Learning with Localized Receptive Fields
John Moody and Christian Darken

Research Report YALEU/DCS/RR-649
September 1988

This research report will appear in the Proceedings of the 1988 Connection-
ist Models Summer School, Morgan Kaufmann, Publishers 1988, T'he work
was supported by ONR grant NO0014-86-1<-0310, AFOSR. grant, 1'49620-
88-C0025, and a Purdue Army subcontract.

Learning with Localized Receptive Fields

John Moody and Christian Darken
Yale Computer Science, P.O. Box 2158, New Haven, CT 06520

Abstract

We propose a network architecture based
upon localized receptive field units and an
efficient method for training such a net-
work which combines self-organized and su-
pervised learning. The network architecture
and learning rules are appropriate for real-
time adaptive signal processing and adap-
tive control. For a test problem, predicting
a chaotic timeseries, the network learns 1000
times faster in digital simulation time than
a three layer perceptron trained with back
propagation, but requires about ten times
more training data to achieve comparable
prediction accuracy.

1 Introduction:
Networks of Localized Re-
ceptive Fields

Over the past forty-five years, most neural
network models have utilized the McCulloch
and Pitts (MP) neuron [17] or generaliza-
tions thereof as the basic computational unit.
The MP neuron is a simple threshold device
which uses analog summation of inputs to
determine a boolean output. (The original
formulation also provides for shunting inhi-
bition to veto a net positive input.) Some of
the more recently-studied refinements of MP
neurons include sigmoidal response functions
(soft thresholds), conjunctive or “sigma-pi”
input summation, and explicit representa-
tion of the temporal response characteristics.

The most popular MP-neuron-based network
models have used layered architectures, par-
ticularly the multi-layer perceptrons, and su-
pervised learning algorithms such as the per-
ceptron, Adaline, Boltzmann machine, and
back propagation learning rules.

The most successfully applied network
learning model has been the LMS or Ada-
line learning rule [27]. Formulated in 1959,
it has enjoyed widespread application in
adaptive signal processing, particularly in
telecommunications. (See reference [28].)
The most successfully-applied modern net-
work learning model has been back propa-
gation, the multilayer generalization of the
Adaline rule. This supervised learning pro-
cedure has been used to solve a number of
interesting problems, for example sonar tar-
get recognition[4], playing backgammon|[26],
protein secondary structure prediction[22],
and predicting chaotic timeseries[11].

In spite of its practical success, back prop-
agation suffers a major handicap in that it is
extremely inefficient. In its original formu-
lation based upon gradient descent, it con-
verges very slowly. When implemented us-
ing a faster optimization procedure, conju-
gate gradient, it is still painfully slow. Typ-
ical convergence times for both methods on
large problems are measured in VAX days
or Cray hours. While more refined numeri-
cal implementations of back propagation are
likely to yield speed improvements, the ul-
timate learning rate is still limited by the
fact that all layers of weights in the network
are determined by minimization of an error

signal which is specified only as a function
of the output. A substantial fraction of the
learning time required by these networks is
spent in the discovery of internal representa-
tions, the patterns of incoming connections
to internal units. While this fully supervised
approach makes sense for doing “off-line” nu-
merical optimization when very precise re-
sults are desired, it is probably too inefficient
for many real-time problem domains found
in such areas as adaptive signal processing
or biological information processing.

In a departure from standard network
models, we shall consider in this paper net-
works which are not based upon the MP neu-
ron. Rather, we shall examine networks of
units which are imbued a priori with sim-
ple internal representations. Specifically, we
shall describe networks which use a single in-
ternal layer of localized receptive field units
to perform the essential computation.

Locally-tuned, but overlapping receptive
fields are a well-known data structure in real
nervous systems. They have been studied in
many of regions of cerebral cortex, includ-
ing the auditory cortex, the visual cortex,
and the somatosensory cortex. The orienta-
tion selective cell in the visual cortex is per-
haps the canonical example [7]. Given that
the brain is built out of noisy and imperfect
components, the overlapping receptive field
representation is believed to be important
for improving signal to noise ratios and for
providing fault tolerance. It is also invoked
to explain the phenomenon of hyperacuity.
Similar benefits are likely to be achieved by
using this representation in analog computa-
tional systems.

In addition to the data representations
provided by receptive fields, several authors
have studied their development and plastic-
ity. These include physiological [18] and
computational [21,24] studies of plasticity
in somatosensory cortex and computational
models of the development of orientation se-

lective cells in visual cortex [16,12].

