The Laplace Transform is frequently encountered in mathematics, physics, engineering and
other fields. However, the spectral properties of the Laplace Transform tend to complicate
its numerical treatment; therefore, the closely related “Truncated” Laplace Transforms are
often used in applications.

We have constructed efficient algorithms for the evaluation of the Singular Value Decomposi-
tion (SVD) of Truncated Laplace Transforms; in the current paper, we introduce algorithms
for the evaluation of the right singular functions and singular values of Truncated Laplace
Transforms. Algorithms for the computation of the left singular functions will be introduced
separately in an upcoming paper.

The resulting algorithms are applicable to all environments likely to be encountered in
applications, including the evaluation of singular functions corresponding to extremely small
singular values (e.g. 1071000),
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1 Introduction

The Laplace Transform £ is a linear mapping L?[0, c0) — L2[0, 00); for a function f € L?[0, c0),
it is defined by the formula:

()= | T et (. 1)

0

As is well-known, £ has a continuous spectrum, and £~} is not continuous (see, for example,
[1]). These and related properties tend to complicate the numerical treatment of L.

In addressing these problems, we find it useful to draw an analogy between the numerical
treatment of the Laplace Transform, and the numerical treatment of the Fourier Transform F;
for a function f € L'(R), the latter is defined by the formula:

oo
F @ = [ e, 2)
—0oQ
where w € R.
In various applications in mathematics and engineering, it is useful to define the “Trun-
cated” Fourier Transform F, : L?*[—1,1] — L?[-1,1]; for a given ¢ > 0, F. of a function
f € L*[—1,1] is defined by the formula:

1
F @) = [ = 3)
The operator F. has been analyzed extensively; one of most notable observations, made by
Slepian et al. around 1960, was that the integral operator F, commutes with a second or-
der differential operator (see [2]). This property of F. was used in analytical and numerical
investigations of the eigendecomposition of this operator, for example in [2, B 4 5l [6] [7, [§].
For 0 < a < b < oo, the linear mapping L, : L*[a,b] — L?[0, 00) defined by the formula

b
(Lap()) (@) = / e F (1), (4)

will be referred to as the Truncated Laplace Transform of f; obviously, L, is a compact
operator (see, for example, [1]) .

The Singular Value Decomposition (SVD) of L, has been analyzed, inter alia, in [I] and
[9]; Bertero and Griinbaum observed that each of the symmetric operators (L,5)* o L4 and
Lop0(Lap)" commutes with a differential operator (see [9]). Despite [9} 10 11, 1T} 12} 13, 14} 15],
much more is known about the numerical and analytical properties of F. than about the
properties of L, .

We have constructed algorithms for the efficient evaluation of the of the SVD of £, ;. In this
paper, we introduce algorithms for the efficient evaluation of the right singular functions and
singular values of £, 3. The remaining algorithms, including the algorithm for the numerical



evaluation of the left singular functions, will be discussed in upcoming papers along with
additional analytical results.

The paper is organized as follows. Section [2|summarizes the various standard mathematical
facts and simple derivations that are used later in the paper. Section [3|contains the derivation of
various properties of the right singular functions of the Truncated Laplace Transform, which are
used in the algorithms. Section[d]describes the algorithms for the evaluation of the right singular
functions and singular values of the Truncated Laplace Transform. Section[5]contains numerical
results obtained using the algorithms. Section [6] contains generalizations and conclusions.



2 Preliminaries

2.1 The Legendre Polynomials

In this subsection we summarize some of the properties of the the standard Legendre Polynomi-
als, and restate these properties for shifted and normalized forms of the Legendre Polynomials.

We define the Shifted Legendre Polynomial of degree k = 0,1, ..., which we will be denoting
by P}, by the formula

P (x) = Pp(22 — 1), ()

where P is the Legendre Polynomial of degree k; the standard definition of the Legendre
Polynomials can be found, inter alia, in [16].

