
Zernike polynomials are a basis of orthogonal polynomials on the unit disk that are a natural
basis for representing smooth functions. They arise in a number of applications including
optics and atmospheric sciences. In this paper, we provide a self-contained reference on
Zernike polynomials, algorithms for evaluating them, and what appear to be new numerical
schemes for quadrature and interpolation. We also introduce new properties of Zernike
polynomials in higher dimensions. The quadrature rule and interpolation scheme use a
tensor product of equispaced nodes in the angular direction and roots of certain Jacobi
polynomials in the radial direction. An algorithm for finding the roots of these Jacobi
polynomials is also described. The performance of the interpolation and quadrature schemes
is illustrated through numerical experiments. Discussions of higher dimensional Zernike
polynomials are included in appendices.
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1 Introduction

Zernike polynomials are a family of orthogonal polynomials that are a natural basis for
the approximation of smooth functions on the unit disk. Among other applications,
they are widely used in optics and atmospheric sciences and are the natural basis for
representing Generalized Prolate Spheroidal Functions (see [12]).

In this report, we provide a self-contained reference on Zernike polynomials, including
tables of properties, an algorithm for their evaluation, and what appear to be new
numerical schemes for quadrature and interpolation. We also introduce properties of
Zernike polynomials in higher dimensions and several classes of numerical algorithms
for Zernike polynomial discretization in Rn. The quadrature and interpolation schemes
provided use a tensor product of equispaced nodes in the angular direction and roots of
certain Jacobi polynomials in the radial direction. An algorithm for the evaluation of
these roots is also introduced.

The structure of this paper is as follows. In Section 2 we introduce several technical
lemmas and provide basic mathematical background that will be used in subsequent
sections. In Section 3 we provide a recurrence relation for the evaluation of Zernike
polynomials. Section 4 describes a scheme for integrating Zernike polynomials over the
unit disk. Section 5 contains an algorithm for the interpolation of Zernike polynomials. In
Section 6 we give results of numerical experiments with the quadrature and interpolation
schemes introduced in the preceding sections. In Appendix A, we describe properies of
Zernike polynomials in Rn. Appendix B contains a description of an algorithm for
the evaluation of Zernike polynomials in Rn. Appendix C includes an description of
Spherical Harmonics in higher dimensions. In Appendix D, an overview is provided of
the family of Jacobi polynomials whose roots are used in numerical algorithms for high-
dimensional Zernike polynomial discretization. Appendix D also includes a description
of an algorithm for computing their roots. Appendix E contains notational conventions
for Zernike polynomials.

2 Mathematical Preliminaries

In this section, we introduce notation and several technical lemmas that will be used in
subsequent sections.

For notational convenience and ease of generalizing to higher dimensions, we will be
denoting by Sℓ

N (θ) : R→ R, the function defined by the formula

Sℓ
N (θ) =





(2π)−1/2 if N = 0,
sin(Nθ)/

√
π if ℓ = 0, N > 0,

cos(Nθ)/
√
π if ℓ = 1, N > 0.

(1)

where ℓ ∈ {0, 1}, and N is a non-negative integer. In accordance with standard practice,
we will denoting by δi,j the function defined by the formula

δi,j =

{
1 if i = j,
0 if i 6= j.

(2)

The following lemma is a classical fact from elementary calculus.
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Lemma 2.1. For all n ∈ {1, 2, ...} and for any integer k ≥ n+ 1,

1

k

k∑

i=1

sin(nθi) =

∫ 2π

0
sin(nθ)dθ = 0 (3)

and

1

k

k∑

i=1

cos(nθi) =

∫ 2π

0
cos(nθ)dθ = 0 (4)

where

θi = i
2π

k
(5)

for i = 1, 2, ..., k.

The following technical lemma will be used in Section 4.

Lemma 2.2. For all m ∈ {0, 1, 2, ...}, the set of all points (N,n, ℓ) ∈ R3 such that
ℓ ∈ {0, 1}, N,n are non-negative integers, and N + 2n ≤ 2m − 1 contains exactly
2m2 + 2m elements.

Proof. Lemma 2.2 follows immediately from the fact that the set of all pairs of non-
negative integers (N,n) satisfying N + 2n ≤ 2m− 1 has m2 +m elements where m is a
non-negative integer. �

The following is a classical fact from elementary functional analysis. A proof can be
found in, for example, [13].

Lemma 2.3. Let f1, ..., f2n−1 : [a, b] → R be a set of orthonormal functions such that
for all k ∈ {1, 2, ..., 2n− 1},

∫ b

a
fk(x)dx =

n∑

i=1

fk(xi)ωidx (6)

where xi ∈ [a, b] and ωi ∈ R. Let φ : [a, b] → R be defined by the formula

φ(x) = a1f1(x) + ...+ an−1fn−1(x). (7)

Then,

ak =

∫ b

a
φ(x)fk(x)dx =

n∑

i=1

φ(xi)fk(xi)ωi. (8)

for all k ∈ {1, 2, ..., n− 1}.
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2.1 Jacobi Polynomials

In this section, we define Jacobi polynomials and summarize some of their properties.

Jacobi Polynomials, denoted P
(α,β)
n , are orthogonal polynomials on the interval (−1, 1)

with respect to weight function

w(x) = (1− x)α(1 + x)β . (9)

Specifically, for all non-negative integers n,m with n 6= m and real numbers α, β > −1,
∫ 1

−1
P (α,β)
n (x)P (α,β)

m (x)(1− x)α(1 + x)βdx = 0 (10)

The following lemma, provides a stable recurrence relation that can be used to evaluate
a particular class of Jacobi Polynomials (see, for example, [1]).

Lemma 2.4. For any integer n ≥ 1 and N ≥ 0,

P
(N,0)
n+1 (x) =

(2n+N + 1)N2 + (2n+N)(2n+N + 1)(2n+N + 2)x

2(n+ 1)(n+N + 1)(2n+N)
P (N,0)
n (x)

− 2(n+N)(n)(2n+N + 2)

2(n+ 1)(n+N + 1)(2n+N)
P

(N,0)
n−1 (x), (11)

where

P
(N,0)
0 (x) = 1 (12)

and

P
(N,0)
1 (x) =

N + (N + 2)x

2
. (13)

The Jacobi Polynomial P
(N,0)
n is defined in (10).

The following lemma provides a stable recurrence relation that can be used to evaluate
derivatives of a certain class of Jacobi Polynomials. It is readily obtained by differenti-
ating (11) with respect to x,

Lemma 2.5. For any integer n ≥ 1 and N ≥ 0,

P
(N,0)′
n+1 (x) =

(2n+N + 1)N2 + (2n+N)(2n+N + 1)(2n+N + 2)x

2(n+ 1)(n+N + 1)(2n+N)
P (N,0)′
n (x)

− 2(n+N)(n)(2n+N + 2)

2(n+ 1)(n+N + 1)(2n+N)
P

(N,0)′
n−1 (x)

+
(2n+N)(2n+N + 1)(2n+N + 2)

2(n+ 1)(n+N + 1)(2n+N)
P (N,0)
n (x), (14)

where

P
(N,0)′
0 (x) = 0 (15)

and

P
(N,0)′
1 (x) =

(N + 2)

2
. (16)

The Jacobi Polynomial P
(N,0)
n is defined in (10) and P

(N,0)′
n (x) denotes the derivative of

P
(N,0)
n (x) with respect to x.
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The following lemma, which provides a differential equation for Jacobi polynomials,
can be found in [1]

Lemma 2.6. For any integer n,

(1−x2)P (k,0)′′
n (x)+(−k−(k+2)x)P (k,0)′

n (x)+n(n+k+1)P (k,0)
n (x) = 0 (17)

for all x ∈ [0, 1] where P
(N,0)
n is defined in (10).

