the number of nodes to the right of the father of X
" on level 2-1) + i.
If there are N nodes in the tree, x, will be relabelled X4 in the RCM
i -i+1
ordering., Then, if x; has a son on level 2+1:

B (A ) =N-1i+1- (A ) = (the number of nodes to the rlght

N-i+1l N i+l

" of x; on level 2) + (the number of nodes to the left of
thekrightmost son of x, on level 2+1) + 1.

And if x.i has no sons in the tree:

(A )=N-i+1-f (A ) = (the number of nodes strictly’

N-i+l N-i+1

between x; and the rightmost node on level 2 or 2+1 which

is a member of Adj(xi)) + 1.
Proof: The proof of this lemma is quite simple. From Figures 5.5 and 5.6,

it can easily be seen that for the CM ordering, is the father of x;

£, (A)

in the spanning tree. Since there must be exactly i - £,(A ) - 1 nodes
panning y 1 (A

between xg A ) and x, on levels 2-1 and %, the result is immediate for CM.
iYe :

For the RCM ordering, x is the rightmost son of X, if one exists,

fN 141 (4,) _
so there are N - i + 1 - N +1(A ) - 1 nodes between them on levels & and

2+1. And if X, has no sons, then f (A ) is the index in the RCM ordering

, N-i+1
of that node in Adj(xi) which is labelled last by M. Since the CM spanning
tree is labelled top-to-bottom and left-to-right, this node must be the

fightmost member of Adj(xi) on either level £ or level 2+1.

Using the simple counting argument of Lemma 5.4, we can obtain the

following results, which are stated without proof.
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Theorem 5.5: For a regular right triangular mesh with (n+-1)2 vertex nodes

~and p¢ interior nodes in each triangular element:

2 3

Wi wiN

(€} I’Env(Ac) |

i) IEnv(Ar)l

IEnv(A )| 1
(111) TEnv(A 7 - Zpy + 1°

(2p¢ + D" n™ + O(n )3

(2p¢ + 1) n3 + O(n )

From these results we see that the use of RCM leads to very impressive

storage reductions for even small values
3, the reduction would be nearly 70% for
savings may be expected in the operation
suggests that the additional savings due

a triangular finite element mesh are not

nodes, and the results given in Tables 5.

of Py For Py = 1, as in Examplé
large values of n. Even larger
counts for factorization. Analysis
to the placement of edge nodes in
so dramatic as those for interior

3 and 5.5 bear this out.
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6. Conclusion

In [31 George advocates the use of envelope methods rather than band
ﬁethods, and this may lead to substantiai savingS‘in many cases of practical
interest. 1In the implementation of envelope mephédé; the use of Jenning;'
envelope storage scheme is quite attractivé. The schéme stores the rows of
the envelope of fhe lower triangle of the N by N coefficient matrix A in a
1inear array. An additional N address pointers are used to iocate the
positions of the diagonal elements in the main storage array. From Lemma
5.4, we see that these pointers may be obtained as a direct by-product of
the CM ordering process, for to compute them we need only the value of fi
for each i. 1In order to get the pointers for the RCM ordering, we merely

note that for each i, £ (Ar) = min(N-i+1,N-k+l), where k is the lafgest

N-i+l
label assigned by CM to a member of Adj(x,). For non-interior nodes, x, will
e K

usually be the rightmost son of x, in the CM spanning tree.

i
In terms of both storage and computation, we have seen that the RCM
ordering algorithm is superior to th; original CM scheme for envelope
methods.' Intuitively, we can attribute this to the fact that CM attempts
to minimize the ordering distance between a graph node and its unordered
neighbors, while RCM attempts to minimize the distance between a vertex and
:its ordered neighbors. Hence it appears that CM tends to minimize ITenv(A)I,
while RCM tends to minimize lEnv(A)]. For.systems to be solved with envelope
methods, then, RCM is a better ordering to use than CM.F However, we should

note that for some finite element structures (e.g. the nine-point finite

element grid) neither RCM nor CM is the best ordering to use.
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The savings found in Example 3 and the following analysis are dramatic.
This demonstrates that in practical applications where the CM ordering scheme
is popular (such as structuralvanalysis), it is possible to substaﬁtially
reduce the amount of storage and the number of multiplicative operations
vrequired for the direct solution of systems (1.1); And although all of our
examples were based on symmetric systems, it is clearbthat envelope methoas
with the RCM ordering may be applied to systems (l.l) in which only the
zero structure of A is symmetric. Thus our reéults may have an important
effect on the solution of linear systems of equations which arisevin many