As is well-known, the Legendre Polynomials form an orthogonal basis in L?[—1,1], but
they are not normalized; it immediately follows that the Shifted Legendre Polynomials form
an orthogonal basis in L?[0,1] and that they are also not normalized. Therefore, we find it
convenient to define the Normalized Shifted Legendre Polynomial of degree k = 0,1, ..., which
we will be denoting by P}, by the formula

Pf(x) = P{(a)V2k + 1 (6)

the Normalized Shifted Legendre Polynomials Pg, Py, ... form an orthonormal basis in L2[0, 1].
The following well-known properties of the Legendre Polynomials can be found, inter alia,
in [16], [17]:

(k+ 1) Ppir(z) = (2k + DaPy(z) — kPy_y(2) (8)
(1-— xQ)—ka(a?) = —kaPy(x) + kPy_1(z) (9)
% ((1 — xQ)(i;Pk(a:)> = —k(1+ k) Py(z) (10)
2k + DPi(e) = = (P (@) — P (2) (11)



The following properties of the Shifted Legendre Polynomials are easily derived from the
properties of the Legendre Polynomials by substituting into (7H11)).

L 1

| m@rar = 5o (12
kP! (x k)P! (x

ortte) =3 (g + e+ ) w

o1~ a) g Pile) = g (e (o) = P (2) (1)

% <x(1 —x)(ipg(x)> — k(1 + k)P () (15)

2.2 The Legendre Functions of the second kind

As is well-known, the Legendre Polynomial Pj(z) is not the only solution for the differential
equation in the interval [—1, 1]; the other solution is the Legendre Function of the second
kind Qx(x), defined by the formula

1
Q) = [ -0 Rultat (16)
-1
where Py is the Legendre Polynomial.

Having defined the Shifted Legendre Polynomials, we find it convenient to similarly define
the Shifted Legendre Function of the second kind of degree k, which we will be denoting by Q7,
by the formula

Qr(2) = Qr(2z — 1). (17)
The following identities can be found, for example, in [16], [17]:
Qr(2) = (=11 Qu(-2), (18)

. 0
) = [ oo™ (19)

By @, , and ,
1
[ @+ P = 2104 Qiy + DVERF T (20)

0
for all y > 0.



2.3 Singular Value Decomposition (SVD) of integral operators

The Singular Value Decomposition (SVD) of integral operators and its key properties are
summarized in the following theorem, which can be found, for example, in [18].

Theorem 2.1. Suppose that the function K : [c,d] X [a,b] — R is square integrable, and
T : L?[a,b] — L?[c,d] is defined by the formula

b
(T() (&) = / K(x.t)f(t)dt. (21)

Then, there exist two orthonormal sequences of functions ug,u1, ..., where u, : [a,b] = R and
V0, V1, ..., where v, : [c,d] — R, and a sequence ag,aq,... € R, where ag > g > ... > 0, such
that

(T()) (2) = f%an ([ s (22)

a

for any f € L*[a,b]. The sequence ag, o, ... is uniquely determined by K.

The functions ug, u1, ... are referred to as the right singular functions, the functions vg, v1, ...
are referred to as the left singular functions, and the values ag, aq, ... are referred to as the
singular values of the operator T. Together, the right singular functions, the left singular
functions and the singular values are referred to as the SVD of the operator T'.

It immediately follows from Theorem [2.1] that

T (up) = apvp, (23)

T* (vy,) = Qg (24)

Observation 2.2. The right singular functions ug, u1, .. of T" are eigenfunctions of the operator
T* o T and the left singular functions vy, v1, ... are eigenfunctions of the operator T o T™*; the
singular values «q, a,... of T are the square roots of the eigenvalues of T* oT" and T o T™. In
other words, for every n =0,1, ...,

(T* o T)(up)) (7) = / RS ( / bK(a:,t)un(t)dt) dz = a2up(7) (25)

and

(T T ) (€)= | K (/ dK(ac,t)vn(x)dx) at = a2 (€) (26)



Remark 2.3. The function K can be expressed using the singular functions as follows (see
[8]),

K(z,t) =) vn(x)omtn(t) (27)
n=0
and it can be approximated by truncation of small singular values (also see [18]):

K(z,t) ~ ) vn(@)omun(t) (28)
n=0



3 Analytical apparatus

3.1 Bounds on the Legendre functions of the second kind

For any = > 1, the function Qg(z) (defined in (16))) decays rapidly as k grows. More formally,
for any § > 0 and k = 0,1, ..., there is a uniform bound on |Qx(x)|, where z > 1+ §; the bound
decreases superalgebraically as k grows. The following lemma provides an explicit bound.

