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NEW COMPUTATIONAL ALGORITHMS FOR MINIMIZING

A SUM OF SQUARES OF NONLINEAR FUNCTIONS

KENNETH M. BROWN+ AND J. E. DENNIS, JRe:F

ékﬁ%@é%@t We introduce two new computational algorithms for
minimizing a sum of squares, ¢ , of nonlinear functions. (The
methods can, of course, be used for the important special case of
nenlinear least squares curve fitting.) The algorithms are closely
related to Newton's method for finding a zeré of the gradient of ¢ 3
however, we are able to avoid the explicit calculation of the second
partial derivatives. Local and Kantorovich-type convergence theorems
are proven for the algorithms. The results of computational experiments

are presented, including cases in which ¢ 1is quite large at the.

minimum point.

Lo Introduction. Let x ¢ E'  and suppose we wish to
minimize

() = g7,

Il o~

i=1

where the fi's are nonlinear functions of x. Now évery such relative
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minimum will be found among the zeros of Vé(x) , the gradient of ¢ .

%
Call such a zero x . Now

) = 2 JLEFG)

where JF(x) denotes the M x N Jacobian matrix of F = (fl,...,fM)T . Define

G(x) = Jg(x)F(x) .

We seek the zeros of G(x) and hence of the gradient V¢(x) .

Let Hk(xj denote the Hessian matrix of fk at x ; 4di.e.,

the ith, jth element of Hk(x) is given by asz(x)/BXjBXi . By direct

calculation we have that

M
= ' T
(1) J ) = kzl E G ) + 3G 9

so that Newton's method applied to

(2) ' G(x) = 0

is givén by
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M
T -1 T
3 x, = x - [kzl fk(xn)lik(xn) + JFk(xn) Jo(x )] IR DF(Gx ) o

(See, for example, [18,p. 269].)

The latrer formula requires (assuming continuous second partial derivatives
of ¢ ) the calculation of M * N « (N + 1)/2 second partial derivatives
per irerative step. The Gauss [12] and Levenberg-Marquardt [14], [15]
algorithms are two frequently used attempts to circumvent this difficulty.

. . M .
The former simply drops the term Z £ (x )Hk(x ) and the latter

. k=1 k™' n n

approximates it with a diagonal matrix unI . Both methods work well

locally when .!'F(X)ll is very small at a zero of G . For example

in [4], we have shown that the Levenberg-Marquardt iteration converges

qﬁédratically to x* , a zero of F , 4if Hy o= O(IIF(xn)II) and JF(X*)
‘has full rank. Obviously the Gauss method behaves likewise. We have
also shown [4] identical results for the derivative—free analogues of

~ these methods. When ¢(x*) is large, the Levenberg-Marquardt algorithm
can degenerate intc an awkward descent method, for then the Hk in (3)

are no longer damped out.

In §2 we introduce twc algorithms based;on“approximating the Hk-
in (3) without requiring additional function or derivative evaluations.
In §3, we prove local and Kantorovich~type convergence theorems for the

algorithms. The results of numerical experiments are presented in §4.
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In the latter section we treat 1) a well studied exampie so as to
compare our methods with other currently used minimization techniques,
2) an application of these methods to the probiem of determining the
weights and nodes of quadrature formulas and 3) .a problem having an

extremely large residual at the minimum.

A preliminary statement of a portion of these results was given

without proofs in [5].
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2 RSRSELRELOR RE Hhs BLEOELtme, In oxder to approximate the

Hk without requiring additional derivative or function evaluations, we

propose the following algorithms.

ALGORITHM 2.1. Let X JF(xn) and F(xn) be given along

with M matrices B each of size N XN . (Initially the

reoyB
1,n”"""’"M,n

Bi o may be chosen to approximate the Hi(xo) by, say, using first
9 .

differences on the entries of JF(x) ; this ‘technique was used in

the numerical experiments described in §4.) Obtain

]

M
T -1 T
(4) xn+l xn - [kzl fk(xn)Bk,n + JF(xn) JF(xn)] JF(xn) F(xn),

S -1 T
x - A.n JF(xn) F(xn)