We shall consider networks of abstract
localized receptive fields which attempt to:
capture the computational flavor of bio-
logical receptive fields. Furthermore, we
shall try to capture the plasticity which has
been observed and modeled in receptive field
maps by formulating self-oganizing dynam-
ics which re-allocate receptive field process-
ing resources to those regions of the input
space which are important.

2 Representation of Real-
valued Functions

In this section, we show how a network of
localized receptive fields can represent real-
valued functions f : R™ +— RP. The network
we shall discuss (see figure 1a.) has n lin-
ear inputs and p linear output units (only
one of each are shown). The internal units
are a single layer of M receptive fields which
have localized response functions in the in-
put space. The network thus has two layers
of connections. The overall response function
of the network (for the specialization p = 1)
is:

@) =Y, foRr* (@) ,
R¥(Z) = R(|E - &||/o*) .

(1
(2)

Here, 7 is a real-valued vector in the input
space, R* is the a-th receptive field response
function, R is a radially-symmetric function
(such as a gaussian) with a single maximum
at the origin and which drops off to zero at
large radii, ¥ and o® are the center and
width of the a-th receptive field, and f¢ is
the function value associated with each re-
ceptive field. One can think of this func-
tional representation as a generalized decon-
volution in which the basis functions (recep-
tive fields) are not uniformly distributed over
the input space and do not have uniform

S 4

Figure 1: A network of localized receptive field units (A) and a three layer perceptron (B).
Unit response functions are depicted graphically. Both networks have linear inputs and
outputs. The receptive field network has a single internal layer of non-linear units, while
the perceptron has two internal layers of sigmoidal units.

width. The use of receptive field represen-
tations of form (1) for modeling simple real-
valued functions has recently been discussed
by Heiligenberg and Baldi [5,1].

To obtain well-localized representations, it
is important that the receptive field response
functions (2) approach zero rapidly at large
radii. We have primarily used gaussians with
unit normalization:

Iz — &
(0°)?
which drop off faster than exponentially.

One could also use logistic functions of the
form:

R%(Z) = exp [—] (3

1
T+ exp [z - #°[/o% — 6] °

(4)

which drop off exponentially. Other func-
tional forms, such as the lorentzian, which
drop off as low order power laws are best
avoided because of their poor localization
properties. The use of such functions dra-
matically increases the computational ex-
pense of simulating receptive field networks.

In network language, one can think of the
f’s as ordinary linear output weights. If the
receptive field response function is a gaus-
sian as in equation 3, we can think of the
computational unit (“neuron”) as having an
exponential response function and the in-
puts as being a sum of post-synaptic re-
sponses of quadratic connections scaled by
a gain. Thus, the components of the T are
interpreted as input connection values and
(1/0*)? is interpreted as a neuronal gain. Al-
though this interpretation is not biologically
correct, it is useful for comparing the algo-
rithmic aspects of receptive field networks
and multi-layer perceptrons. Furthermore,
this formulation may be implementable di-
rectly in analog hardware.

With the addition of lateral connections
between the receptive field units, the network
can dynamically produce the normalized re-
sponse function: ‘

2o fORY(Z)
LaRNZ) -

This is essentially a weighted average or in-
terpolation between nearby receptive field

f(@) = (5)

function values; it is the functional form we
use in our simulations. The dynamical pro-
cess which results in this output will be dis-
cussed elsewhere.

3 Comparison to Multi-

Layer Perceptrons

In this section, we shall contrast the recep-
tive field network to a back propagation net-
work with 3 layers of weights, 2 internal lay-
ers of graded threshold units, and linear in-
puts and outputs. Both networks can learn
to approximate real-valued mappings. Al-
though the receptive field network is archi-
tecturally less complicated, it can easily learn
smooth approximations to arbitrary func-
tions on R™ with only one internal layer,
while a perceptron architecture is believed
to require three layers (two internal layers)
of threshold units.

It is well-known that three layers of thresh-
old units (two hidden layers) are sufficient
to solve arbitrary classification problems in
R™ (n > 2) (see Lippmann [14]). This
point is apparent when one considers that
at least two layers of threshold units are re-
quired to separate a convex region of the in-
put space. Clearly, just one layer of recep-
tive field units can separate convex regions.
Arbitrary decision regions (non-convex, non-
simply-connected, or disconnected) can be
formed as unions of convex regions. This
union is accomplished by the output layer.