Lemma 3.1. Suppose that § > 0; then, for all y > 0,

N k+1
Qu(L+ 6+ 1) < (bg (21?) +1> <1i5> | (20)

0=+(1+8)2-1 (30)
and Qy, is defined in (16).
Proof. By (16,

where

Qe(1+3+y)| = '
k /0 ((1 + 6+ ) + cosh(p)y/(1+6 +y)2 — 1)’““ (31)

Since (1+d+y) > (1+9),

Qk(1+0+y)| < .
’ /0 ((1+0) + cosh(@) T T 07 1) (32

Since § > 0, clearly § > 0 and therefore,

o0 d
Qursy) < [T (33)
0 (1 +0 cosh(«p))
Introducing the notation
1+
v =log <2 t ), (34)
J
we break the integral in into integrals on the two intervals [0, v) and [v, 00):
|Qr(1+ 6 +y)] </ N Er1 +/ ~ E+1° (35)
0 (1 +4 cosh(ga)) v (1 + (5cosh(<p)>



Clearly,

1 1
- TS NS (36)
(1 + 5cosh(gp)) (1 + 5)
and
1 1
- TS k1 (37)
<1 + 5cosh(<p)> (5 exp(go)/2)
so that,
v ee dy
Qe +0+y)| <—— g + - g (38)
(1 + 5) v (5 exp(y) /2)
Substituting into (38)), we obtain
1 1+ 1
(1+9)
and from it, we obtain (29)).
[
Corollary 3.2. By, and (@),
1+4 1\
(1+0/2+ < |1 2— +1 = 40
QL +5/2 +4) <g( ! ) ><1+5> (40
where
0=+/(1+8)?2 -1, (41)

0,y > 0 and Q5 is defined in .

3.2 The Truncated Laplace Transform

Definition 3.3. For any pair of real numbers a,b, such that 0 < a < b < oo, the Truncated
Laplace Transform L, is the linear mapping L*[a,b] — L*[0,00), defined by the formula

b
(Cap()) (@) = / e F (1), (42)
Obviously, the adjoint of £, is
(Lan)(9)) (1) = /0 e g(w)d. (43)

The operators L, 5, and (L,p)" are compact, the range of (L£,)" is dense in L?[a,b] and the
range of L, is dense in L2[0, 00) (see, for example, [1]).



3.3 The SVD of the Truncated Laplace Transform

By Theorem there exist an orthonormal sequence of right singular functions ug, ug, ... €
L?[a, b], an orthonormal sequence of left singular functions vg, v1, ... € L?[0,00) and a sequence
of real numbers aq, a1, ... € R such that

00 b
(Lap(f) (W) =D om un(t) f()dt | vp(w), (44)
) =3 [t s

and for all n =0,1, ...,

ﬁa,b(un) = QnUn, (45)

(ﬁa,b)*(Un) = Opln, (46)
and

Qp = apy1 2> 0. (47)

Remark 3.4. The multiplicity of the singular values of L, is one (see [9]); in other words,
foralln=0,1,...

Qp > Q- (48)

Remark 3.5. According to Observation the right singular functions ug, u1, ... of L, are
eigenfunctions of the integral operator (Lq5)" 0 Layp : L?[a,b] — L?[a,b] given by the formula

(«%w%cwﬂﬂﬂwzﬁmaw(élﬂwumﬁdwzlb1 F5)ds,

t+s
(49)
and the corresponding eigenvalues of (L, )" o L, are a%, a?, ..., where ay, is the singular value
of L, associated with the right singular function w,,. In other words,
b1
(((Lap)" 0 Lap) (un)) (t) = /a T tn(s)ds = apun(t). (50)

Similarly, the left singular functions v, of L, are eigenfunctions of the integral operator
Lapo (Lap) : L20,00) — L*0,00) given by the formula

((Lapo (’Ca,b)*) (9)) (W) =
b 00 0 efa(w+ ) _ efb(er ) 51
= /a e ! ( /0 e‘”tg(p)dp> dt = /0 ’ : 9(p)dp, o1

w+p
and the corresponding eigenvalues L, 0 (Lqp)" are a%, a2, .... In other words,
* S e_a(w+p) — e_b(w"’p) 9
(oo (Lan)) () ) = [ wn(p)dp = aZun(@).  (52)
0 wtp



3.4 The differential operators [)t and ﬁw associated with the singular func-
tions of £,

In this subsection we summarize several properties related to the differential operator Dy,
defined by the formula
. d d
(Bu0) (0= 5 (12 =) = ) 550)) — 2% = )1, (53)

where f € C?[a,b]; and properties related to the differential operator ﬁw, defined by the
formula

(Du(h)) @) =

= o 2 d f( ) )+ (e + ) — d w? d —f(w) ) + (—a®b*w? + 24d°) f(w)
dw? dw dw ’
(54)
where f € C*[0,00) N L?[0, ). For a derivation of these properties, see [9].