) . Now update the B

and compute JF(xn+l). and F(xn+1 i by means of
(5) B = B, + [VE (x )7 vE, (x )T
. i,n+l i,n . i ntl it'n
T
- B (x.  .-x )] (xn+1 xn)
i,n"ntl n llx —x 'IZ ’
ntl “n''2

for each 1 =1,...,M . Continue the process until termination criteria

are met.
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ALGORITHM 2.2. This algorithm is exactly the same as Algorithm 2.1
except that Bl n,M.,BM n are initialized as symmetric matrices and in
s ’ .

place of (5) one generates the sequence of approximate Hessians by

_ T T
(6) B, 41 = Byt IVE G ) VEy ()
T
- B x ,,-x )] (xn+l—xn)
! i,n"n+l “n Hx - ”2
ntl "n''2
(x_,,=x) '
n+l “n T T T
+ T ”2 VE Gep) ™ = VE () - By ,nCGnp17%y)]
ntl "n''2 :
T T T (xn+l~xn
B (Xn+l~xn)IVfi(xn+l) - Vfi(xn) - Bi,n(xn+l—xn)] (xn+l-xn)

REMARK 2.1. Vfi(x) is just the ith row of .JF(x) .

REMARK 2.2, Mthations (5) and (6) are respectively the appropriate
generalizations of Broyden's "single-rank" approximation [6] to Hi(xn)

and Powell's symmetric form of Broyden's approximation [21].
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REMARK 2.3. These algorithms require no more function or
derivative evaluations than do the Gauss [4,14] or Levenberg-
Marquardt [4,15] algorithms; however, more storaée space is needed.
The additional storage requirement is offset on the one hand by
superior local behavior (stability near a root) and on the other hand
by a gain in speed of convergence. Since the Bi 's generated by
(6) are symmetric Algorithm 2.2 will requiré less storage than

Algorithm 2.1.
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é& Q%QX%{%%B%% {%ﬁ&%&ﬁ& The purpose of this section is to ﬁresent-
theorems which characterize the main convergence properties of the
algorithms.

The following lemma bounds the error in the Hessian approximations

given by (5).

*
LEMMA 1. Llet Q be an open convex neighborhood of x  , and

let K> 0 be a constant and P be a Frechet differentiable function

mapping £ into EN such that for every x e 9

(1) [13, 6% = 3,6 ] < k] [«* - x| .

[

Let B be a real N x N matrix and let x,x' € 2 . Define B' by
GY B' =B + [P(x') - P(x) - B(x' - x)] —2--I Xl _

Under these hypotheses

Bt -3 GO < 118 = 3] + 2k | = =[] + [[x' - «*[]) .

If, in addition,

(L2) 960 = 3,1 < x| [x - y]]
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then

3
[[B' = 3G < |18 = 3, + 5 k[[x' = =[] .

Proof. Now

.

, T
B = (") = B - () + [PG') - P(x) - BGx' = %] ”(X - X)llz F I, = Iy
x ' -x
| &' -t
= B- 3,00 + PG - PG - 00 G - x0] —Elo®)
- ' [1x' = x]|

( )(x' = )T |
+ [Jp(x) - B] S5-—-ERE DR 3 = J,(x') 5 thus
= - x|
LI v T
B = 3,6 < (1B = 3| - [ - LEzxleo=x
» %' = x|

+ IIP(x') - P(x) - JP(x)(x' - x)|| . le' - xll—l + ItJP(x) - JP(x')ll .

T
— ' —
Now from [6], ||I - (x! - 0 5 Xl =1 . 1f Jp is
ENEE S T

Lipschitz (L2 ho}dé), the corresponding result is clear. If we assume

only the one sided Lipschitz condition L1, .then the above reduces to



NEW ALGORITHMS FOR MINIMIZING A SUM OF SQUARES 10

[1B' - 3,6

IA

[1B - 3, || +  sup |13, = 3,(8) ]
ge(x',x)

+ 13,60 = 3,

|A

1B = 3, || + 2k([|x = x*| |+ [lx' = ="

by adding and subtracting JP(x*) twice.