These results for arbitrary classification
problems can be trivially extended to the
approximation of arbitrary real-valued func-
tions. The approximation scheme is based on
assigning function values to convex regions of
the input space. This requires two internal
layers of threshold units or just one layer of
receptive field units.

Indeed, Lapedes and Farber[10] have spec-
ulated that networks of threshold units may

tend to “discover” receptive field represen-
tations when trained to approximate real-
valued functions. They refer to these net-:
work configurations as “bumps”. Based
upon our own experience, we believe that the
formation of bumps is unlikely. This point
will be discussed in greater detail elsewhere.

The intrinsically-local representation of
the input space by receptive field units has
several advantages. First, it results in prob-
lem solutions which are intuitively transpar-
ent. Secondly, it allows the implementation
of very fast simulations, since only those re-
gions of the network (only those receptive
fields) which respond to a given input need to
be updated during either learning or perfor-
mance modes. And thirdly, it allows the use
of self-organized learning techniques analo-
gous to statistical clustering to train the in-
put parameters (receptive field centers) of
the network. This dramatically reduces over-
all learning time. These techniques are dis-
cussed in section 4.

4 Self-Organizing Receptive
Fields

Learning in a localized receptive field net-
work can be formulated as a two stage hy-
brid process. The receptive field centers
and widths can be determined in a bottom-
up or self-organizing manner, while the re-
ceptive field amplitudes are found in a top-
down manner using the supervised LMS rule.
This serves to allocate network resources in
a meaningful way by placing the receptive
field centers in only those regions of the input
space where data is present. It also dramat-
ically reduces the amount of computational
time required by supervised learning, since
only the output weights (receptive field am-
plitudes) must be calculated using an error
signal.

Our formulation uses the venerable k-

means clustering algorithm (or an adaptive
generalization thereof) to find the receptive
field centers and a contiguity heuristic to de-
termine the receptive field widths. Note that
the k-means clustering algorithm is a prede-
cessor to the more recently proposed “feature
maps” [8] and “competitive learning” [25] al-
gorithms.

The standard euclidean k-means cluster-
ing algorithm finds a set of k cluster centers
which represent a local minimum of the total
- squared euclidean distances E between the k
cluster points ¥, and N exemplars (training
vectors) Z;:

E = Z Z Mai(fa"‘fi)zy

a=1,ki=1,N

(6)

where M,; is the cluster membership func-
tion, which is a £ X N matrix of 0’s and 1’s
with exactly one 1 per column. The posi-
tions of the cluster points &, are varied to
minimize E. The cluster membership func-
tion is redetermined in an iterative fashion
after each minimization of F such that each
exemplar point belongs to the nearest cluster
point’s cluster. The cycle of F minimization
and M redetermination is iterated until F
and M no longer change. This state is a lo-
cal minimum of FE.

An adaptive formulation of k-means re-
quires no storage of past exemplars Z; or the
cluster membership function M,;. This for-
mulation, suitable for real-time applications
or analog implementation, uses only the cur-
rent exemplar Z[t] as a training signal to
modify the nearest cluster vector Zosest ac-
cording to

(7)

where 7 is a learning rate. The determi-
nation of which of the T, is Zoosest Can be
accomplished in log k time on a serial com-
puter, constant time on a parallel computer,
or approximately constant time in an ana-
log system via a winner-take-all circuit. The

a — —) —
ézxclosest[t] =" (:E [t] - wclosest[t]) y

learning rate 7 can be set initially large and
then gradually reduced toward zero accord-
ing to an “annealing schedule”.

Once the receptive field centers are found
using k-means, their widths can be deter-
mined by minimizing the following objective
function with respect to the 0%’s :

k
E=-Y

a=1

Lé R(Zp) (%@)2 - P} 2 :
(8)

where P is an overlap parameter. Note that
this objective function depends only on the
locations of the receptive field centers and
widths and does not depend directly on the
input training vectors Z;. The effect of min-
imizing this function is to ensure that the
receptive field units form a smooth and con-
tiguous interpolation over those regions of
the input space which they represent.

Qualitatively similar results to those pro-
vided by equation 8 can be obtained more
directly by requiring that the width of a
given receptive field be set equal to the root
mean square value (2®)p of the Euclidean
distances to its P nearest neighboring re-
ceptive fields, We call this the “P nearest
neighbors” heuristic. It is the solution found
by replacing Zfa=1 R*(Zp) with 3p pearest
in equation 8. We have found that choos-
ing P = 1 and using a uniform global aver-
age width o for all receptive fields a gives
near-optimal results for some problems. We
call this the “global first nearest neighbor”
heuristic and use it in the timeseries predic-
tion problem described in later sections.

