Enumerative Counting is Hard

Jin-yi Cai and Lane A. Hemachandra

YALEU/DCS/TR-585
January 1988

Cai - Research supported by a Sage Fellowship and NSF grant DCR-83301766
while at Cornell's Computer Science Department, and by NSF grant
CCR-8709818.

Hemachandra - Research supported by a Fannie and John Hertz Foundation
Fellowship, NSF grants DCR-8301766 and DCR-85220597, and a
Hewlett-Packard Corporation equipment grant.

Abstract

An n-variable Boolean formula may have anywhere from 0 to 2" satisfying assign-
ments. Can a polynomial-time machine, given such a formula, reduce this exponential
number of possibilities to a small number of possibilites?

We call such a machine an enumerator and prove that if there is a good polynomial-
time enumerator for #P (i.e., one where the small set has at most O(| f|}~¢) numbers),
then P = NP = P#P and probabilistic polynomial time equals polynomial time.
Furthermore, we show that #P and enumerating #P are polynomial-time Turing
equivalent.

1 Introduction

#P is the class of functions that count the accepting paths of some NP machine [Valb,Ang,Sto,
Wag]. Valiant proved that these functions can count the number of cliques of a given size, compute
the permanent of a matrix, and solve many other counting versions of NP and P problems [Valb,
Vala]. P*P is'the class of languages computable by polynomial-time machines given an oracle
from #P.

#P questions seem computationally hard. Though they can be answered by brute force in
PSPACE, it is not known if they are in the polynomial hierarchy. Currently known structural
relations are that P#F D AP and, in a certain relativized world A, p#pP* properly contains
"R AUNE4 [Ang]. o :

The complexity of the class #P is usually studied by considering #SAT. Cook’s reduc-
tion [Coo,HU] from NP machines to formulas can be made parsimonious [GJ, page 169][Simb,
Valb]. Thus #SAT, the function mapping from Boolean formulas f to their numbers of solutions
[I71| (e.g., #SAT(z1 V z2) = 3), is a canonical hardest #P function. We speak interchangeably
of computing #P and #SAT, as #SAT can be computed if and only if #P can.

Stockmeyer [Sto] has analyzed the complexity of r(-)-approximating #SAT in the sense of
approximating the value within a multiplicative factor—finding a function g such that:

il
{70 < 9 <A1 111,

where |f| stands for the size of f. He shows that in A} we can (1+ ¢|f|~¢)-approximate #SAT.
This is a good bound when the number of solutions || f|| is relatively small. However for formulas
with many solutions, the size of the set of possible values that the approximation admits may be
exponentially large in terms of |f|.

In his paper [Sto], Stockmeyer also shows that there is a relativized world where for no
constant k can #SAT be k-approximated even with a A} function. Though this does not
prove that #SAT is hard to approximate, the result can be taken as evidence that we lack the
mathematical tools needed to determine the complexity of approximating #SAT.

In this paper, we consider a different approach to approximately solving #P problems. In an
enumeration scheme one tries to reduce the number of possible values of || f|| by giving a small
list of possibilities for || f||. We show that the existence of a good enumerator that reduces the

1

number of values substantially would imply that P = NP = P#F_ and probabilistic polynomial
time equals polynomial time. Thus we believe ‘#SAT is hard to enumerate’ with greater cer-
tainty than we believe ‘P # NP.’

A function A is said to s(-)-enumerate #SAT if A(f) is a list of at most s(|f|) integers
between 0 and 2|/! in which || /]l appears. If A can be computed in polynomial time, we call it
an s(-)-P-enumerator for #SAT. For example, a 4-P-enumerator given z; V z2 V z3 might reply
{0,1,4,7}; the enumerator states that the formula has either 0, 1, 4 or 7 satisfying assignments
(indeed, it has 7).

Though enumerators reduce the number of possible solutions to a small set, the values in this
set my vary over a great range. Thus enumeration is neither strictly broader nor strictly weaker
- than the type of approximation studied by Stockmeyer.