)

LEMMA 2. Let hypothesis L1 of Lemma 1 hold but let B be a

~real N x N .symmetric matrix and define B' by

' T
x' - x)
(6") B' =B + [P(x') - P(x) - B(x' - x)] =———-————3
=" = x|
x' - x) T
+ >~ [P(x") - P(x) - B(x' = )]
=" =~ x|]

. T x' - X"
(x' - x) [P(x') - P(x) - B(x' - x)] &' =-x) —————p
' =" - =[]

Under these hypotheses,

18" = 5,aO ] < 118 = 3,601+ 3k (=[] + (=" ="|]D
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If L2 holds then

B - 5,61 < [[8 = 3,60 l] + 2] = x|

LEMMA 3. 1f, for each i =1,...,M, H:L satisfies L1 with

constant Ki on a compact convex subset C of § then there is a

constant Yy such that JG satisfies L1 with K=yl on C.

Proof. Let K = max K

; and select B__>_||H1(X)H s

B' 2 |90l = 15,7 (see [251), B" > ||[F@||; for
every x¢e¢C, i=1,...,M ., These constants can be chosen because of

the continuity of every H, and the compactness of C . Notice that

i

M1/2B s B' serve as Lipschitz constants for .JF and F on C .

Assume that every Hi satisfies L1 , then

[age = 3D 11 =[] 2, Gow, 6o + Jﬁcx){F;x) - 2f, M GN - NI EY |
< g 0 = £, GG || + |25, %) [ (0 - B M|

+ 13,6 19,60-0, 6N | + |17 - 3,651 3,65
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M
< IFeo - FeM] - (L el D
i=1

£ |1F Ml ¢ max| B G0 - B GD]
i

#1196 1] - 19560 - 369

#1136 - 3T - 36|

»

/288" + B | |x - x*||

1A

i

Ylllx - x*ll .

REMARK 3.1. The lemma and its proof are exactly the same if

we replace L1 by L2 .

THEOREM 1. Let x* be a zero of Jg(-)F(-) and let Ki >0

be constants such that for every x e &, IIHi(x) - Hi(x*)ll :_Killx - x|

for each 1 = 1,...,M . Whenever JG(x*) is non—-singular, there exist

constants & > 0 , € > 0 such that if leo - x*|| <e and

HBi,Q - ui(xo)[l <&, 1=1,...,M, then Algorithms 2.1 and 2.2

*
converge to X from xo .
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Proof. Choose C to be the closure of a conditionally compact
convex neighborhood of < « Furthermore, choose C sufficiently small
so that J, is invertible on C and IIJG(X)-lll is uniformly bounded
by some constant B . Select a constant B' such that HF(x)lIl is

uniformly bounded on C by B' . Let K = max Ki and pick § < (6BB')"l
i

1

and € < max (qu’—gﬁ such that N(x*ya) c C, where Y, is the constant
1

for which JG satisfies L1 on C from Lemma 3. Now select

M
. . _ T :
xo’Bl,o""’BM,o as above. Set Ao = 121 ﬁi(XO)Bi’o + JF(xo) JF(XO)>. Now

o M :
IIAb - JG(XO)II - Ilizl fi(xo)[Bi,o - H:’L(Xo)]II
M :
< LI el i - el
< 1IFG s
< B'S .

Hence ||I - JG(XO)_lell < BB'§ <1 and so A;l exists and is bounded

in nofm by B( - BB'(S).-l . Thus S A;lG(xo) exists.
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1

Set e ||xl - x*li . Now

ey < &M+ 1116G™ = 66 - A G* = =)

-1 .
A I leG™ = 6(x) = 3G ) &5 = x ) [ + 195G = 4 lle]

1A

B(1 - BB'&)‘I[YleO + [|FGx )] 181 e

1
By,e, + BB'S Lo L,
-1-BB'S$ o — 1-BB'S o —

A

oM
.
wjo -
[¢]
A
N
(]

Hence JG(xl)‘ and Al exist and as before:

) HA]_ - JG(xl)H = IIF(X]_)H]_ mszBi’]_ - Hi(xl)[l

| . ! .9_ ' 02-
<B'[§ + 3K(eo + el)] < B'(8 + 2Ke0) < B'S -3

Notice that we have used the bounds for Algorithm 2.2 so that the proof
will also work for Algorithm 2.1 since the bound in that case is smaller.
Thus, ||I - JG(xl)_lAlII < BB'S + 3/2 < 2BB'6 < 1 . This means AI
exists and is bounded in norm by B(1 - 2BB'S) , so Xy exists.

