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Approximating x2 mod N by a function

f : R → R

Renè Peralta∗ Jatin Shah†

Abstract

In this paper, we identify and explain the patterns in the scatter
diagram of the function x2 mod N when 0 ≤ x ≤ N . The dominant
patterns are parabolas and appear in the plots when N + k, where
k = 1, 2, . . . is a small constant.

1 Introduction

The function x2 mod N has important applications to cryptology. It is
the basis of Rabin’s encryption scheme, of the cryptographically secure
pseudo-random number generator of Blum, Blum, and Shub [1], and of the
Quadratic Residuosity Assumption [4] and it’s associated bit-commitment
schemes. These applications are possible in part because the complex-
ity of factoring N is probabilistic polynomial-time equivalent to inverting
x2 mod N . Intuitively, all this would seem to imply that the plot of this
function should look like a scatter diagram for x ∈ Θ(N). Some versions of
the latter assertion have indeed been proven (see [3], [6]). It is therefore
quite surprising that plots of this function for specific N show a rich struc-
ture (such as seen in figure 1 below). This project aims at explaining some
of the observed structure.

2 Notation

We define the operator [t]N : Z −→ {0, 1, . . . , N − 1} to map t to the unique
integer in the range {0, 1, . . . , N − 1} congruent to t modulo N . We extend
this notation so that it applies to residue classes modulo (a multiple of) N
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Figure 1: Plot of x2 mod 4331.

as well as to integers. There is no ambiguity introduced here as [x]N takes
the same value whether we consider x as an integer or an element of ZN (or
of ZkN ). We define [x−1]N = [y]N where y is the multiplicative inverse of
x modulo N . If GCD(x,N) 6= 1, then [x−1]N is undefined. The notation
[a
b ]N will mean [ab−1]N , provided [b−1]N exists. If b is not invertible modulo

N , then the expression [a
b ]N is disallowed. For example, [62 ]4 is not equal to

[3]4.
Suppose g : ZN → ZN , f : R → R, and Λ ⊆ ZN . The notation g =Λ f

will mean g(x) = f(x) for x ∈ Λ. If this is the case, we say g is embedded in
f (at Λ) and we say f is host to g (at Λ).

3 The functions [(x0 + si)2]N

Let Λ = {L,L + 1, . . . , 0, . . . H − 1,H}. Suppose there exists s, x0 such that
for all i ∈ Λ we have

0 ≤ [s2]N i2 + [2x0s]N i + [x2
0]N < N. (1)

Then [(x0 + si)2]N =Λ ai2 + bi + c where

a = [s2]N
b = [2x0s]N
c = [x2

0]N .
(2)
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Values of L,H that satisfy inequality (1) are:

L =
⌈
−b−

√
b2−4a(c−N)

2

⌉
H =

⌊
−b+

√
b2−4a(c−N)

2

⌋ (3)

Example 1 For odd N , let x0 = N+1
2 and s = 1. The reader can verify

that
[(x0 + si)2]N = [(

N + 1
2

+ i)2]N =Λ i2 + i + c (4)

where c =
{

3N+1
4 : [N ]4 = 1 and L,H ≈

√
N/2

N+1
4 : [N ]4 = 3 and L,H ≈

√
3N/2

Thus, the function g(i) = [(N+1
2 + i)2]N is embedded in the real-valued

function f(i) = i2 + i+ c for i in a range of size Θ(
√

N) around 0. Changing
variables via x = x0 + i we see that the graph of [x2]N around x = x0 = N+1

2
is embedded in a horizontal translation of the parabola f(i) = i2 + i + c.
Now, f ′(i) = 2i + 1 = 0 gives us the vertex of the parabola. It occurs at
i = −0.5 or, equivalently, at x = N

2 . The vertical coordinate of the vertex is
at c− 1

4 , which is 3N
4 when [N ]4 = 1 and N

4 when [N ]4 = 3. Figure 1 shows
the graph of x2 mod 4331. As predicted, a parabolic pattern can be clearly
seen around x = 4331

2 . Since 4331 is congruent to 3 modulo 4, the “height”
of the parabolic pattern is close to 4331

4 . The reader will note that there
are many other seemingly parabolic patterns in the graph. We will explain
these later in this report.