Section 2 introduces our proof techniques in a simple setting. If #SAT has a k—~P—enumerator
then P = NP. Section 3 extends this result to show that if Enum is a function n®—enumerating
#SAT, o < 1, then P#P = PEnum Thus enumerative counting and exact counting are
polynomial-time Turing equivalent. In particular, if #SAT has an n®~P-enumerator (a < 1),
then P = P¥#F,

These results demonstrate that efficiently enumerating #P implies P = NP. Thus we have
structural evidence that #P can not be easily enumerated.

Our proof uses an arithmetic of formulas that extends the work of Papadimitriou and Zachos
[PZ]. Section 4 presents an immediate consequence of this: NP*F = NP#FPIl where [1] indi-
cates that each computation path of the NP machine makes at most one oracle call. We invite
comparison between this n*-for-one result over NP machines, and the recently developed theory
of polynomial terseness [AG,GJY,BGGO].

2 If #SAT can be k—enumerated then P = NP

The proofs of this section and Section 3 have the same architecture. We develop a novel technique
to repeatedly expand and prune a formula tree. In this section we keep the tree constantly thin.
Section 3 allows trees that are polynomially bushy. ‘

This section shows that if #SAT can be k-enumerated then P = NP. First, we state a
lemma which says that we can easily combine many small formulas into a single larger formula.
This lemma generalizes a technique developed by Papadimitriou and Zachos in their proof that
PNPllog] ¢ P#Plll [PZ]. The single large formula has the property that, given its number of
solutions, we can quickly determine the number of solutions of each of the small formulas.

Lemma 2.1 There are polynomial-time functions combiner and decoder such that for any Boolean
Jormulas f and g, combiner(f, g) i3 a Boolean formula and decoder(||combiner(f,g)||) prints

141, lall-

Proof Let f = f(z1,..., z») and g = g(y1,..., Ym), Where z1,..., Zn, ¥1,..., Ym are dis-

tinct. Let z and z’ be two new Boolean variables. Then
(1) h=(fA2)V(EAZIA---AZa AgAZ')

is the desired combination, since [|k|| = || f[|2™*! + ||g]| and ||g|| < 2™. QED

We can easily extend this technique to combine three, four, or even polynomially many formulas.
(Using Cook’s connection between formulas and machines, one can equivalently view this result
as about counting and combining NP machines and accepting paths.) For example, to combine
three formulas f(z1,...,21), 9(¥15-.+5 Ym)s h(z1,..., 2n), our combining formula would be,

(2) h=(fA2)V{ZATIA- A A[(gAZ)V(Z Ay A--Aym ARAZ")]}.
Now we show that if #SAT has a k-P-enumerator then P = NP,
Theorem 2.2 If #SAT can be k-P-enumerated then P = NP.

Proof Say we are given a formula F(z,,...,2,) and we would like to know if F € SAT. We
substitute variables one at a time so that we always have a set S of at most k partial assignments
satisfying:

(x) F € SAT <= there is a satisfying assignment extending a partial assignment in S.

Each stage assigns a new variable and has three steps. Initially, S consists of the empty
assignment. ' '
Stage 1:

1. EXPAND TREE: For each partial assignment in S, assign the variable z; both true and
false (Figure 1A). Applying these assignments to F, we have at most 2k formulas.

2. COMBINE FORMULAS and RUN ENUMERATOR: Combine the 2k formulas into a single
super-formula as described in Lemma 2.1. Run our k~P—enumerator on that super-formula.
The enumerator prints k guesses for the number of solutions of the super-formula, which is
translated immediately to k vectors of guesses of the number of solutions of the 2k formulas.
(For example, in Figure 1B (where k = 3) the first guess says that the four little formulas
in our super-formula have; respectively, 7,0,3, and 3 solutions.)

3. PRUNE THE TREE: Note that if F € SAT, then at least one of the 2k formulas is
satisfiable, by the inductive hypothesis (*). Thus, if these k guesses are all zero vectors
then the formula is unsatisfiable. Suppose they are not all zero vectors, we can choose a
set T of at most k columns so that each nonzero row of our guess matrix (Figure 1B) has
a nonzero in a column in T. For example, we let T = {p| a row of the guess matrix has its
first nonzero entry in column p}.

Now we prune the tree by setting .S to the partial assignments corresponding to the columns
in T (there are at most k). Suppose F € SAT. Then by the inductive hypothesis, the true
guess is a nonzero vector, thus by our choice of T the true guess has a nonzero in some
column of T. We have assigned another variable and maintained invariant (x).