Assume by way of induction that xl,---,xn , A"%...,Agil all exist,

NI =

that ek

<

' 1.k
e,_; and that mixHBi’k - gi(xk)ll 2@2=-ExN8 , kn .
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1
mmI&-%%M:HN@Hl?M%n-ﬁ%Msa—gﬁws

-1 1 -1
.and so ||I - JG(xn) An“ < 2BB'§ < 3 - Hence A " exists and is

bounded in norm by B(1 - ZBB'B)—l » SO X4 exists.
-1 * '
e v < AT« IHeG) = GG = ()G = I+ 135G - A_lle ]
-1 . _ Ly
< [a 7l « Iyje, + 2 = (DMB8Ie

B(L - 2133'6)"1[(%)“3'6 + (2 - (%)“)B'a]en

IA

2BB'§ (1 - 2BB'5)"1en

|A

|A
N =
o

Now from Lemma 1,

H (

IlBi,n+l - B G f-IIBi,n - H G| + 3K te

1)

@ - (%)“)a + gKen

tA

2

[2 - "+ s

IA

1. n+l1

=12 - (™8
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and the induction is complete. This implies that the sequence exists

1.n
cand e §.(§) e, 7 0.

THEOREM 2. If the hypotheses of Theorem 1 hold and lIF(x*)Il =0,

then the iteration defined by Algorithm 2.1 or 2.2 converges at least

quadratically.
Proof. e .. < B(L - 2BB'8) T[y.e2 + ||[Fx)|] (2 - G)™se ]
=222 Sh+1 = Y1%n SR 2 n'*
% ' . _ )
4 Now IIF(xn)Ill = IIF(xn) - F(x )Ill < maxllJF(x)Ilen = B"enc
. xeC
Hence, e < B(1 - 2BB'6)~1[Y + 2B"6]e2
> Tptl — 1 n’

If we assume the stronger continuity condition L2 for the Hi snamely

e, ) -8, ] <k |lx=y[] , 1=1,....1,
then it is not even necessary to assume the existence of a zero, x* s
of G ;k that is, by making assumptions about the behavior of thé
function and.its Aerivatives in an open convex subset of EN we are
able to prove a Kantorovich-type theorem [13] for the iterations defined
by Algorithms 2.1 and 2.2 in which the existence of x* is deduced as

a part of the proof.
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THEOREM 3. Let the following conditions hold in ﬁ(xo,r) .

i) JG safisfies L2 with constant Y .
ii) Let B

secesB be real N x N matrices and § > o such that

1,0 M,o0

M
Ilizl fi(xo) [Bi,o - Hi(xo)]HZ 6.

M
.. _ T
ii1) A, = 121 fi(xo) By o + JF(xo) JF(XO)

ig_invertible and its inverse is bounded in norm by B8 .

' -1 T
iv) Ile JF(XO) F(XO)HZ = Hxl - XOHZ =n .
P . . . 1 - "2

Under conditions (i) - (iv) , if 1 > B§, 7 2 h' = Byn (1-86)
and r>r) = (1-/1- 2h' ) (1-8¢6) (BY)-l ,
then ||F( * )||2 has a unique minimum at x* e ﬁ(xo, ré) and if

1 _*% = '
h' < 5, x* 1is also unique in N(x,r) N NGx,,rp) s
where 1, = (L+ /1 -2n") (@@ - 88) (BY)-I .

Furthermore, the sequence x' = x' - A-I'F(x') remains in

- i n+l n o nf ———

N(xo,ré) and converges linearly to x* .
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Proof, Let x € N(xo,r;) and
14y - 36011, < 1a, = 3ge 1, + 113560 = 35611, <6+ v [lx, = xll,
The theorem now follows from Theorem 2 of [8] applied to G .

The last theorem constitutes the first half of a Kantorovich-type
theorem [13,18], i.e., the existence and uniqueness of x* . The other

half, the convergence of the algorithms 2.1 and 2.2 to x* , 1s contained

in the following theorem.