Theorem 3.6. The differential operator Dy, defined in (ﬂ) commutes with the integral oper-
ator (Lap)* o Lap, (specified in @)} in L*[a,b]. In other words,

Dt o ((‘Ca b) o Ea b) = ((‘Ca b) o Ea b) o Dt (55)

Theorem 3.7. The differential operator D, defined in (ﬂ) commutes with the integral op-
erator Lo p o (Lap)”, (specified in (ﬂ)} in L?[0,00). In other words,

Ea,b o ([:a,b) o Dw - Dw o Ea,b o (/-:a,b) (56)

Theorem 3.8. The right singular functions ug,u1, ... (defined in ) of Lap (defined in @)
are also the eigenfunctions of Ds.

Theorem 3.9. The left singular functions vg,v1, ... (defined in @)} of Lap (defined in @)
are also the eigenfunctions ofﬁ

We denote the elgenvalues of the differential operator D, by X0, X1, ---, and the eigenvalues
of the differential operator D, by x6s X1, ---- By Theorem |3.8, the smgular function wu,, is the
solution to the differential equation

5 (=@ =) 300)) = 2~ unlt) = Tl (57)

and by Theorem the left singular function v, is the solution to the differential equation
d? d? d d
- (P @) + @ (P ) + R + 2 ule) -

= XpUk(w)-
(58)

10



Remark 3.10. The singular values «,, (defined in ) of the integral operator L,; are
known to decay exponentially as n grows; consequently, the direct numerical computation of
the singular functions of £, ; beyond the first few singular functions is impossible.

The differential operators D; and D,, are advantageous in the numerical treatment of the
singular functions u,, and v, because their eigenvalues increase with n, and because the differ-
ential operators can be treated using numerical tools developed for differential equations. Such
tools are developed below in Sections and [3.8 and used to construct the SVD
of the operator L, in Section @

3.5 The operator 7T, and the function ¢,

The right singular functions u, (see ([48))) of Ly (see (42))) are defined of the interval [a, b]; we
find it convenient to shift this interval to the interval [0, 1].
We introduce the operator T, : [0, 1] — [0, 00), defined be the formula

. 1
@ - [ ¢ (#+55) f(2)da. (59)

0

This operator is related to the operator L, where

vy="b/a (60)

by a the changes of variables

t—
:)::b_z, t=a+(b—a)z, (61)
and
w
G=wlb-a), w=; (62)
We denote the singular values of T, by &g, a1, ..., the right singular functions of T, by

10,1, ... and the left singular functions of T, by g, 01, .....
Suppose now that 0 < a < b < oco. Then a simple calculation shows that for any n =
0,1,2,...

Un(z) = Vb —a up(a+ (b—a)x), (63)
1

Un(w) = un(@/ (b — a)), (64)

—a

i

(up to the ambiguity in sign) and

Qp = O, (65)

11



where a,,u, and v, are a singular value, right singular function and left singular function of
Lqp, and where ay,,1, and v, are a singular value, right singular function and left singular
function of T, and v = b/a.

The operator T o T’ is defined by the formula

1

mf(y)dya (66)

(@ om) 1) @)= [

with f € L?[0,1], and 3 is defined by the the formula:

p= 2= (67)

By Observation 2.2] the right singular functions g, 1, ... of T, are the eigenfunctions of the
integral operator 77 o T,. Clearly, T o T, has the same eigenvalues as (Lap)* 0 Lap:

1

_ 2
m¢n(y)dy = (). (68)

1

(T3 0) () @) = [

Similarly, by and , Yo, Y1, ... are the eigenfunctions of the differential operator D,
defined by the formula

d

1) @) = 5 (20 -2 +2)(3 +1+0) 5 1@)) = 200+ B)f(0). (69

In other words, v, is the solution to the differential equation

T (50 =26 +2)(B + 1 4.2) L)) = 2o + 8)n(2) — xuha(o) =0

dz
(70)
with xg, x1, ... the eigenvalues of D,.