End of Stage ¢.

At the final stage all variables are assigned and we just have to look at our set of k complete
assignments to F and see if any of them satisfies F. We know by (x) that F is satisfiable if and
only if one of these assignments satisfies F. QED

3 Main Result

" This section demonstrates that enumerate and exact counting are Turing equivalent. This
strengthens the result of the previous section.

Theorem 3.1 If Enum is an n®-enumerator for #SAT, a < 1, then

P#P = PEnum.
Corollary 8.2 If #SAT can be n®-P-enumerated, a < 1, then P = P#F,

Since P#P = PFP [Gil,Sima), where PP is probabilistic polynomial time, the existence of good
enumerators for #SAT also implies that probabilistic and deterministic polynomial time are
equivalent. ‘

Corollary 8.8 If #SAT can be n®-P-enumerated, a < 1, then P = PP.

Theorem 3.1 differs from Theorem 2.2 in two important ways. One is that we are satisfied
"with an n®—enumerator, @ < 1. The more interesting point is that we conclude P = P#F, We
now discuss each of these improvements. :

3.1 How to Count Solutions

The first major change is that we find out not only if a formula is satisfiable, but also how many
satisfying assignments it has. We do this with a more rigorous analysis of the guess matrix and
a refined pruning strategy.

Lemma 3.4 If #SAT can be k-P-enumerated then P = P#F,

‘Proof Consider the tree pruning procedure in Theorem 2.2. Here we want to keep a set S
of p (1 £ p < k) leaves in the partially grown tree, such that (|| f1]|, [|f2ll,--, || /o|]) uniquely
determine || f||, where f; is the formula obtained from f by the partial assignment associated
with the jth leave in S. (We will speak interchangeably of the jth leave in S and f;.)

Again we substitute variables one at a time. Inductively, for the formulas fy,..., f, in S,
we wish to maintain at most k vectors u; (¢ = 1,..., g, ¢ £ k) of dimension p, and integers
81y..+4 8¢, such that the following conditions hold.

1° (Vi)[u; # 0],
2° (Vi # j)|wi # u,], and
8° f€SAT = (3)[wi = (| Aall,- -, Fpll) & si = [|F]l)-

4

om

Notice that when the tree has fully grown, for the formulas f,..., fp in S it can be easily
checked whether some u; = (|| f1]l,..., || /p||])- If no such u; exists, then f is unsatisfiable, by 3°.
If such u; exists, we know from 1° that f is satisfiable, and the u; must be unique, by condition
2°. And thus by condition 3° we can output || f|| = s;.

The proof is a double induction. Each stage has the same general structure as before in the
proof of Theorem 2.2.

Initially S consists of f (or, the empty assignment) and we apply our enumerator on f. If the
enumerator guesses all zeros, then output || f|| = 0. Otherwise, let u;,..., 4 be all the distinct
nonzero guesses (1 < ¢ < k), and s; = u, trivially.

We inductively maintain 1°, 2° and 3° as we go along, and at each stage we use a second
induction for the tree pruning process.

Stage I:

1. EXPAND TREE: For each partial assignment in S, assign the variable z; both true and
false. We have r new leaves, where 2 < r = 2|S| < 2k.

2. COMBINE FORMULAS and RUN ENUMERATOR: Combine f with the formulas f;,..., f,
associated with these new leaves. Let G be the resulting “super-formula.” Run our k-
enumerator of G. We obtain at most k guesses for the number of solutions of G. Using our
decoder (see Section 3.2) we get up to k distinct vectors, say 91,..., 97, 1 < ¢’ < k, where

= (vio, vi1y..., vir) is a guess for (||f]l, [l /all,-- ., £ 11)-
3. PRUNE THE TREE: Let v; = (v;1,..., v,).

If some v; = 0 we may discard 9;. In fact, if f € SAT then one of the formulas in S is
satisfiable, by inductive hypotheses 3° and 1°. Thus one of the new leaves is satisfiable.
Since v; = 0 can’t be a true guess if f € SAT, deleting it causes no harm, in terms of
maintaining 1°, 2° and 3°.