THEOREM 4, Let conditions (i) = (iv) hold as well as the following

conditions.

v) For every i =1,...,M, Hi satisfies L2 with constant K .

vi) B" 3_|]F(x)||l uniformly for r > ||x - xollz .

vii) For every i = 1,...,M, "Hi(xo) - Bi,ollz <8 .

Under conditions (i) - (vii), 1if

‘(3B"K + y)Bn
(1-88)%

n

1> 8A = B(2B"S' + §), % > h =

(o]

and r>r = (1-/1T-20) (1-84)/BBB'K+7Y) ,
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then

1) F has a root x* in ﬁ(xo,r;) .

2) Algorithms 2.1 and 2.2 converge to x* .

3) x* has the uniqueness properties ascribed to it in Theorem 3

Proof. The proof will be similar to the proof of Theorem 3 of [8]
and will be based on the techniques of [9]. As in Theorem 1 we will

use the bounds of Lemma 2, since the bounds for Algorithm 2.2 also hold

v

for Algorithm 1.1.

‘Since A > § , h > h' and r Z_r; we can deduce the existence

. *
and uniqueness of x  from the previous theorem.

n
Assume, for n > 0 ,that 2

gy = xglly <7y
1i=0 ,

Then JG(x F( ) and B i=1,...,M, are all defined.

) X+l i,n+1°

Hence An+ 1s defined and, proceeding as in the proof of Theorem 1,

1
M
Ay = 9cGqd1, = 1 121 £3Gpn) By e — B G,
< PG max 1By pen = By G

We can use induction in connection with Lemma 2 and use (v) to obtain,

for every i = 1,...,M,
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n
<8v+2k ) ] x

i=o

H, (

IIBi,n+l Y xn+1)”2 Xi41 ~ 1"2 .

Hence,
. n
net "
Jo(x )], < B"' + 28"k ]

%540 = %41
L i+~ *illa

llAn+l -
and so

-1
[l

Ao ' An+l - IIIZ <8 IIA'n+l - JG(xn+1)”2 + IIJG(xn+1) - JG(xo)IIZ

t g = Al

n
< B[B"S' + 2B"K ) llxi+l - xillz ty len+l = xollz +
i=o

- a
< BA+ (2B"K+7y) B )

x, g = x |
i%o i+l - o''2

< BA + (3B"K + y) Br_

=gA+ (1 -—BA) (1 - VY1 -2h)

Hence A;il' exists by the Banach Lemma [13,18] and is bounded in norm by

. n
(L-86~- (@B"K+7y)B } NET xillz)
i=o0
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f(t) = % (3B'"K + y)tz - (B-l - At + s—ln ,
- -1 - et _ _ "
ak—B (1 - BB"S BS B(ZBK-l-Y)tk, k>0

and consider the sequence

)

-1
br = G T A F(G) -
(The functions a(t) and f£(t) were found by the methods of Theorem 2
of [9] and the|convergence conditions were obtained from Theorem 3 of [9].) "
The conditions on L h, etc. ensure that the sequence {tk} defined

above is monotone increasing and converges to roos which is a zero of f .,

t and

The conditions (i) - (vii) ensure that lek+l - xkl'z St Tt

s0 by a standard argument {xk} must converge. It is fairly straight
. ,
forward to show that its limit is x . Details of the proof can be

found in [9] or, with different parameters, in [8].

REMARK 3.2. If we proceed as in Lemma 2, we can reduce the number
of parameters in the previous two results. . This is accomplished by

keeping (v), deriving
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I, < HIpG) ], + 1 [ ]x - x |1, and

2
PG 1L, < 1EG 1, + 113,61, = 1 = =gl 1, + 1 [ = x |12
and replacing (i) by means of Lemma 3.

We also note that the proof techniques of this section apply to any

algorithms of the types considered in this paper which use a sequence

i’ where
?

] |
i "B O, <8+ 8y Z REFIE | P

Bk
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é& QE@%%%%%% %%%E%&%& In the examples which follow, we use the

term equivalent function evaluations to mean the total of each

evaluation of the function F and each evaluation of a column of the

Jacobian matrix J ; note that for the examples studied, it takes

F
less computational effort to evaluate a Jacobian column than it does

to evaluate a component of the gradient function V¢ .