Remark 2.1. We will be denoting by P̃n : [0, 1] → R the shifted Jacobi polynomial
defined for any non-negative integer n by the formula

P̃n(x) =
√
2n+ 2P (1,0)

n (1− 2x) (18)

where P
(1,0)
n is defined in (10). The roots of P̃n will be used in Section 4 and Section 5

in the design of quadrature and interpolation schemes for Zernike polynomials.

It follows immediately from the combination of (10) and (18) that the polynomials
P̃n are orthogonal on [0, 1] with respect to weight function

w(x) = x. (19)

That is, for any non-negative integers i, j,

∫ 1

0
P̃i(r)P̃j(r)rdr = δi,j . (20)

2.2 Gaussian Quadratures

In this section, we introduce Gaussian Quadratures.

Definition 2.1. A Gaussian Quadrature with respect to a set of functions f1, ..., f2n−1 :
[a, b] → R and non-negative weight function w : [a, b] → R is a set of n nodes, x1, ..., xn ∈
[a, b], and n weights, ω1, ..., ωn ∈ R, such that, for any integer j ≤ 2n− 1,

∫ b

a
fj(x)w(x)dx =

n∑

i=0

ωifj(xi). (21)

The following is a well-known lemma from numerical analysis. A proof can be found
in, for example, [13].

Lemma 2.7. Suppose that p0, p1, ... : [a, b] → R is a set of orthonormal polynomials
with respect to some non-negative weight function w : [a, b] → R such that polynomial pi
is of degree i. Then,

i) Polynomial pi has exactly i roots on [a, b].

ii) For any non-negative integer n and for i = 0, 1, ..., 2n− 1, we have

∫ b

a
pi(x)w(x)dx =

n∑

k=1

ωkpi(xk) (22)
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where x1, ..., xn ∈ [a, b] are the n roots of pn and where weights ω1, ..., ωn ∈ R solve the
n× n system of linear equations

n∑

k=1

ωkpj(xk) =

∫ b

a
w(x)pj(x)dx (23)

with j = 0, 1, ..., n− 1.

iii) The weights, ωi, satisfy the identity,

ωi =

(
n−1∑

k=0

pk(xi)
2

)−1

(24)

for i = 1, 2, ..., n.

2.3 Zernike Polynomials

In this section, we define Zernike Polynomials and describe some of their basic properties.
Zernike polynomials are a family of orthogonal polynomials defined on the unit ball

in Rn. In this paper, we primarily discuss Zernike polynomials in R2, however nearly all
of the theory and numerical machinery in two dimensions generalizes naturally to higher
dimensions. The mathematical properties of Zernike polynomials in Rn are included in
Appendix A.

Zernike Polynomials are defined via the formula

Zℓ
N,n(x) = RN,n(r)S

ℓ
N (θ) (25)

for all x ∈ R2 such that ‖x‖ ≤ 1, (r, θ) is the representation of x in polar coordinates,
N,n are non- negative integers, Sℓ

N is defined in (1), and RN,n are polynomials of degree
N + 2n defined by the formula

RN,n(x) = xN
n∑

k=0

(−1)k
(
n+N + p

2

k

)(
n

k

)
(x2)n−k(1− x2)k, (26)

for all 0 ≤ x ≤ 1. Furthermore, for any non-negative integers N,n,m,

∫ 1

0
RN,n(x)RN,m(x)x dx =

δn,m
2(2n+N + 1)

(27)

and

RN,n(1) = 1. (28)

We define the normalized polynomials RN,n via the formula

RN,n(x) =
√
2(2n+N + 1)RN,n(x), (29)

so that
∫ 1

0

(
RN,n(x)

)2
x dx = 1, (30)
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where N and n are non-negative integers. We define the normalized Zernike polynomial,

Z
ℓ
N,n, by the formula

ZN,n(x) = RN,n(r)S
ℓ
N (θ) (31)

where x ∈ R2 satisfies ‖x‖ ≤ 1, and N,n are non-negative integers. We observe that

Z
ℓ
N,n has L2 norm of 1 on the unit disk.

In an abuse of notation, we use Zℓ
N,n(x) and Zℓ

N,n(r, θ) interchangeably where (r, θ)

is the polar coordinate representation of x ∈ R2.

3 Numerical Evaluation of Zernike Polynomials

In this section, we provide a stable recurrence relation (see Lemma 3.1) that can be used
to evaluate Zernike Polynomials.

Lemma 3.1. The polynomials RN,n, defined in (26) satisfy the recurrence relation

RN,n+1(x) =

− ((2n+N + 1)N2 + (2n+N)(2n+N + 1)(2n+N + 2)(1− 2x2))

2(n+ 1)(n+N + 1)(2n+N)
RN,n(x)

− 2(n+N)(n)(2n+N + 2)

2(n+ 1)(n+N + 1)(2n+N)
RN,n−1(x) (32)

where 0 ≤ x ≤ 1, N is a non-negative integer, n is a positive integer, and

RN,0(x) = xN (33)

and

RN,1(x) = −xN
N + (N + 2)(1− 2x2)

2
. (34)

Proof. According to [1], for any non-negative integers n and N ,

RN,n(x) = (−1)nxNP (N,0)
n (1− 2x2), (35)

where 0 ≤ x ≤ 1, N and n are nonnegative integers, and P
(N,0)
n denotes a Jacobi

polynomial (see (10)).
Identity (32) follows immediately from the combination of (35) and (11). �

Remark 3.1. The algorithm for evaluating Zernike polynomials using the recurrence
relation in Lemma 3.1 is known as Kintner’s method (see [9] and, for example, [6]).

4 Quadrature for Zernike Polynomials

In this section, we provide a quadrature rule for Zernike Polynomials.
The following lemma follows immediately from applying Lemma 2.7 to the polyno-

mials P̃n defined in (18).

8



Lemma 4.1. Let {r1, ..., rm} be the m roots of P̃m (see (18)) and {ω1, ..., ωm} the m
weights of the Gaussian quadrature (see (21)) for the polynomials P̃0, P̃1, ..., P̃2m−1 (see
(18)). Then, for any polynomial q of degree at most 2m− 1,

∫ 1

0
q(x)xdx =

m∑

i=1

q(ri)ωi. (36)

The following theorem provides a quadrature rule for Zernike Polynomials.

Theorem 4.2. Let {r1, ..., rm} be the m roots of P̃m (see (18)) and {ω1, ..., ωm} the m
weights of the Gaussian quadrature (see (21)) for the polynomials P̃0, P̃1, ..., P̃2m−2 (see
(18)). Then, for all ℓ ∈ {0, 1} and for all N,n ∈ {0, 1, ...} such that N + 2n ≤ 2m− 1,

∫

D
Zℓ
N,n(x)dx =

m∑

i=1

RN,n(ri)ωi

2m∑

j=1

2π

2m
Sℓ
N (θj) (37)

where RN,n is defined in (26), θj is defined by the formula

θj = j
2π

2m
(38)

for j ∈ {1, 2, ..., 2m}, and D ⊆ R2 denotes the unit disk. Furthermore, there are exactly
2m2 +m Zernike Polynomials of degree at most 2m− 1.