After the receptive field centers and widths
have been found using these self-organizing
techniques, the output weights (receptive
field amplitudes) are found using the super-
vised Adaline or LMS learning rule. The out-
put weights f in equations 1 or 5 are varied
to minimize the total error:

B=1 Y (@) - /@)

i=1,N

[\

(9)

where Z; is the ¢-th training pattern, f is
the network output, and f* is the desired
result. We have found that the supervised
learning process converges very quickly us-
ing a quasi-Newton method. This is possi-
ble because the self-organized learning which
preceeds the supervised learning has already
done most of the work.

An adaptive formulation of the LMS rule
appropriate for real-time or analog imple-
mentations is

2 o) = n (3T~ (&) L)
(10)

5 Timeseries Prediction: A

Benchmark Problem

We have chosen timeseries prediction as our
test problem for three reasons. First, the
signal processing domain is likely to be an
important area of application of neural net-
works, both analog and digital. This is an
area where high speed and real-time adap-
tive algorithms are of great use. Secondly,
the particular timeseries which we have cho-
sen has intrinsic interest and is quite difficult
to predict. It is the chaotic timeseries gener-
ated by the Mackey-Glass differential delay
equation. Thirdly, the Mackey-Glass prob-
lem serves as a useful benchmark, because
it has been well studied in the chaos commu-
nity and has already been tackled by Lapedes
and Farber [11] using a back propagation net-
work.

The Mackey- Glass timeseries [15] is ob-

tained by integrating the following
differential-delay equation:

dzft] z[t — 7]

—J{* = —bx[t]+(l 1+(I}[t——7‘]10 . (11)

Figure 2. shows the resulting timeseries for
T = 17, a = 0.1, and b = 0.2; note that it
is quasi-periodic since no two cycles are the

Amplitude

0.4-—|....|....|

0 100 200

300

Time
Figure 2: Three hundred successive integer

timesteps for the Mackey-Glass chaotic time-
series with delay parameter 7 = 17.

same. The characteristic time of the series,
given by the inverse of the mean of the power
spectrum, is t.pqr =~ 50.

The prediction problem is to use the
available history of the timeseries up to
the present time z[t] to predict its value
at a future time 2t + T]. The stan-
dard method used in timeseries prediction
is to imbed D successive points (z[t — (D —
1)A],...,z[t — A, z[t]) of the timeseries into
a D-dimensional imbedding space and then
define a mapping from the imbedding space
to a predicted value z[t + T]. Classi-
cal techniques like global linear autoregres-
sion or Gabor-Volterra-Wiener polynomial
expansions typically fail [11,3] for T' > tchar,
meaning that the normalized prediction er-
ror E (defined as [rms prediction error] /
[std deviation of series]) is 1.0, so that
they are no better at predicting the series
than simply using the series’ mean value at
the predicted value. As will be discussed
in the next section, the localized receptive
field network is able to achieve E = 0.05 for
T =85~ 1.7tchar-

6 Simulation Results

In this section, we present our simula-
tion results which compare self organized
learning with receptive fields to the back-
propagation results of Lapedes and Farber
for the Mackey-Glass prediction problem.
The corresponding networks were shown
schematically in figure 1. For our numerical
comparison, both networks have four real-
valued inputs (z[t], z[t — A], z[t — 2A], z[t —
3A)) and one real-valued output z[t + T].
The receptive field network has between 100
and 10,000 internal units arranged in a sin-
gle layer, while the back propagation network
has two internal layers each containing 20
sigmoidal units. The back propagation net-
work has 541 adjustable parameters (weights
and thresholds) total. For comparison pur-
poses, we have chosen A = 6 and T = 85.

Figure 3 contrasts the prediction accu-
racy E (Normalized Prediction Error) ver-
sus number of receptive fields for several dif-
ferent versions (1 to 4) of our algorithm to
the back propagation benchmark (A) of La-
pedes and Farber [11]. The versions of the
receptive field algorithm are arranged in or-
der of increasing computational complexity
and prediction accuracy. They are:

1. Nearest neighbor prediction. Here, the
nearest data point in the training set
is used as a predictor. This behavior
is actually a special case for a network
of form in equation 5 where each in-
put/output training pair {Z;, f;} defines
a receptive field {Z%, f*} of uniform nar-
row width (o® — 0).