Examples 1 and 2 were run in FORTRAN IV double precision ( v 16
decimal digits) on Cornell University's IBM 360/65. Example 3 was
run in fORTRAN IV single precision ( v 8 decimal digits) on the Yale
University Department of Compute; Science's PﬁP;IO.

Example 4.1. A '"classical" example. In order to test the

methods against a variety of algorithms in current use, we referred

to the very fine survey paper by Box [3]. The test function used was

10 —x.p ~X,p,
¢(xl,x2,x3) = Z [e T e 2 h - x3(e Pi—e
i=1

2

-10p. '
pl)] ’

wvhere pi = 1x4i This problem has a zero.residual at '(1,10,1)

and whenever Xy = X, with"x3 =0 . We used those starting points for
which ¢(x(o)) was large:

I. x) =0, x,=10, x;=205 ¢ = 1031.154

II. X = o, X, = 20, Xq = 20; ¢ = 1021.655 .

The results are presented in the Table.



NEW ALGORITHMS FOR MINIMIZING A SUM OF SQUARES

TABLE

24

Number of Equivalent Function Evaluations Required to Reduce

¢ to Less Than‘ lO.5

in Example 4.1

Method Starting Point I Starting Point II
Swann [24] Failed - Failed
Rosenbrock [22] 350 246
Nelder and Mead [16]

Spendley, Hext and

Himsworth [23] 307 © 315
Powell (1964) [19] Failed Failed
Fletcher and Reeves [11] 92 188
Davidon [7] .

Fletcher and Powell [10] 140 140
Powell (1965) [20] 28 33
Barnes [2] 37 59
Gauss [4] 17 21
Derivative-free Gauss [4] 17 21
Levenberg-Marquardt [4] 93 109
Derivative—free

Levenberg-Marquardt [4] 93 109
Algorithm 2.1 including .
evaluations done to(o)

approximate Hi(x ) 30 34
Algorithm 2,1 when Hi(x(o))

was given 24 28
Algorithm 2.2 including

evaluations done to

approximate Hi(xo) 30 34
Algorithm 2.1 when Hi(x(o))

was given 24 28
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REMARK 4.1. Many of the methods above behave linearly and could

5 0

not be expected to rapidly reduce ¢ from 10 to 10‘1 ;s however,

Algorithms 2.1 and 2.2 exhibited quadratic convergence in this range.

_Example 4.2. Weights and nodes gﬁ!quadrature rules. This example is

given by Nielsen [17] and is an illustration of how quadrature weights °

and nodes may be calculated by nonlinear least squares techniques.

\

Data Vectors:

o
M~

2.0
0.0
2/3
0.0
2/5
0.0
2/7
0.0
2/9
0.0

COCOO0COCODOOOO

.

CoNOTUVEEWNEO

Functional Relaﬁionship: g(x;p) = X Xy +'x'2x4 .

Initial Approximation: x, = 1.0, X, = 1.0, X4 =-,75, X, = .75

Both Algorithms 2.1 and 2.2 achieved convergence in 8 iterations'tp

ten significant digits of accuracy to the mi&iﬁum, x* = (.97754, .97754,
-.65140, .65140) , whereas the Gauss-Newton method [17,p.41] required

8 iterations to achieve fivé digits of accuracy. (Note that equivalent

function evaluations per iteration are the same for the methods compared.)
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Example 4.3. A problem with a very large residual at the minimum.

Let ‘ \

and suppose we wish to minimize

d(x) = zl { [xl + X,p; ~ @ 17 + [x3 + xavsin py — cos pi]2 }2

Using <) = (25, 5, -5, -1) , with the initial residual being

¢(x(°)) = 7926693 , Algorithm 2.1 converged in 7 iterations —
requiring 50 equivalent function evaluations —- to the minimum

x* = (-11.594, 13.204, -.40344, .23678) . The residual at the minimum
was ¢ (x*) = 85822 and G(x*) = 85822. Note that the total of 50
evaluations iﬁcluded 10 necessary to approxihéte the initial (symmetric)

_ Hessians, Hk(x(o)) , k=1,...,M

Using the same starting guess, Algorithm 2.2 converged to the

same solution point, also requiring 7 iterations and 50 equivalent

function evaluations.
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