Proof. Applying a change of variables,

∫

D
Zℓ
N,n(x)dx =

∫ 1

0

∫ 2π

0
RN,n(r)S

ℓ
N (θ)rdrdθ, (39)

where Zℓ
N,n is a Zernike polynomial (see (25)) and where RN,n is defined in (27). Chang-

ing the order of integration of (39), we obtain

∫

D
Zℓ
N,n(x)dx =

∫ 1

0
rRN,n(r)dr

∫ 2π

0
Sℓ
N (θ)dθ. (40)

Applying Lemma 2.1 and Lemma 4.1 to (40), we obtain

∫

D
Zℓ
N,n(x)dx =

m∑

i=1

RN,n(ri)ωi

2m∑

j=1

2π

2m
Sℓ
N (θj) (41)

for N + 2n ≤ 2m − 1. The fact that there are exactly 2m2 +m Zernike polynomials of
degree at most 2m−1 follows immediately from the combination of Lemma 2.2 with the
fact that there are exactly m Zernike polynomials of degree at most 2m− 1 that are of
the form Zℓ

0,n. �

Remark 4.1. It follows immediately from Lemma 4.2 that for all m ∈ {1, 2, ...}, placing
m nodes in the radial direction and 2m nodes in the angular direction (as described in
Lemma 4.2), integrates exactly the 2m2 +m Zernike polynomials on the disk of degree
at most 2m− 1.
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Remark 4.2. The n roots of P̃n (see 20) can be found by using, for example, the
algorithm described in Section 10.3.

Remark 4.3. For Zernike polynomial discretization in Rk+1, roots of the polynomials
P̃ k
n are used, where P̃ k

n is defined by the formula

P̃ k
n (x) =

√
k + 2n+ 1P (k,0)

n (1− 2x). (42)

Properties of this class of Jacobi polynomials are provided in Appendix D in addition to
an algorithm for finding their roots.

The following remark illustrates that the advantage of quadrature rule (37) is espe-
cially noticeable in higher dimensions.

Remark 4.4. Quadrature rule (37) integrates all Zernike polynomials up to order 2m−1
using them roots of P̃m (see (20)) as nodes in the radial direction. Using Guass-Legendre
nodes instead of roots of P̃m would require using m+ 1 nodes in the radial direction.

The high-dimensional equivalent of quadrature rule (37) uses the roots of P̃ p+1
m (see

(107)) as nodes in the radial direction. Using Gauss-Legendre nodes instead of these
nodes would require using an extra p+ 1 nodes in the radial direction or approximately
(p+ 1)mp+1 extra nodes total.

(−1, 0)

(0, 1)

(1, 0)

(0,−1)

Figure 1: An illustration of locations of Zernike polynomial quadrature nodes with 20

radial nodes and 40 angular nodes.

The following remark shows that we can reduce the total number of nodes in quadra-
ture rule (37) while still integrating the same number of functions.
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node θ

1 0.0000000000000000
2 0.1570796326794897
3 0.3141592653589793
4 0.4712388980384690
5 0.6283185307179586
6 0.7853981633974483
7 0.9424777960769379
8 1.0995574287564280
9 1.2566370614359170
10 1.4137166941154070
11 1.5707963267948970
12 1.7278759594743860
13 1.8849555921538760
14 2.0420352248333660
15 2.1991148575128550
16 2.3561944901923450
17 2.5132741228718340
18 2.6703537555513240
19 2.8274333882308140
20 2.9845130209103030
21 3.1415926535897930
22 3.2986722862692830
23 3.4557519189487720
24 3.6128315516282620
25 3.7699111843077520
26 3.9269908169872410
27 4.0840704496667310
28 4.2411500823462210
29 4.3982297150257100
30 4.5553093477052000
31 4.7123889803846900
32 4.8694686130641790
33 5.0265482457436690
34 5.1836278784231590
35 5.3407075111026480
36 5.4977871437821380
37 5.6548667764616280
38 5.8119464091411170
39 5.9690260418206070
40 6.1261056745000970

node r

1 0.0083000442070672
2 0.0276430533525631
3 0.0575344576368137
4 0.0973041282065463
5 0.1460632469641095
6 0.2027224916634053
7 0.2660161417643405
8 0.3345303010944863
9 0.4067344665164935
10 0.4810157112964263
11 0.5557147130369888
12 0.6291628194156031
13 0.6997193231640498
14 0.7658081136864078
15 0.8259528873644578
16 0.8788101326763239
17 0.9231991629103781
18 0.9581285688822349
19 0.9828187818547442
20 0.9967238933309499

Table 1: Locations in the radial and angular directions of Zernike polynomial quadrature

nodes with 40 angular nodes and 20 radial nodes.

Remark 4.5. Quadrature rule (37) integrates all Zernike polynomials of order up to
2m− 1 using a tensor product of 2m equispaced nodes in the angular direction and the
m roots of P̃m (see 18) in the radial direction. However, for large enough N and small
enough j, ZN,n(rj) is of magnitude smaller than machine precision, where rj denotes the
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jth smallest root of P̃m. As a result, in order to integrate exactly ZN,n for large N , we
can use fewer equispaced nodes in the angular direction at radius rj .

5 Approximation of Zernike Polynomials

In this section, we describe an interpolation scheme for Zernike Polynomials.
We will denote by r1, ..., rM the M roots of P̃M (see 18).

Theorem 5.1. Let M be a positive integer and f : D → R be a linear combination of
Zernike polynomials of degree at most M − 1. That is,

f(r, θ) =
∑

i,j

αℓ
i,jZ

ℓ
i,j(r, θ) (43)

where i, j are non-negative integers satisfying

i+ 2j ≤ M − 1 (44)

and where Z
ℓ
i,j(r, θ) is defined by (31) and Sℓ

i is defined by (1). Then,

αℓ
i,j =

M∑

k=1

[
Ri,j(rk)ωk

2M−1∑

l=1

2π

2M − 1
f(rk, θl)S

ℓ
i (θl)

]
(45)

where r1, ..., rM denote the M roots of P̃M (see 18) and θl is defined by the formula

θl = l
2π

2M − 1
(46)

for l = 1, 2, ..., 2M − 1.

Proof. Clearly,

αℓ
i,j =

∫

D
f(r, θ)Z

ℓ
i,j =

∫ 2π

0

∫ 1

0
f(r, θ)Ri,j(r)S

ℓ
i (θ)rdrdθ. (47)

Changing the order of integration of (47) and applying Lemma 2.1 and Lemma 2.3, we
obtain

αℓ
i,j =

∫ 1

0
Ri,j(r)r

∫ 2π

0
f(r, θ)Sℓ

i (θ)dθdr

=

∫ 1

0
Ri,j(r)r

2M−1∑

l=1

2π

2M − 1
f(r, θl)S

ℓ
i (θl)dr.

(48)

Applying Lemma 2.3 to (48), we obtain

αℓ
i,j =

M∑

k=1

[
Ri,j(rk)ωk

2M−1∑

l=1

2π

2M − 1
f(rk, θl)S

ℓ
i,j(θl)

]
. (49)

�
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Remark 5.1. Suppose that f : D → R is a linear combination of Zernike polynomials
of degree at most M−1. It follows immediately from Theorem 5.1 and Theorem 4.2 that
we can recover exactly the M2/2+M/2 coefficients of the Zernike polynomial expanison
of f by evaluation of f at 2M2 −M points via (45).

Remark 5.2. Recovering the M2/2+M/2 coefficients of a Zernike expansion of degree
at most M − 1 via (49) requires O(M3) operations by using a FFT to compute the sum

2M−1∑

l=1

2π

2M − 1
f(r, θl)S

ℓ
i,j(θl) (50)

and then naively computing the sum

αℓ
i,j =

M∑

k=1

Ri,j(rk)ωk

2M−1∑

l=1

2π

2M − 1
f(rk, θl)S

ℓ
i,j(θl). (51)

Remark 5.3. Sum (51) can be computed using an FMM (see, for example, [2]) which
would reduce the evaluation of sum (49) to a computational cost of O(M2 log(M)).