2. Adaptive receptive fields with one re-
ceptive field per data point. Here,
the amplitudes are determined by LMS,
the widths by the global first nearest
neighbors heuristic (see discussion below
equation 8), and the centers are chosen
to be training data vectors.

' '
o O
o O

Normalized Error (log10)

']] [
s — b I
[=,) » N (=]

2.0 2.5 3.0 3.5 4.0
Number of Fields (logl0)

Figure 3: Comparison of Prediction Accu-
racy vs. Number of Receptive Fields for
five methods: Nearest-Neighbor (1), Adap-
tive Receptive Fields (one field per training
vector) (2), Adaptive Receptive Fields (ten
training vectors per receptive field) (3), Self-
Organizing Receptive Fields (4), and Back
Propagation (A). The methods are described
in the text. For (A), the abscissa indicates
the number of training vectors. The hori-
zontal line associated with (A) is provided
for visual reference and is not intended to
suggest a scaling law.-

3. Adaptive receptive fields as in 2, but the
training data set is ten times as large as
number of receptive fields. The recep-
tive field centers are chosen at random
from the training set, while the ampli-
tudes are trained using all data.

4. Self- organizing, adaptive receptive
fields. These are similar to 3, but the
receptive field centers are found using
k-means clustering. Again, the training
set has ten times more exemplars than
the network has receptive fields.

The back propagation benchmark used a
training set with 500 exemplars. The hori-
zontal line in figure 3 is for visual reference
and is not intended to imply any scaling law

0.20 v T T Y T T T T
° 1
g 0.15 |-]
2ol 2
9 0.10 | o]
g I 3
Z °© 4
o A
0.05 |- x
1 1 1
2 4 6

Sun 3/60 Run Time (secs, log10)

Figure 4: Comparison of Prediction Accu-
racy vs. Simulation Time for five meth-
ods: Nearest-Neighbor (1), Adaptive Recep-
tive Fields (one field per training vector) (2),
Adaptive Receptive Fields (ten training vec-
tors per receptive field) (3), Self-Organizing
Receptive Fields (4), and Back Propagation
(A). The methods are described in the text.

for the back propagation result. In fact, the
scaling law is not known.

Figure 4 correspondingly shows E versus
computational time measured in Sun 3/60
seconds for the 1000 receptive fields case.
The labeling is the same as for figure 3.
The Lapedes and Farber benchmark required
about 1 hour of Cray X/MP time at 90
MFlops [9]. Their implementation used the
conjugate gradient minimization technique
rather than the more traditional gradient de-
scent. Based upon our experience, conjugate
gradient provides convergence speeds which
are 10 to 100 times faster than gradient de-
scent. Our simulations on the Sun 3/60 prob-
ably achieved about 90 KFlops (the LIN-
PAK benchmark), a factor of 1000 slower.
For display purposes, we converted the Cray
time into Sun 3/60 time by multiplying by
1000. This means of comparison should not
be taken too seriously, because differences in
machine architecture, operating system, and

detailed software implementation can eas-
ily change the results of either the receptive
fields methods or back propagation by fac-
tors of two, three or perhaps even five. We
should note, however, that the Lapedes and
Farber implementation was optimized for the
Cray, while we made no attempt to fine-tune
our implementation on the Sun.

From figure 4, it is clear that the recep-
tive field network achieved comparable preci-
sion about 1000 times faster than the back
propagation network implemented with con-
jugate gradient. The relative speed would
probably be a factor of at least 10,000 if
compared against back propagation imple-
mented with gradient descent. However, as
figure 3 indicates, both the adaptive recep-
tive field and self-organizing receptive field
networks required about ten times more data
to achieve comparable prediction accuracy.

7 Discussion

Why are the networks of localized recep-
tive fields so much faster? There are basi-
cally three reasons. First, since the receptive
field representations are well-localized, only a
small fraction of the whole network responds
to any particular exemplar. This permits
the use of very efficient implementation algo-
rithms. We used an adaptive grid [20] to par-
tition the input space and the space of recep-
tive field centers. By contrast, all units must
be evaluated and trained for each exemplar
in a back propagation network. Secondly,
our internal representations permit the use of
a two layer network, while the back propaga-
tion network required three layers. Thirdly,
the combination of self-organized and super-
vised learning which we have employed for
the receptive fields network is much more
straightforward than the back propagation
procedure. Training all layers of the network
by back-propagating an error signal speci-
fied only at the output results in slow con-

vergence because of the large number of pa-
rameters involved and the non-linearity of
the internal units. By contrast, our im-
plementation reduces the learning problem
for both input and output layers to sim-
ple quadratic minimizations involving small
numbers of parameters at the input and only
loosely-coupled parameters at the output.