Remark 3.11. A simple computation shows that the eigenvalues Xo, X1, .-- of the operator D,
are related to the eigenvalues Yo, X1, ... of the operator D;, defined in by the formula

n = (b—a)*xn. (71)

Remark 3.12. The operator T, is determined by the single parameter +; therefore, the singular
value decomposition of the operator L, ., is determined by <, in the following sense. The

sequence of singular values ag, a1, ... of the truncated Laplace transform £, -, depends only on

v, and is independent of the value of a. If v = g = 2 then the the sequences of right and left

~a
singular functions of L, are identical to those of the truncated Laplace transform L ; up to
trivial scaling.

12



3.6 Expansion of v, in the basis of Legendre Polynomials

Let f be a smooth function in L2[0,1], then f can be expressed in the basis of Normalized
Shifted Legendre Polynomials P} (defined in (6))); let & = (ho, hi, ...)" be the vector where

1
by = /0 F(@) Py () da, (72)

then clearly h is the vector of coefficients in the expansion,
fl@) =) hP(). (73)
k=0

We introduce the notation h™ = (hy, hY, )T for the vector of coefficients of the expansion
of the function 1, (defined in ) in the basis of Normalized Shifted Legendre Polynomials;
where the element h} is defined by the formula

1

b= | vnl@ P, (74)
so that
Un(r) = hiBi(w). (75)
k=0

3.7 Decay of the coefficients

Since the function 1, (defined in (63))) is a smooth solution of a differential equation (specified
in ), we expect the coefficients A} in the expansion of 1), to decay rapidly. In this subsection
we provide an estimate for the actual decay.

Lemma 3.13. Suppose that 0 < 8 < co . Then,
Lot ? 2v2k + 1 147
/ </ P,j(:n)d:n) dy < i}m log | 2 i p +1 ,
o \Jo z+y+p (1 I B) g

where PT:‘ 1s defined in (@) and

B=1/(1+(28)*—1=2B(1+p). (77)

13



Proof. Based on ,

1
| @ty ) Biw)ds] = 203y + 5+ DV L, (78)
0
where Q7 is defined in . So, by Corollary
! . 22k + 1 1+p
By squaring and integrating over y, we obtain . O
Lemma 3.14. Suppose that hy is the k + 1-th coefficient in the expansion of 1y, specified in
; then,
1 k+1
1K Scn\/2k+1< ) , (30)
1+

where, ¢, is defined by the formula

L 1+53 L y-1
cn = 20,2 <log (25~> + 1> = 20,2 <log (2 + M) + 1> , o (81)

analﬁ~ is defined by the formula

al +11. (82)

B=v1+(28% -1=V4B(1+ ) = 2V2="—

The parameters ay,, 8 and v in and are defined in , (@) and (@), respectively.
Proof. We substitute into and change the order of integration:

! .
hy = 0452/ / mpﬁ(x)wn(y)dxdy =

/wn </0 m+;+5 ()dx)dy.

By the Cauchy-Schwarz inequality,

2
W} < o \// (n(y dy\// 0 x—i—y+ﬁ ()dx> dy. (84)
) + 1) . (85)

Now, by ,

~\ k+1

W] < ap2V1 2v2kt 1 <1og <21 i
(1+6)



3.8 A matrix representation of the differential operator D, in the basis of
by

The purpose of this subsection is to express the differential operator D, in the basis of Nor-
malized Shifted Legendre Polynomials PT: as the matrix M described in Lemma Theorem
shows that the matrix M is in fact a five-diagonal matrix; and Corollary provides the
relation between the eigenvectors of M and the functions 1), defined in (63)).

Lemma 3.15. Let f be a smooth function with the expansion h = (ho,hl,...)—r specified in

(73):

f)=> hPi(x). (86)
k=0
Suppose that ¢ = D, (f), with the expansion n = (Hy, Hy, )T such that
p(z) =Y mPp (). (87)
k=0
Then,
n = Mh, (88)

where the matriz elements My, of M are specified via the formula

17
M, = /0 Pf(z) (D.(Py)) (z)dz, (89)

with 0 < j,k < oo.