Remark 5.4. Standard interpolation schemes on the unit disk often involve representing
smooth functions as expansions in non-smooth functions such as

Tn(r)S
ℓ
N (θ) (52)

where n and N are non-negative integers, Tn is a Chebyshev polynomial, and Sℓ
N is

defined in (1). Such interpolation schemes are amenable to the use of an FFT in both the
angular and radial directions and thus have a computational cost of only O(M2 log(M))
for the interpolation of an M -degree Zernike expansion.

However, interpolation scheme (45) has three main advantages over such a scheme:
i) In order to represent a smooth function on the unit disk to full precision, a Zernike
expansion requires approximately half as many terms as an expansion into functions of
the form (52) (see Figure 3).
ii) Each function in the interpolated expansion is smooth on the disk.
iii) The expansion is amenable to filtering.

6 Numerical Experiments

The quadrature and interpolation formulas described in Sections 4 and 5 were imple-
mented in Fortran 77. We used the Lahey/Fujitsu compiler on a 2.9 GHz Intel i7-3520M
Lenovo laptop. All examples in this section were run in double precision arithmetic.

In each table in this section, the column labeled “nodes” denotes the number of
nodes in both the radial and angular direction using quadrature rule (37). The column
labeled “exact integral” denotes the true value of the integral being tested. This number
is computed using adaptive gaussian quadrature in extended precision. The column
labeled “integral via quadrature” denotes the integral approximation using quadrature
rule (37).

13



We tested the performance of quadrature rule (37) in integrating three different
functions over the unit disk. In Table 2 we approximated the integral over the unit disk
of the function f1 defined by the formula

f1(x, y) =
1

1 + 25(x2 + y2)
. (53)

In Table 3 we use quadrature rule (37) to approximate the integral over the unit disk of
the function f2 defined by the formula

f2(r, θ) = J100(150r) cos(100θ)). (54)

In Table 4, we use quadrature rule (37) to approximate the integral over the unit disk
of the function f3 defined by the formula

f3(r, θ) = P8(x)P12(y). (55)

We tested the performance of interpolation scheme (43) on two functions defined on the
unit disk.

In Figure 2 we plot the magnitude of the coefficients of the Zernike polynomials R0,n

for n = 0, 1, ..., 10 using interpolation scheme (43) with 21 nodes in the radial direction
and 41 in the angular direction on the function f1 defined in (53). All coeficients of
other terms were of magnitude smaller than 10−14. In Table 5 we list the interpolated
coefficients of the Zernike polynomial expansion of the function f4 defined by the formula

f4(x, y) = P2(x)P4(y) (56)

where Pi is the ith degree Legendre polynomial. Listed are the coefficients using inter-
polation scheme (43) with 5 points in the radial direction and 9 points in the angular
direction of Zernike polynomials

RN,n cos(Nθ) (57)

where N = 0, 1, ..., 8 and n = 0, 1, 2, 3, 4. All other coefficients were of magnitude smaller
than 10−14. We interpolated the Bessel function

J10(10r)cos(10θ) (58)

using interpolation scheme (43) and plot the resulting coefficients of the Zernike polyno-
mials

R10,n cos(10θ) (59)

for n = 0, ..., 16 in Figure 3. All other coefficients were approximately 0 to machine
precision. In Figure 3, we plot the coefficients of the Chebyshev expansion obtained via
Chebyshev interpolation of the radial component of (58).
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radial nodes angular nodes exact integral integral via quadrature relative error

5 10 0.4094244859413851 0.4097244673896003 0.732691× 10−3

10 20 0.4094244859413851 0.4094251051077367 0.151228× 10−5

15 30 0.4094244859413851 0.4094244870531256 0.271537× 10−8

20 40 0.4094244859413851 0.4094244859432513 0.455821× 10−11

25 50 0.4094244859413851 0.4094244859413883 0.791759× 10−14

30 60 0.4094244859413851 0.4094244859413848 0.630994× 10−15

35 70 0.4094244859413851 0.4094244859413850 0.142503× 10−15

40 80 0.4094244859413851 0.4094244859413858 0.181146× 10−14

Table 2: Quadratures for f1(x, y) = (1+25(x2+y2))−1 over the unit disk several different

numbers of nodes
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radial nodes angular nodes exact integral integral via quadrature

5 10 0 0.2670074163846569× 10−1

10 20 0 0.2606355680939063× 10−2

15 30 0 0.3119143925398078× 10−15

20 40 0 0.0000000000000000× 100

25 50 0 0.3228321977714574× 10−1

30 60 0 0.4945592102178045× 10−16

35 70 0 0.1147861841710902× 10−16

40 80 0 0.8148891073315595× 10−16

45 90 0 −0.7432759692263743× 10−16

50 100 0 0.3207999037057322× 10−1

55 110 0 −0.1399753743762347× 10−15

60 120 0 0.3075136040459932× 10−16

65 130 0 −0.9458788981593222× 10−16

70 140 0 0.2045957446273746× 10−17

75 150 0 0.2416178317504225× 10−16

Table 3: Quadratures for f2(r, θ) = J100(150r) cos(100θ) using several different numbers

of nodes

16



radial nodes angular nodes integral via quadrature exact integral relative error

5 10 −0.8998055487754142× 10−2 −0.1527947805159123× 10−2 −0.830191× 100

10 20 0.1655201967553289× 10−1 −0.1527947805159123× 10−2 −0.109231× 101

15 30 −0.1527947805159138× 10−2 −0.1527947805159123× 10−2 −0.979221× 10−14

20 40 −0.1527947805159132× 10−2 −0.1527947805159123× 10−2 −0.567665× 10−14

25 50 −0.1527947805159108× 10−2 −0.1527947805159123× 10−2 0.102180× 10−13

30 60 −0.1527947805159144× 10−2 −0.1527947805159123× 10−2 −0.134820× 10−13

35 70 −0.1527947805159128× 10−2 −0.1527947805159123× 10−2 −0.269641× 10−14

40 80 −0.1527947805159155× 10−2 −0.1527947805159123× 10−2 −0.210036× 10−13

Table 4: Quadratures for f3(x, y) = P8(x)P12(y) (see (55)) using several different num-

bers of nodes

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

coefficient

N = 0

Figure 2: magnitudes of coefficients of interpolation of f1(x, y) = (1+25(x2+ y2))−1 for

N = 0
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N n = 0 n = 1 n = 2 n = 3 n = 4

0 0.02942 0.03297 −0.11998 0.01373 0.53776× 10−16

1 −0.48788× 10−16 0.76567× 10−17 0.99670× 10−18 0.22059× 10−16 -
2 0.02967 0.11495 −0.00647 −0.90206× 10−16 -
3 0.58217× 10−16 −0.73297× 10−16 0.19321× 10−17 - -
4 0.04926 −0.03238 −0.13010× 10−16 - -
5 0.77604× 10−16 0.10474× 10−15 - - -
6 0.09714 −0.11102× 10−15 - - -
7 −0.18100× 10−16 - - - -
8 0.77241× 10−16 - - - -

Table 5: Coefficients of the interpolation of the function f4(x, y) = P2(x)P4(y) into

Zernike polynomials of degree at most 8. The entry corresponding to N,n is the coeffi-

cient of RN,n cos(Nθ).