Why do the networks of receptive fields
need more data to achieve similar precision
to the back propagation network? Basically,
the back propagation network is performing
a global, rather than local, fit to the training
data. This results in greater generalization
from each training example. This strength
becomes a weakness when computational ef-
ficiency is important.

Which network is better? When data
is expensive or hard to obtain, the back
propagation approach would be preferred,
even though it is computationally ineffi-
cient. However, if data is cheap and plen-
tiful, one achieves a big win by using the
self-organizing localized receptive fields ap-
proach. This latter situation is the one most
commonly found in adaptive signal process-
ing or adaptive control, where data is ac-
quired at a high rate and cannot be saved and
fast processing is required. It is also the situ-
ation faced by nervous systems, in particular
sensory and motor systems, where analysis
of incoming data must be performed imme-
diately and where there are no anatomical
structures for storing raw sensory data for
leisurely analysis at a later time.

The prediction of chaotic timeseries is
a particularly difficult benchmark problem.
Most real-world adaptive signal processing
and adaptive control applications are likely
to be much simpler. A network of localized
receptive fields is likely to be a very useful
device for real-time applications where the
tried and true Adaline does not have suffi-
cient richness to capture essential non-linear
aspects of the processing task.

In addition to real-valued problem do-
mains like signal processing, many problems
of interest to the neural networks community
are formulated as boolean mapping problems
f :B™ — BP. Examples of these are found in
references [26] and [22]. In many ways, these
problems are typically much easier than the
real-valued problems. Generalizations of the
receptive field approach to boolean problems
are possible. We shall describe these general-
izations elsewhere. We expect the dramati-
cally higher efficiency of the self-organizing
localized receptive field approach over the
conventional back propagation approach to
carry over to the boolean domain as well.

A class of problems which are interme-
diate between the real-valued and boolean
problems are classification problems of the
kind f : R™ — BP. Several authors have
presented algorithms which have qualitative
similarities to the localized receptive fields
approach and which offer substantial effi-
ciency improvements over back propagation
in the classification domain. Huang and
Lippmann [6] performed phoneme classifica-
tion using the Kohonen feature map [8] as a
front end and the LMS rule as a back end
to attach phoneme labels to feature vectors.
They found that the entire process converged
about 100 times faster than a two layer
back propagation network [13]. Another ef-
ficient algorithm for classification problems
has been developed by Nestor, Inc. [23].

It should be noted that some efficient
digital computational models have recently
been proposed which bear some qualita-
tive similarities to the learning with local-
ized receptive fields approach. These algo-
rithms are “local linear prediction”, “local
quadratic prediction” [3], and “radial basis
functions” [2]. The local linear and local
quadratic prediction techniques are compa-
rable in simulation speed to learning with
receptive fields. While these algorithms are
excellent for off-line, non-real-time data anal-

ysis, they are probably not appropriate for
real-time information processing of the kind
required in adaptive signal processing. This
is because they require explicit storage of all
incoming data to obtain their high accuracy.
This demands large memory. Unlike the
neural network approach for which the stor-
age capacity (total number of adjustable net-
work parameters) is fixed in advance, these
algorithms operate on potentially unlimited
“databases. Thus, they are not “adaptive” in
the neural networks sense in that they do
not vary a fized set of internal parameters
in response to new data. Furthermore the
computations which they require are decid-
edly non-neural and would be impossible to
implement in fixed analog hardware.

Finally, Mackey- Glass prediction results
and computation times comparable to those
presented here have recently been obtained
by Moody [19] using a multi-resolution cere-
bellar model articulation controller (CMAC)
model which incorporates localized receptive
field functions to perform improved interpo-
lation.

Acknowledgements

We especially wish to thank one of the ed-
itors of this volume, Terry Sejnowski, for a
careful proof-reading and many useful com-
ments. We also gratefully acknowledge help-
ful comments from and discussions with
Walter Heiligenberg, Alan Lapedes, Richard
Lippmann, Bartlett Mel, John Shewchuk,
and John Sidorowich. This research was
supported by ONR grant N00014-86-K-0310,
AFOSR grant F49620-88-C0025, and a Pur-
due Army subcontract.