Proof. By the linearity of the differential operator D, (defined in ),

(@) = (Dz(f)) (&) = > hi (Do(FY)) (). (90)
k=0
Combining and ,
> mePi(x) = by (D2(F})) (). (91)
k=0 k=0

Now, by multiplying both sides of by Pij* and integrating, we have

1 [ee}
nj = / (Z hie (Do (PF)) (x)) P¥(x)dz, (92)
0 \g=0

15



and by linearity

th ([ 7 (070) ). (93)

Theorem 3.16. For any k > 0,

(D2(F)) (z) =

_ (k—1)2k2 S
- 4\/2k—3(2k—1)\/2k+1Pk—2(‘T)

O+8) v
~ Vot i-1(@)

(—4—68—2kB(2+38)+k2 (7+128+252 )+ (2k>+k*) (T+168+88%)) = (94)
a 2(2k—1)(2k+3) Pi(x)

(+1)3(148) Bw—
~ Varrrvargs i (@)
(4120422 Py
 4V2k+1(2k+3)V2k+5 " k+2

where P* is the Normalized Shifted Legendre Polynomial defined in @ and B = f“a is defined

m@)

In other words, M is the five-diagonal matrix

B (k—1)%%?

M2k =  4y/2k—3(2k—1)v/2k+1
_ __ k048

M1k = — =ty

7 — 2(2k—1)(2k=+3)
_ (k+1)3(148)

M1, = T V2htIV2hi3
_ (k+1)2(k+2)2

Mit2k = — {7510k r3) V2R TS

Proof. By the definition of D, in ,

(Du(P)) ) =
= (G + 12l - 0) LR @) - 20+ B 0)

16



Using the chain rule,
(Do (Py)) (x) =

— <£{(5 +x)(B+1+ :c)) <w(1 - x)ipﬁ($)>

+B+z)(B+1+ x)dix <a:(1 - x)(i{P,j(x)) —2z(x + B) Py (x) =
(97)

—(1+ 20 + 28) (m(l _ x)dipg(x)>

+ (2% + 2(1+2B) + B + 5?) d% (:c(l - a:)(iP,j(:z:))
—2z(x + B) P (z).

Using identities , and ,

(De(Fy)) () =
(=14 k)*K2Pf_y(a)
4(—1+ 2k)(1 + 2k)
B k(1 + B8P ()
1+ 2k
(—4+T7k2 4143+ Th* 68— 4k B+12k2 B+32k> B+16k* B—6k 3242k B2+ 16k3 32+ 8k4 32) ()
2(—1 + 2k)(3 + 2k) k\E
(L+k)°(A+ B) Py, ()
1+ 2k
(1+k)*(2+k)* P, o ()
4(1 + 2k)(3 + 2k)

(98)

Finally, substituting @ into gives . O

Corollary 3.17. Suppose that h"™ = (h{, hY, )—r is the vector of coefficients defined in ,
in the expansion of the function ¥, (x) defined in @; then, h™ is the n + 1-th eigenvector of
M :

MR = xnh", (99)

where M is the five-diagonal matriz @, Xn are the eigenvalues of the differential operator
D,, and k=0,1,2....

Proof. By , Yn(z) is an eigenfunction of D,, with the eigenvalue y,:

(Dz(¥n)) (2) = Xntbn(@), (100)

17



so that

(%(ZW%»@FﬂM%M@=mZW$@- (101)
k=0 k=0
Therefore, by Lemma we obtain . O

3.9 A relation between u,,u,,, and the ratio «,/a,,

Lemma 3.18. For anyn,m =20,1,....,

2 Pl () um (£)dt
ﬂ:f% (t)um(t) (102)

an  [Pun(t)ul, (t)dt
if the integrals are not 0; where u, and u,, are right singular functions (defined in ) and

oy, and oy, are the singular values (defined in ) of Lo (defined in @)
Similarly,

Q

a2, [} Ul (2)m(x)de

Smo_ 103
02 = [T hu(@)hy(a)ds (105)
if the integrals are not 0; where ¥, and V., are defined in @
Proof. We recall from that
1 1 [
un(t) = — (L%(vn)) (t) = / e Y, (w)dw. (104)
(077 an Jo
Therefore, the derivative of u,(t) is
1 o0
ul, (t) = / (—w)e “, (w)dw. (105)
(7% 0