1 5 10 15 20 25 30 35 40

0

−5

−10

−15

−20

coefficient

lo
g
1
0
of

co
effi

ci
en
t

Zernike
Chebyshev

Figure 3: Coefficients of the Zernike expansion for N = 10 of J10(10r) cos(10θ) using

Chebyshev and Zernike interpolation in the radial direction with 81 points in the angular

direction and 41 points in the radial direction.
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7 Appendix A: Mathematical Properties of Zernike Poly-

nomials

In this appendix, we define Zernike polynomials in Rp+2 and describe some of their basic
properties. Zernike polynomials, denoted Zℓ

N,n, are a sequence of orthogonal polynomials
defined via the formula

Zℓ
N,n(x) = RN,n(‖x‖)Sℓ

N (x/‖x‖), (60)

for all x ∈ Rp+2 such that ‖x‖ ≤ 1, where N and n are nonnegative integers, Sℓ
N are the

orthonormal surface harmonics of degree N (see Appendix C), and RN,n are polynomials
of degree 2n+N defined via the formula

RN,n(x) = xN
n∑

m=0

(−1)m
(
n+N + p

2

m

)(
n

m

)
(x2)n−m(1− x2)m, (61)

for all 0 ≤ x ≤ 1. The polynomials RN,n satisfy the relation

RN,n(1) = 1, (62)

and are orthogonal with respect to the weight function w(x) = xp+1, so that

∫ 1

0
RN,n(x)RN,m(x)xp+1 dx =

δn,m
2(2n+N + p

2 + 1)
, (63)

where

δn,m =

{
1 if n = m,
0 if n 6= m.

(64)

We define the polynomials RN,n via the formula

RN,n(x) =
√
2(2n+N + p/2 + 1)RN,n(x), (65)

so that

∫ 1

0

(
RN,n(x)

)2
xp+1 dx = 1, (66)

where N and n are nonnegative integers. We define the normalized Zernike polynomial,

Z
ℓ
N,n, by the formula

ZN,n(x) = RN,n(‖x‖)Sℓ
N (x/‖x‖) (67)

for all x ∈ Rp+2 such that ‖x‖ ≤ 1, where N and n are nonnegative integers, Sℓ
N are

the orthonormal surface harmonics of degree N (see Appendix C), and RN,n is defined

in (61). We observe that Z
ℓ
N,n has L2 norm of 1 on the unit ball in Rp+2.

In an abuse of notation, we refer to both the polynomials Zℓ
N,n and the radial poly-

nomials RN,n as Zernike polynomials where the meaning is obvious.
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Remark 7.1. When p = −1, the Zernike polynomials take the form

Z1
0,n(x) = R0,n(|x|) = P2n(x), (68)

Z2
1,n(x) = sgn(x) ·R1,n(|x|) = P2n+1(x), (69)

for −1 ≤ x ≤ 1 and nonnegative integer n, where Pn denotes the Legendre polynomial
of degree n and

sgn(x) =





1 if x > 0,
0 if x = 0,
−1 if x < 0,

(70)

for all real x.

Remark 7.2. When p = 0, the Zernike polynomials take the form

Z1
N,n(x1, x2) = RN,n(r) cos(Nθ)/

√
π, (71)

Z2
N,n(x1, x2) = RN,n(r) sin(Nθ)/

√
π, (72)

where x1 = r cos(θ), x2 = r sin(θ), and N and n are nonnegative integers.

7.1 Special Values

The following formulas are valid for all nonnegative integers N and n, and for all 0 ≤
x ≤ 1.

RN,0(x) = xN , (73)

RN,1(x) = xN
(
(N + p/2 + 2)x2 − (N + p/2 + 1)

)
, (74)

RN,n(1) = 1, (75)

R
(k)
N,n(0) = 0 for k = 0, 1, . . . , N − 1, (76)

R
(N)
N,n(0) = (−1)nN !

(
n+N + p

2

n

)
. (77)

7.2 Hypergeometric Function

The polynomials RN,n are related to the hypergeometric function 2F1 (see [1]) by the
formula

RN,n(x) = (−1)n
(
n+N + p

2

n

)
xN 2F1

(
−n, n+N +

p

2
+ 1;N +

p

2
+ 1;x2

)
,

(78)

where 0 ≤ x ≤ 1, and N and n are nonnegative integers.

7.3 Interrelations

The polynomials RN,n are related to the Jacobi polynomials via the formula

RN,n(x) = (−1)nxNP
(N+ p

2
,0)

n (1− 2x2), (79)

20



where 0 ≤ x ≤ 1, N and n are nonnegative integers, and P
(α,β)
n , α, β > −1, denotes the

Jacobi polynomials of degree n (see [1]).
When p = −1, the polynomials RN,n are related to the Legendre polynomials via the

formulas

R0,n(x) = P2n(x), (80)

R1,n(x) = P2n+1(x), (81)

where 0 ≤ x ≤ 1, n is a nonnegative integer, and Pn denotes the Legendre polynomial
of degree n (see [1]).

7.4 Limit Relations

The asymptotic behavior of the Zernike polynomials near 0 as the index n tends to
infinity is described by the formula

lim
n→∞

(−1)nRN,n

(
x
2n

)

(2n)p/2
=

JN+p/2(x)

xp/2
, (82)

where 0 ≤ x ≤ 1, N is a nonnegative integer, and Jν denotes the Bessel functions of the
first kind (see [1]).

7.5 Zeros

The asymptotic behavior of the zeros of the polynomials RN,n as n tends to infinity

is described by the following relation. Let x
(n)
N,m be the mth positive zero of RN,n, so

that 0 < x
(n)
N,1 < x

(n)
N,2 < . . .. Likewise, let jν,m be the mth positive zero of Jν , so that

0 < jν,1 < jν,2 < . . ., where Jν denotes the Bessel functions of the first kind (see [1]).
Then

lim
n→∞

2nx
(n)
N,m = jN+p/2,m, (83)

for any nonnegative integer N .

7.6 Inequalities

The inequality

|RN,n(x)| ≤
(
n+N + p

2

n

)
(84)

holds for 0 ≤ x ≤ 1 and nonnegative integer N and n.

7.7 Integrals

The polynomials RN,n satify the relation

∫ 1

0

JN+p/2(xy)

(xy)p/2
RN,n(y)y

p+1 dy =
(−1)nJN+p/2+2n+1(x)

xp/2+1
, (85)

where x ≥ 0, N and n are nonnegative integers, and Jν denotes the Bessel functions of
the first kind.
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7.8 Generating Function

The generating function associated with the polynomials RN,n is given by the formula

(
1 + z −

√
1 + 2z(1− 2x2) + z2

)N+p/2

(2zx)N+p/2xp/2
√
1 + 2z(1− 2x2) + z2

=
∞∑

n=0

RN,n(x)z
n, (86)

where 0 ≤ x ≤ 1 is real, z is a complex number such that |z| ≤ 1, and N is a nonnegative
integer.

7.9 Differential Equation

The polynomials RN,n satisfy the differential equation

(1− x2)y′′(x)− 2xy′(x) +

(
χN,n +

1
4 − (N + p

2)
2

x2

)
y(x) = 0, (87)

where

χN,n = (N + p
2 + 2n+ 1

2)(N + p
2 + 2n+ 3

2), (88)

and

y(x) = xp/2+1RN,n(x), (89)

for all 0 < x < 1 and nonnegative integers N and n.