References

[1] P. Baldi and W. Heiligenberg. How sensory
maps could enhance resolution through ordered
arrangements of broadly tuned receivers. Bio-
logical Cybernetics, 1988. In press.

[2] M. Casdagli. Nonlinear Prediction of Chaotic
Time Series. Technical Report, Queen Mary
College, London, 1988.

[3] J.D. Farmer and J.J. Sidorowich. Ezploiting
Chaos to Predict the Future and Reduce Noise.
Technical Report, Los Alamos National Labora-
tory, Los Alamos, New Mexico, 1988.

[4] R.P. Gorman and T.J. Sejnowski. Analysis of
hidden units in a layered network trained to clas-
sify sonar targets. Neural Networks, 1:75, 88.

[5] W. Heiligenberg. Central processing of sensory
information in electric fish. Journal of Compar-
ative Physiology A, 161:621.

[6] W. Y. Huang and R. P. Lippmann. Neural Net
and Traditional Classifiers. American Institute
of Physics, 1988.

[7] D. Hubel and T.N. Wiesel. Receptive fields,
binocular interaction and functional architec-
ture in cat’s visual cortex. Journal of Physiology
(London), 160:106.

[8] T. Kohonen. Self-organization and Associative
Memory. Springer-Verlag, Berlin, 1988.

[9] A. Lapedes. 1988. Personal communication.

[10] A. Lapedes and R. Farber. How Neural Nets
Work. American Institute of Physics, 1987.

A.S. Lapedes and R. Farber. Nonlinear Signal
Processing Using Neural Networks: Prediction
and System Modeling. Technical Report, Los
Alamos National Laboratory, Los Alamos, New
Mexico, 1987.

Ralph Linsker. From basic network principles
to neural architecture. Proc. Nat’l Academy of
Sciences USA, 83, 1986. Series on pages 7508-
7512, 8390-8394, 8779-8783.

1988.

(11]

(12]

[13] R.P. Lippmann. Personal communica-

tion.

[14] R.P. Lippmann. An introduction to computing
with neural nets. IEEE ASSP Magazine, 4:4,

1987.

M.C. Mackey and L. Glass. Oscillation and
chaos in physiological control systems. Science,
197:287.

Ch.v.d. Malsburg. Self-organization of orienta-
tion sensitive cells in the striate cortex. Kyber-
netik, 14:85, 1973.

W. McCulloch and W. Pitts. A logical calculus
of the ideas immanent in nervous activity. Bul-
letin of Mathematical Biophysics, 5:115, 1943.
M.M. Merzenich and J. Kaas. Principles of
organization of sensory-perceptual systems in
mammals. Progress in psychobiology and physi-
ological psychology, 9, 1980.

(18]

[16]

(17]

(18]

10

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

J. Moody. 1988. In preparation.

‘S. Omohundro. Efficient algorithms with neural

network behavior. Complex Systems, 1:273.

J.C. Pearson, L.H. Finkel, and G.M. Edelman.
Plasticity in the organization of adult cerebral
cortical maps: a computer simulation based on
neuronal group selection. Journal of Neuro-
science, 7(12):4209, 1987.

N. Qian and T. Sejnowski. Predicting the sec-
ondary structure of globular protiens using neu-
ral network models. Journal of Molecular Biol-
ogy. In press.

D.L. Reilly, C. Scofield, C. Elbaum, and L.N.
Cooper. Learning system architectures com-
posed of multiple learning modules. In M.
Caudill and C. Butler, editors, IEEE First
International Conference on Neural Networks,
pages 11-495, 1987.

H. Ritter and K. Schulten. On the stationary
state of kohonen’s self-organizing sensory map-
ping. Biological Cybernetics, 54:99, 86.

D.E. Rumelhart and D. Zipser. Feature discov-
ery by competitive learning. Cognitive Science,
9:75, 1985.

G. Tesauro and J. Sejnowski. A parallel network

that learns to play backgammon. Artificial In-
telligence, 1988. In press.

B. Widrow and M.E. Hoff. Adaptive switching
circuits. In Wescon Convention Record, page 96,
IRE, 1960.

B. Widrow and R. Winter. Neural nets for adap-
tive filtering and adaptive pattern recognition.
Computer, 21:25, 1988.

11