physical problems to which envelope methods are not currently applied.
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Figure 4.1: Orderings for Star Graph with N = 7 Nodes
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Figure 4.2: Orderings for a Five-point Finite Difference Mesh
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Figure 4.3: Orderings for a Nine-point Finite'Element Mesh
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Figure 5.1: 3 by 3 Regular Right Tfiangular Mesh

Ordered by the CM Algorithm
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12 11

Figure 5.2: 2 by 2 Regular Right Triangular Mesh with

Element 2-—6l Ordered by the CM Algorithm

1 :
We adopt the notation in [3], where the two parts of the hyphenated name
refer respectively to the degree of the interpolating polynomial and to the

number of nodes associated with thé‘elemeht.



Figure 5.3: 2 by 2 Regular Right Triangular Mesh with Element

3-10 Ordered by CM Algorithm
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Figure 5.4: 3 by 3 Regular Right Triéngular Mesh with

Py = 1 Interior Nodes, Ordered by CM
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Figure 5.5: Spanning Tree Generated by the CM Algorithm for

a 3 by 3 Right Trianguiar_Mesh with Py = 1.
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Figure 5.6: Spanning Tree Associated with the CM Ordering

-

for the 2 by 2 Regular Square Hesh




Table 5.1

Theoretical Amount Saved for the Regular Square Mesh

Problem Storage » Operation Count
2 | '

n ‘N = (nt+l) Nonzeros i CM RCM |RCM/CM cM RCM RCM/CM
4 25 97 171 147 .860 726 530 .730

8 ‘81 353 997 885 .888 7324 5812 .793
16 269 1345 6665 6185 .928 89336 . 77736 .870
32 1089 4749 48401 46417 .959 1231088 | 1140816 .927

Table 5.2

Experimental Savings for the Regular Right

- Triangular Mesh with Element 2-6

Problem Storage . Operation Count
2
N = (2n+1) Nonzeros CcM RCM | RCM/CM M RCM fRCM/CM
|
81 360 1078 755 .700 8758 4183 ! 478
121 555 1971 1310 .665 19214 8324 433
169 792 3244 2077 .640 36808 14857 404
225 1071 4961 3088 .622 64040 24506 .383
289 1392 7186 | 4375| .609 103914 38115 | .367
361 1755 9983 5970 .598 159698 56600 354




Table 5.3

Ekperimental Savings for the Regular Right

Triangular Mesh with Element 3-10

Problem Storage Operation Count
n N = (3n+l)2 Nonzeros M RCM | RCM/CM cM RCM RCM/CM
3 100 684 2002 1252 .625 25002 9429 .377
4 168 1200 | 4558 2518 .552 74528 22046 .296
5 256 1860 8626 4396 .510 172453 43624 .253
6 361 2664 14530 l 6994 | .481 i 342564 77574 L‘,226 i
Table 5.4
Experimental Results for the Regular Right
Triangular Mesh with Element 1-3
Problem Storage Operation Count
n N = (n+l)2 Nonzeros cM RCM | RCM/CM cM RCM RCM/CM
4 25 81 115 115¢{ 1.00 320 320 1.00
8 81 289 597 597 | 1.00 2616 2616 | 1.00
16 289 1089 3689 36891 1.00 27472 27472 | 1.00
32 1089 4225 25553 ! 25553 ] 1.00 344608 | 344608 1.00




" Table 5.5

Experimental Results for the Regular Right

Triangular Mesh with p0v='l

PoNY *

:
N

4

Problem Storage Operation Count ;
n|N = (n+i)2+2n2‘ Nonzeros M . RCM RCM/CM i o RCM RCM/CM
, = N
4 57 177 529 323 .611 é 2975 1088 .366
-8 209 673 3687 1781 .483 E 38037 8808 .232 &
16 801 2625 27139 | 11177} .412 ? 527081 89200 .169 ?
32 3137 10369 | 207099 | 77393 374 !7761201 1083232 .140

PV S