7.10 Recurrence Relations

The polynomials RN,n satisfy the recurrence relation

2(n+ 1)(n+N + p
2 + 1)(2n+N + p

2)RN,n+1(x)

= −
(
(2n+N + p

2 + 1)(N + p
2)

2 + (2n+N + p
2)3(1− 2x2)

)
RN,n(x)

− 2n(n+N + p
2)(2n+N + p

2 + 2)RN,n−1(x), (90)

where 0 ≤ x ≤ 1, N is a nonnegative integer, n is a positive integer, and (·)n is defined
via the formula

(x)n = x(x+ 1)(x+ 2) . . . (x+ n− 1), (91)

for real x and nonnegative integer n. The polynomials RN,n also satisfy the recurrence
relations

(2n+N + p
2 + 2)xRN+1,n(x) = (n+N + p

2 + 1)RN,n(x) + (n+ 1)RN,n+1(x),
(92)

for nonnegative integers N and n, and

(2n+N + p
2)xRN−1,n(x) = (n+N + p

2)RN,n(x) + nRN,n−1(x), (93)

for integers N ≥ 1 and n ≥ 0, where 0 ≤ x ≤ 1.
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7.11 Differential Relations

The Zernike polynomials satisfy the differential relation given by the formula

(2n+N + p
2)x(1− x2)

d

dx
RN,n(x)

=
(
N(2n+N + p

2) + 2n2 − (2n+N)(2n+N + p
2)x

2
)
RN,n(x)

+ 2n(n+N + p
2)RN,n−1(x), (94)

where 0 < x < 1, N is a nonnegative integer, and n is a positive integer.

8 Appendix B: Numerical Evaluation of Zernike Polyno-

mials in Rp+2

The main analytical tool of this section is Lemma 8.1 which provides a recurrence relation
that can be used for the evaluation of radial Zernike Polynomials, RN,n.

According to [1], radial Zernike polynomials, RN,n, are related to Jacobi polynomials
via the formula

RN,n(x) = (−1)nxNP
(N+ p

2
,0)

n (1− 2x2), (95)

where 0 ≤ x ≤ 1, N and n are nonnegative integers, and P
(α,0)
n is defined in (10).

The following lemma provides a relation that can be used to evaluate the polynomial
RN,n.

Lemma 8.1. The polynomials RN,n satisfy the recurrence relation

2(n+ 1)(n+N + p
2 + 1)(2n+N + p

2)RN,n+1(x)

= −
(
(2n+N + p

2 + 1)(N + p
2)

2 + (2n+N + p
2)3(1− 2x2)

)
RN,n(x)

− 2n(n+N + p
2)(2n+N + p

2 + 2)RN,n−1(x), (96)

where 0 ≤ x ≤ 1, N is a nonnegative integer, n is a positive integer, and (·)n is defined
via the formula

(x)n = x(x+ 1)(x+ 2) . . . (x+ n− 1), (97)

for real x and nonnegative integer n.

Proof. It is well known that the Jacobi polynomial P
(α,0)
n (x) satisfies the recurrence

relation

a1nP
(α,0)
n+1 = (a2n + a3nx)P

(α,0)
n (x)− a4nP

(α,0)
n−1 (x) (98)

where

a1n = 2(n+ 1)(n+ α+ 1)(2n+ α)

a2n = (2n+ α+ 1)α2

a3n = (2n+ α)(2n+ α+ 1)(2n+ α+ 2)

a4n = 2(n+ α)(n)(2n+ α+ 2)

(99)

Identity (96) follows immediately from the combination of (98) and (99). �
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9 Appendix C: Spherical Harmonics in Rp+2

Suppose that Sp+1 denotes the unit sphere in Rp+2. The spherical harmonics are a
set of real-valued continuous functions on Sp+1, which are orthonormal and complete
in L2(Sp+1). The spherical harmonics of degree N ≥ 0 are denoted by S1

N , S2
N , . . . ,

Sℓ
N , . . . , S

h(N)
N : Sp+1 → R, where

h(N) = (2N + p)
(N + p− 1)!

p!N !
, (100)

for all nonnegative integers N .
The following theorem defines the spherical harmonics as the values of certain har-

monic, homogeneous polynomials on the sphere (see, for example, [3]).

Theorem 9.1. For each spherical harmonic Sℓ
N , where N ≥ 0 and 1 ≤ ℓ ≤ h(N) are

integers, there exists a polynomial Kℓ
N : Rp+2 → R which is harmonic, i.e.

∇2Kℓ
N (x) = 0, (101)

for all x ∈ Rp+2, and homogenous of degree N , i.e.

Kℓ
N (λx) = λNKℓ

N (x), (102)

for all x ∈ Rp+2 and λ ∈ R, such that

Sℓ
N (ξ) = Kℓ

N (ξ), (103)

for all ξ ∈ Sp+1.

The following theorem is proved in, for example, [3].

Theorem 9.2. Suppose that N is a nonnegative integer. Then there are exactly

(2N + p)
(N + p− 1)!

p!N !
(104)

linearly independent, harmonic, homogenous polynomials of degree N in Rp+2.

The following theorem states that for any orthogonal matrix U , the function Sℓ
N (Uξ)

is expressible as a linear combination of S1
N (ξ), S2

N (ξ), . . . , S
h(N)
N (ξ) (see, for example, [3]).

Theorem 9.3. Suppose that N is a nonnegative integer, and that S1
N , S2

N , . . . , S
h(N)
N : Sp+1 →

R are a complete set of orthonormal spherical harmonics of degree N . Suppose further
that U is a real orthogonal matrix of dimension p + 2 × p + 2. Then, for each integer
1 ≤ ℓ ≤ h(N), there exists real numbers vℓ,1, vℓ,2, . . . , vℓ,h(N) such that

Sℓ
N (Uξ) =

h(N)∑

k=1

vℓ,kS
k
N (ξ), (105)

for all ξ ∈ Sp+1. Furthermore, if V is the h(N) × h(N) real matrix with elements vi,j
for all 1 ≤ i, j ≤ h(N), then V is also orthogonal.
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Remark 9.1. From Theorem (9.3), we observe that the space of linear combinations of
functions Sℓ

N is invariant under all rotations and reflections of Sp+1.

The following theorem states that if an integral operator acting on the space of
functions Sp+1 → R has a kernel depending only on the inner product, then the spherical
harmonics are eigenfunctions of that operator (see, for example, [3]).

Theorem 9.4 (Funk-Hecke). Suppose that F : [−1, 1] → R is a continuous function,
and that SN : Sp+1 → R is any spherical harmonic of degree N . Then

∫

Ω
F (〈ξ, η〉)SN (ξ) dΩ(ξ) = λNSN (η), (106)

for all η ∈ Sp+1, where 〈·, ·〉 denotes the inner product in Rp+2, the integral is taken over
the whole area of the hypersphere Ω, and λN depends only on the function F .

10 Appendix D: The Shifted Jacobi Polynomials P
(k,0)
n (2x−

1)

In this section, we introduce a class of Jacobi polynomials that can be used as quadrature
and interpolation nodes for Zernike polynomials in Rp+2.

We define P̃ k
n (x) to be the shifted Jacobi polynomials on the interval [0, 1] defined

by the formula

P̃ k
n (x) =

√
k + 2n+ 1P (k,0)

n (1− 2x) (107)

where k > −1 is a real number and where P
(k,0)
n is defined in (10). It follows immediately

from (107) that P̃ k
n (x) are orthogonal with respect to weight function xk. That is, for

all non-negative integers n, the Jacobi polynomial P̃ k
n is a polynomial of degree n such

that

∫ 1

0
P̃ k
i (x)P̃

k
j (x)x

kdx = δi,j (108)

for all non-negative integers i, j where k > −1.
The following lemma, which follows immediately from the combination of Lemma 2.6
and (107), provides a differential equation satisfied by P̃ k

n .

Lemma 10.1. Let k > −1 be a real number and let n be a non-negative integer. Then,
P̃ k
n satisfies the differential equation,

r − r2P̃ k′′
n (r) + (k − rk + 1− 2r)P̃ k′

n (r) + n(n+ k + 1)P̃ k
n (r) = 0. (109)

for all r ∈ (0, 1).