3.1 Embeddings of
[(

u
2s

+ r + si
)2

]
N

A large set of parabolic embeddings is described by letting x0 = [ u
2s + r]N

to obtain

[(x0 + si)2]N =
[( u

2s
+ r + si

)2
]

N

(5)

under the following restrictions

GCD(2s,N) = 1
u ∈ {1, 2, . . . , 2s− 1}
GCD(u, 2s) = 1
r ∈ {0, 1, . . . , s− 1}
s <<

√
N.

(6)
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The condition s <<
√

N guarantees u + 2rs < N . This in turn allows us to
write

[x0]N =
[−u

N ]2sN + u

2s
+ r.

Also, it is not hard to verify that [(x0+si)2]N = [( u
2s +r+si)2]N = ai2+bi+c

with
a = s2

b = u + 2sr
c = [x2

0]N
(7)

for integer i such that 0 ≤ ai2 + bi + c < N . Thus, [x2]N is embedded in
a horizontal translation (and vertical scaling by a factor s) of the parabola
ai2 + bi + c, considered as a curve in the Euclidean plane. The magnitude
of the horizontal translation is given by x0 (see figure 2).

We now partition the set of parabolas characterized by equation (5). The

dominant term in [x0]N = [−u
N

]2sN+u

2s + r is [−u
N

]2sN

2s . As u takes on all values
in Z∗

2s, the value of [−u
N ]2s takes on all values in Z∗

2s as well. Since [x0]N
determines the horizontal translation of the host parabola, we conclude the
set of host parabolas can be partitioned into φ(2s) subsets, one for each
value of u. Within each subset, the host parabolas (there are s of them) are
located at approximately the same horizontal position.

We now consider the set of host parabolas determined by a given u.
The vertex of the host parabola is at i = i0 = −b

2a = −(u+2sr)
2s2 . Since

1 ≤ u ≤ 2s− 1 and 0 ≤ r ≤ s− 1, we have −1 < i0 < 0. Thus [(x0 + si)2]N
is closest to the vertex of the parabola when i = 0 or − 1 (equivalently,
when x = x0 or x0 − s). Therefore, the vertical coordinate of the vertex is
approximately at [x2

0]N . (see figure 2).
Note

[x2
0]N =

[
u2

4s2 + r2 + ur
s

]
N

=
[
V + r2 +

⌊
ur
s

⌋
+ [ur]s

s

]
N

=
[
V + r2 +

⌊
ur
s

⌋
+

(
[−N−1]sN+1

s

)
[ur]s

]
N

=
[
V + r2 +

⌊
ur
s

⌋
+

⌈
tN
s

⌉
[ur]s

]
N

(8)

where V =
[

u2

4s2

]
N

and t is an integer strictly between 0 and s and indepen-
dent of r. Therefore, as a function of r, the last expression is dominated by
the term d tN

s e[ur]s. As r ranges from 0 to s− 1, and since GCD(u, s) = 1,
[ur]s takes on all values between 0 and s− 1 as well.
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Figure 2: Location of host parabola when x0 =
[

u
2s + r

]
N

. Note that the
other s− 1 parabolas for this value of u are not shown in the figure.

We summarize our observations as follows: the function x2 mod N is
embedded into a rather large set of parabolas on the Euclidean plane. A
subset of these host parabolas can be found using the change of variable x =[

u
2s + r + si

]
N

with parameters u, s, r satisfying (6). 1 The host parabola

for [(x0 + si)2]N =
[(

u
2s + r + si

)2
]
N

, expressed as a function of i, is f(i) =

s2i2 + (u + 2sr)i +
[(

u
2s + r

)2
]
N

. The vertex of this parabola has horizontal

coordinate close to [x0]N = [−u
N

]2sN+u

2s + r and vertical coordinate close to
[x2

0]N . The value of [x2
0]N , as a function of u, s, and r, is described by

(8). Provided s <<
√

N , there are sφ(2s) host parabolas described by this
analysis. Equations (7), together with the condition 0 ≤ ai2 + bi + c < N ,
tell us that there are order

√
N
s points in each embedded parabola.