Secondly, for any pair @;, 95, if v; = v;, we can effectively delete at least one of them. This
is because 9;,# U; and v; = v, imply v;0 # vj0. Now (v;; + vi2,..%,¥ p—1 + v;,) must
equal one of the u’s (call it u;) associated with the formulas in S (otherwise ©; as well as
0y is clearly false by 3°). This u, must be unique by 2°; furthermore, either v;q # s; or
vjo # 3.

If vio # 3¢, clearly 4; is false; we may delete §;. The same argument applies to oj.

Without loss of generality, we are left with (%y,..., %), ¢ < k. If ¢ = 0 then output
II7ll = 0. In fact, if f € SAT then some #; with v; # 0 must represent the truth and must
have been kept.

Let s; = v;0,t = 1,..., ¢, 1 £ g < k. Note that vy,..., v, and the s;’s satisfy conditions
1°, 2° and 3°. For condition 3°, since when f is satisfiable, we have only deleted false
guesses. Let the guess matrix consist of vy,..., v, as row vectors. We will inductively
extract at most ¢ columns of the matrix, so that the g row vectors of the submatrix (the
projection of vy,..., v, onto the chosen dimensions) also satisfy 1°, 2° and 3°.

Since 3° is automatically satisfied with any subset of columns, we need only to maintain

1° and 2°.
To prune, initially let j; = min{j > 1| v1; # 0}. Let wy = (v1;,) € Z!. Inductively,
suppose wy,..., wp € Z k" have been constructed, b’ < h < ¢, satisfying 1° and 2°. Each

w; is the projection of v; onto the h' chosen columns. Take these A’ columns of vj41; call
this vector wh1;.

If Why1 = w; for some 1 < ¢ < h, then this ¢ is unique, by 2°. Also, W51 # 0 by 1°. Now
all we need to do is to distinguish wp4; from w;. But since vy41 # v;, this is easily done
by choosing one more column. (Every wi,..., wh, V71 is extended one dimension to get
the new wy,..., wy and wh41.)

If wa1 # wi, for all 1 < ¢ < h, then we only need to insure w,3; # 0. Again this is easily
done by extending at most one dimension, since v,4+; # 0.

Finally, wy,..., wy are constructed. Set u; to w; and p to the dimension of w;; S consists
of those new leaves corresponding to the p selected columns. 1°, 2° and 3° are satisfied.

End of Stage [.
QED

3.2 Dealing With Polynomial Enumerators

In this section we show how to combine many formulas into a super-formula efficiently and prune
so that our tree does not blow up in width. This is an extension of the way, in Sectlon 2, we
went from combining two to combining three formulas (Equations 1 and 2).

We now discuss how to proceed with an n!

~¢—enumerator. We maintain a polynomially wide
band as we prune down the tree. Suppose we are given m Boolean formulas f;, f2, ..., fm
on variables z;, z2, ..., z,. We first make all the variables distinct among different f;’s. This
blows up the size of each formula by a factor of at most 1 + logm. Second, we choose m new
variables 21, 22, ..., 2m each of size O(log m), and combine the formulas f;, f2, .. s fm via the
straightforward generalization of Eq. 2. Let F be the resulting super-formula.

We wish to bound the size of F in terms of the sizes of the f;’s. Let N be a bound on the
sizes of each f;, |fi| < N. We conclude, upon examining our combination formula (Eq. 2), that
the size of F is bounded above by

(3) B(m, N) =2mN(1+ logm) + O(mlogm)

Note that for large N, (B(2N* + 1, N))* < N, if a < 1 and ¢t > 22, Hence, for an n!~¢-
enumerator, we can maintain a bushy tree of width N* as we carry out the tree pruning.

4 An n*-for-one Result: NP#P = NP#Flll

The recently developed theory of terseness asks if many queriés to an oracle are more powerful
than one query [AG,GJY,BGGO]. Kadin has proven that if for some k, PNPIk] = pNP[k+1]

F(F, T, X3,..., Xn)

T TF FT FF
(Dol s]s
o|o|o|o

o
o
-

F(T,T,x3,....,%n) F(F,T,x3,...,%n)

Figure 1A: The Tree Figure 1B: The
Guess Matrix

e s Xn)

F(T,T,x3,..,%xn) F(T,F,x3,...,%n)

PRUNED
BRANCHES

Figure 1C: The Pruned Tree