The following recurrence for P̃ k
n follows readily from the combination of Lemma 107

and (11).
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Lemma 10.2. For all non-negative integers n and for all real numbers k > −1,

P̃ k
n+1(r) =

(2n+N + 1)N2 + (2n+N)(2n+N + 1)(2n+N + 2)(1− 2r)

2(n+ 1)(n+N + 1)(2n+N)

·
√
2n+ k + 1√

2(n+ 1) + k + 1
P̃ k
n (r)

− 2(n+N)(n)(2n+N + 2)

2(n+ 1)(n+N + 1)(2n+N)

√
2(n− 1) + k + 1√
2(n+ 1) + k + 1

P̃ k
n−1(r)

(110)

10.1 Numerical Evaluation of the Shifted Jacobi Polynomials

The following observations provide a way to evaluate P̃ k
n and its derivatives.

Observation 10.1. Combining (11) with (107), we observe that P̃ k
n (x) can be evaluated

by first evaluating P
(k,0)
n (1 − 2x) via recurrence relation (11) and then multiplying the

resulting number by

√
k + 2n+ 1. (111)

Observation 10.2. Combining (14) with (107), we observe that the polynomial P̃ k′
n (x)

(see (107)), can be evaluated by first evaluating P
(k,0)′
n (1 − 2x) via recurrence relation

(14) and then multiplying the resulting number by

−2
√
k + 2n+ 1. (112)

10.2 Prüfer Transform

In this section, we describe the Prüfer Transform, which will be used in Section 10.3. A
more detailed description of the Prüfer Transform can be found in [7].

Lemma 10.3 (Prüfer Transform). Suppose that the function φ : [a, b] → R satisfies the
differential equation

φ′′(x) + α(x)φ′(x) + β(x)φ(x) = 0, (113)

where α, β : (a, b) → R are differential functions. Then,

dθ

dx
= −

√
β(x)−

(
β′(x)

4β(x)
+

α(x)

2

)
sin(2θ), (114)

where the function θ : [a, b] → R is defined by the formula,

φ′(x)

φ(x)
=
√
β(x) tan(θ(x)). (115)

Proof. Introducing the notation

z(x) =
φ′(x)

φ(x)
(116)
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for all x ∈ [a, b], and differentiating (116) with respect to x, we obtain the identity

φ′′

φ
=

dz

dx
+ z2(x). (117)

Substituting (117) and (116) into (113), we obtain,

dz

dx
= −(z2(x) + α(x)z(x) + β(x)). (118)

Introducing the notation,

z(x) = γ(x) tan(θ(x)), (119)

with θ, γ two unknown functions, we differentiate (119) and observe that,

dz

dx
= γ(x)

θ′

cos2(θ)
+ γ′(x) tan(θ(x)) (120)

and squaring both sides of (119), we obtain

z(x)2 = tan2(θ(x))γ(x)2. (121)

Substituting (120) and (121) into (118) and choosing

γ(x) =
√
β(x) (122)

we obtain

dθ

dx
= −

√
β(x)−

(
β′(x)

4β(x)
+

α(x)

2

)
sin(2θ). (123)

�

Remark 10.3. The Prüfer Transform is often used in algorithms for finding the roots of
oscillatory special functions. Suppose that φ : [a, b] → R is a special function satisfying
differential equation (113). It turns out that in most cases, coefficient

β(x) (124)

in (113) is significantly larger than

β′(x)

4β(x)
+

α(x)

2
(125)

on the interval [a, b], where α and β are defined in (113).
Under these conditions, the function θ (see (115)), is monotone and its derivative

neither approaches infinity nor 0. Furthermore, finding the roots of φ is equivalent to
finding x ∈ [a, b] such that

θ(x) = π/2 + kπ (126)

for some integer k. Consequently, we can find the roots of φ by solving well-behaved
differential equation (123).
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Remark 10.4. If for all x ∈ [a, b], the function
√
β(x) satisfies

√
β(x) >

β′(x)

4β(x)
+

α(x)

2
, (127)

then, for all x ∈ [a, b], we have dθ
dx < 0 (see (114)) and we can view x : [−π, π] → R as a

function of θ where x satisfies the first order differential equation

dx

dθ
=

(
−
√
β(x)−

(
β′(x)

4β(x)
+

α(x)

2

)
sin(2θ)

)−1

. (128)

10.3 Roots of the Shifted Jacobi Polynomials

The primary purpose of this section is to describe an algorithm for finding the roots
of the Jacobi polynomials P̃ k

n . These roots will be used in Section 4 for the design of
quadratures for Zernike Polynomials.
The following lemma follows immediately from applying the Prufer Transform (see
Lemma 10.3) to (109).

Lemma 10.4. For all non-negative integers n, real k > −1, and r ∈ (0, 1),

dθ

dr
= −

(
n(n+ k + 1)

r − r2

)1/2

−
(
1− 2r + 2k − 2kr

4(r − r2)

)
sin(2θ(r)). (129)

where the function θ : (0, 1) → R is defined by the formula

P̃ k
n (r)

P̃ k′
n (r)

=

(
n(n+ k + 1)

r − r2

)1/2

tan(θ(r)), (130)

where P̃ k
n is defined in (108).

Remark 10.5. For any non-negative integer n,

dθ

dr
< 0 (131)

for all r ∈ (0, 1). Therefore, applying Remark 10.4 to (129), we can view r as a function
of θ where r satisfies the differential equation

dr

dθ
=

(
−
(
n(n+ k + 1)

r − r2

)1/2

−
(
1− 2r + 2k − 2kr

4(r − r2)

)
sin(2θ(r))

)−1

.

(132)

Algorithm

In this section, we describe an algorithm for the evaluation of the n roots of P̃ k
n . We

denote the n roots of P̃ k
n by r1 < r2 < ... < rn.
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Step 1. Choose a point, x0 ∈ (0, 1), that is greater than the largest root of P̃ k
n . For

example, for all k ≥ 1, the following choice of x0 will be sufficient:

x0 =





1− 10−6 if n < 103,
1− 10−8 if 103 ≤ n < 104,
1− 10−10 if 104 ≤ n < 105.

(133)

Step 2. Defining θ0 by the formula

θ0 = θ(x0), (134)

where θ is defined in (130), solve the ordinary differential equation dr
dθ (see (132)) on

the interval (π/2, θ0), with the initial condition r(θ0) = x0. To solve the differential
equation, it is sufficient to use, for example, second order Runge Kutta with 100 steps
(independent of n). We denote by r̃n the approximation to r(π/2) obtained by this
process. It follows immediately from (126) that r̃n is an approximation to rn, the largest
root of P̃ k

n .

Step 3. Use Newton’s method with r̃n as an initial guess to find rn to high precision.
The polynomials P̃ k

n and P̃ k′
n can be evaluated via Observation 10.1 and Observation 10.2.

Step 4. With initial condition

x(π/2) = rn, (135)

solve differential equation dr
dθ (see (132)) on the interval

(−π/2, π/2) (136)

using, for example, second order Runge Kuta with 100 steps. We denote by r̃n−1 the
approximation to

r(−π/2) (137)

obtained by this process.

Step 5. Use Newton’s method, with initial guess r̃n−1, to find to high precision the
second largest root, rn−1.

Step 6. For k = {1, 2, ..., n− 1}, repeat Step 4 on the interval

(−π/2− kπ,−π/2− (k − 1)π) (138)

with intial condition

x(−π/2− (k − 1)π) = rn−k+1 (139)

and repeat Step 5 on r̃n−k.
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11 Appendix E: Notational Conventions for Zernike Poly-

nomials

In two dimensions, the Zernike polynomials are usually indexed by their azimuthal order
and radial order. In this report, we use a slightly different indexing scheme, which leads
to simpler formulas and generalizes easily to higher dimensions (see Section 2.3 for our
definition of the Zernike polynomials Zℓ

N,n and the radial polynomials RN,n). However,
for the sake of completeness, we describe in this section the standard two dimensional
indexing scheme, as well as other widely used notational conventions.