We multiply both sides of the expression by u,(t), integrate both sides, and change the order
of integration:

b b 00
1
/ wl, (), (¢)dt = — (/ (—w)e_“’tvn(w)dw) U (t)dE. (106)
a On Ja 0
By rearranging the result, we obtain
b o 00
/ ul, () u, (H)dt = =2 (—w)vp (W) (w)dw. (107)
a Qn Jo
m and n are clearly interchangeable, so that
00 a b
/ (=) om (@) m(@)dw = 2™ [l (#un (D)dt. (108)
0 Qn Jq
By substituting ((108]) into (107]), we obtain (102f). Substituting into ([102]) we obtain (103)).
O
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4 Algorithms

4.1 Computing the right singular function u,

In this section we introduce an algorithm for the numerical evaluation of u,(t), the n 4+ 1-th
right singular function (defined in (45))) of L, (the operator defined in ([42)).

Step 1: Compute A", the n + 1-th eigenvector of the matrix M, defined in .

Step 2: Compute the function ¢, (x) from A", using the expansion specified in .

Step 3: Obtain u,(t) from 1, (z) using (63).

Remark 4.1. For computations in precision e, the vector h™ = (h{, hY, )—r is truncated at
K, such that |h}| < € for all & > K. By lemma the coefficients hy decay rapidly as k
grows; the actual position of the last significant coefficient, larger in magnitude than e, is given

in Figure [6] and Table [ in Section [}, for several combinations of v and n.

4.2 Computing the singular value «,

In this subsection we present an algorithm for computing the N + 1 first singular values
ag, aq,...ay (defined in ) of L4 (the operator defined in )

Step 1: Compute the first singular value «q, for example, by the formula

fb —ug(s)ds

a t+s

apg = )
uo(t)

(109)

derived from (50]), where t € [a, b] and ug(t) is computed using the algorithm from the previous
section.

Step 2: For every n > 0, compute o, from a,_1 using the relation in Lemma [3.1I8, and the
functions uy,(t) and u,—1(t) computed using the algorithm in the previous section.
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5 Numerical results

In this section we present results of several numerical experiments. The algorithms for comput-
ing the right singular functions w, and singular values o, of L (the operator defined in )
were implemented in FORTRAN 77, using double precision arithmetic, and compiled using
GFORTRAN.

In Figures and [3| we present examples of right singular functions of the operator L, y,
where a = 1 and b = 1.1, b = 10 and b = 100000 respectively.

In Figure 4| and Table [1) we present the singular values «, of the operator L, , for several
ratios v = b/a; o, depends only on v and n (see remark . In table [2| we present several
singular values smaller than 10710%; the Fujitsu compiler with quadruple precision was used
in this experiment.

In Figure 5| and Table [3[ we present the eigenvalues of the matrix M defined in (95)).

In Figure [6] and Table [] we present for several combinations of v and n the position of
the last significant coefficient A} in the expansion defined in , that is larger in magnitude
than € = 10716, In numerical computations, the vectors are truncated around that point (see
Remark .

In figure [5] we present the CPU time required for the computation of the expansion of the

101-st right singular function uigg of £ 4, for varying v; The experiment was performed on a
ThinkPad X230 laptop with Intel Core i7-3520 CPU and 16GB RAM.
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Table 2: Examples of singular values «,, smaller than 10~

An

1.1E40
1.0E+1
1.0E+2
1.0E+3
1.0E +4
1.0E 45

520

1721
2797
3872
4946
6021

29

8.70727E — 1002
3.66934E — 1001
5.29961F — 1001
5.71146 E — 1001
9.44191F — 1001
8.89748E — 1001
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6 Conclusions and generalizations

In this paper we have introduced effective algorithms for the evaluation of the right singular
functions and singular values of the Truncated Laplace Transform L.

As is evident from Remark and the more detailed discussion in [18], the right singular
functions of L, are an efficient basis for representing decaying exponentials on the interval
[a, b)].

An algorithm for the computation of the left singular functions of £y, which is the remain-
ing component in the computation of the SVD, will be presented in a future paper. Additional
asymptotic properties of the Truncated Laplace Transform and of the associated differential
operators will also be discussed in a future paper.
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