If |m| denotes the azimuthal order and n the radial order, then the Zernike poly-
nomials in standard two index notation (using asterisks to differentiate them from the
polynomials Zℓ

N,n and RN,n) are

∗

Zm
n (ρ, θ) =

∗

R|m|
n (ρ) ·





sin(|m|θ) if m < 0,
cos(|m|θ) if m > 0,

1 if m = 0,
(140)

where

∗

R|m|
n (ρ) =

n−|m|
2∑

k=0

(−1)k(n− k)!

k!
(n+|m|

2 − k
)
!
(n−|m|

2 − k
)
!
ρn−2k, (141)

for all m = 0,±1,±2, . . . and n = |m|, |m| + 2, |m| + 4, . . . (see Figure 140); they are
normalized so that

∗

R|m|
n (1) = 1, (142)

for all m = 0,±1,±2, . . . and n = |m|, |m|+ 2, |m|+ 4, . . . . We note that

∗

R|m|
n (ρ) = R

|m|,
n−|m|

2

(ρ), (143)

for all m = 0,±1,±2, . . . and n = |m|, |m| + 2, |m| + 4, . . ., where R is defined by (26)
(see Figure 6); equivalently,

RN,n(ρ) =
∗

RN
N+2n(ρ), (144)

for all nonnegative integers N and n.

Remark 11.1. The quantity n+ |m| is sometimes referred to as the “spacial frequency”

of the Zernike polynomial
∗

Zm
n (ρ, θ). It roughly corresponds to the frequency of the

polynomial on the disc, as opposed to the azimuthal frequency |m| or the order of the
polynomial n.

11.1 Zernike Fringe Polynomials

The Zernike Fringe Polynomials are the standard Zernike polynomials, normalized to
have L2 norm equal to π on the unit disc and ordered by their spacial frequency n +
|m| (see Table 6 and Figure 7). This ordering is sometimes called the “Air Force” or
“University of Arizona” ordering.
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11.2 ANSI Standard Zernike Polynomials

The ANSI Standard Zernike polynomials, also referred to as OSA Standard Zernike poly-
nomials or Noll Zernike polynomials, are the standard Zernike polynomials, normalized
to have L2 norm π on the unit disc and ordered by n (the order of the polynomial on
the disc; see Table 7 and Figure 8).

11.3 Wyant and Creath Notation

In [14], James Wyant and Katherine Creath observe that it is sometimes convienient to

factor the radial polynomial
∗

R
|m|
2n−|m| into

∗

R
|m|
2n−|m|(ρ) = Q|m|

n (ρ)ρ|m|, (145)

for all m = 0,±1,±2, . . . and n = |m|, |m|+ 1, |m|+ 2, . . ., where the polynomial Q
|m|
n is

of order 2(n− |m|) (see Figure 4). Equivalently, the factorization can be written as

∗

R|m|
n (ρ) = Q

|m|
n+|m|

2

(ρ)ρ|m|, (146)

for all m = 0,±1,±2, . . . and n = |m|, |m|+ 2, |m|+ 4, . . . .
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index n m
spacial
frequency

polynomial⋄ name†

0 0 0 0 1 piston

1 1 1 2 R1,0(ρ) cos(θ) tilt in x-direction

2 1 -1 2 R1,0(ρ) sin(θ) tilt in y-direction

3 2 0 2 R0,1(ρ) defocus (power)

4 2 2 4 R2,0(ρ) cos(2θ) defocus + astigmatism 45◦/135◦

5 2 -2 4 R2,0(ρ) sin(2θ) defocus + astigmatism 90◦/180◦

6 3 1 4 R1,1(ρ) cos(θ) tilt + horiz. coma along x-axis

7 3 -1 4 R1,1(ρ) sin(θ) tilt + vert. coma along y-axis

8 4 0 4 R0,2(ρ) defocus + spherical aberration

9 3 3 6 R3,0(ρ) cos(3θ) trefoil in x-direction

10 3 -3 6 R3,0(ρ) sin(3θ) trefoil in y-direction

11 4 2 6 R2,1(ρ) cos(2θ)

12 4 -2 6 R2,1(ρ) sin(2θ)

13 5 1 6 R1,2(ρ) cos(θ)

14 5 -1 6 R1,2(ρ) sin(θ)

15 6 0 6 R0,3(ρ)

16 4 4 8 R4,0(ρ) cos(4θ)

17 4 -4 8 R4,0(ρ) sin(4θ)

18 5 3 8 R3,1(ρ) cos(3θ)

19 5 -3 8 R3,1(ρ) sin(3θ)

20 6 2 8 R2,2(ρ) cos(2θ)

21 6 -2 8 R2,2(ρ) sin(2θ)

22 7 1 8 R1,3(ρ) cos(θ)

23 7 -1 8 R1,3(ρ) sin(θ)

24 8 0 8 R0,4(ρ)

Table 6: Zernike Fringe Polynomials. This table lists the first 24 Zernike polyno-

mials in what is sometimes called the “Fringe”, “Air Force”, or “University of Arizona”

ordering (see, for example [11], p. 198, or [14], p. 31). They are often also denoted by

Zℓ(ρ, θ), where ℓ is the index.

⋄ See formulas (26) and (29).

† See, for example, [8]. More complex aberrations are usually not named.
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index n m
spacial
frequency

polynomial⋄ name†

0 0 0 0 1 piston

1 1 -1 2 R1,0(ρ) sin(θ) tilt in y-direction

2 1 1 2 R1,0(ρ) cos(θ) tilt in x-direction

3 2 -2 4 R2,0(ρ) sin(2θ) defocus + astigmatism 90◦/180◦

4 2 0 2 R0,1(ρ) defocus (power)

5 2 2 4 R2,0(ρ) cos(2θ) defocus + astigmatism 45◦/135◦

6 3 -3 6 R3,0(ρ) sin(3θ) trefoil in y-direction

7 3 -1 4 R1,1(ρ) sin(θ) tilt + vert. coma along y-axis

8 3 1 4 R1,1(ρ) cos(θ) tilt + horiz. coma along x-axis

9 3 3 6 R3,0(ρ) cos(3θ) trefoil in x-direction

10 4 -4 8 R4,0(ρ) sin(4θ)

11 4 -2 6 R2,1(ρ) sin(2θ)

12 4 0 4 R0,2(ρ)

13 4 2 6 R2,1(ρ) cos(2θ)

14 4 4 8 R4,0(ρ) cos(4θ)

15 5 -5 10 R5,0(ρ) sin(5θ)

16 5 -3 8 R3,1(ρ) sin(3θ)

17 5 -1 6 R1,2(ρ) sin(θ)

18 5 1 6 R1,2(ρ) cos(θ)

19 5 3 8 R3,1(ρ) cos(3θ)

20 5 5 10 R5,0(ρ) cos(5θ)

21 6 -6 12 R6,0(ρ) sin(6θ)

22 6 -4 10 R4,1(ρ) sin(4θ)

23 6 -2 8 R2,2(ρ) sin(2θ)

24 6 0 6 R0,3(ρ)

Table 7: ANSI Standard Zernike Polynomials. This table lists the first 24 Zernike

polynomials in the ANSI Standard ordering, also referred to as the “OSA Standard” or

“Noll” ordering (see, for example [11], p. 201, or [10]). They are often also denoted by

Zℓ(ρ, θ), where ℓ is the index.

⋄ See formulas (26) and (29).

† See, for example, [8]. More complex aberrations are usually not named.
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