3.2 An application

Several powerful factoring algorithms like the continued fraction algorithm
and the quadratic sieve algorithm are based on finding congruences of the
form x2

i ≡ yi mod N such that all prime factors of yi are smaller than
1An analogous set of parabolic embeddings of [x2]N is found under the change of

variables x =
�

u
s

+ r + si
�
N

with s odd. The proof of this is essentially the same as above.
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some parameter W . Numbers with this property are called W -smooth, or
simply smooth. The set of primes smaller than W is called the prime base.
If sufficiently many such congruences are found, they can be combined to
produce a congruence of the form X2 ≡ Z2 mod N . If X 6= ±Z mod N ,
then GCD(X + Z,N) is a proper factor of N . For details of this general
technique see Cohen [2, p. 477]. In this section, we give a simple method to
generate congruences x2

i ≡ yi mod N so that yi is a small number. Since, a
small number is more likely to be smooth in a given prime base, we can use
this method to generate congruences x2

i ≡ yi mod N such that yi is smooth.
We shall call this the small squares problem and the corresponding algorithm
the small squares algorithm.

This method is based on the observation that the function [( u
2s+r+si)2]N

is embedded in s parabolas which are approximately at a vertical distance
of N

s from each other. We select the top-most parabola in this family and
return the first point on this parabola which exceeds N .

If xi is the x-coordinate of this point and x2
i ≡ yi mod N , then we claim

that yi is O(N5/8) (see figure 3). In fact, choosing any other parabola from
the family will give us yi with size O(N5/8) as well2. However, choosing the
top-most parabola will give us a smaller value on the average.

Thus, we have another easy way of generating congruences x2
i ≡ yi mod

N where yi is small. Potentially, this study could yield an alternative to
the standard methods like quadratic sieve [8], multiple quadratic sieve [9],
hypercube multiple quadratic sieve [7], etc.

The theorems that follow give the formula for the top-most parabola in
the family of s parabolas and also show that yi is O(N5/8) (See page 10).

Theorem 2 When u = 1, the top-most parabola in the family of parabolas
given by equations (5), (6) and (7) is for

r = r0 =
[
N −

[
1
4s

]
N

]
s

. (9)

Proof: We are considering the family of parabolas given by equations
(5), (6) and (7) with u = 1. Therefore, the vertices of parabolas in this
family are close to c = [x2

0]N where x0 = [ 1
2s + r]N . From equation (8), we

have

[x2
0]N =

[
1

4s2
+ r2 +

r

s

]
N

=
[

1
4s2

+ r2 + r

(
[−N−1]sN + 1

s

)]
N

.

2In this report, we only prove this statement for the case u = 1 and s < N1/4.
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Figure 3: Generation of congruences x2
i ≡ yi mod N with small yi.

Let B(r) = r
(

[−N−1]sN+1
s

)
and V = [ 1

4s2 ]N . Assuming the value of r2 is

negligible modulo N , we have c = [x2
0]N ≈ [B(r) + V ]N .3

The top-most parabola is for that value of r which maximizes c. We find
a large c by setting B(r) slightly less than N − V . In other words, we have
to find a r0 ∈ {0, . . . , s− 1} such that B(r0) < N − V and B(r0) ≥ B(r) for
any r ∈ {0, . . . , s− 1}.

Since, B(r) < N − V , we have

r

(
[−N−1]sN + 1

s

)
=

r[−N−1]sN
s

+
r

s
< N − V.

Since r/s < 1, we can ignore r/s. Therefore, finding an r for which

r[−N−1]sN
s

< N − V

holds and B(r) is maximized should also suffice. Clearly, B(r) is maximized
when

r[−N−1]s =
⌊

(N − V )s
N

⌋
(10)

3This will generally hold provided s is small enough.
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and we have

r0 =
[
(−N)

⌊
(N − V )s

N

⌋]
s

.

We shall now prove that[
(−N)

⌊
(N − V )s

N

⌋]
s

=
[
N −

[
1
4s

]
N

]
s

.

We know that,

(−N)
⌊

(N − V )s
N

⌋
= −(N − V )s + [(N − V )s]N

(by n = mbn/mc+ [n]m).

Therefore,[
(−N)

⌊
(N − V )s

N

⌋]
s

= [−(N − V )s + [(N − V )s]N ]s

(Since [s]s = 0)
= [[(N − V )s]N ]s
= [[V s]N ]s

=
[
− 1

4s

]
N

=
[
N −

[
1
4s

]
N

]
s

.

This theorem immediately leads us to the following result about the
vertical coordinate of the vertex of the top-most parabola.

Theorem 3 If u = 1 and N − T is the vertical coordinate of the vertex of
the top-most parabola of the family of parabolas given by equations (5), (6)

and (7), then T is approximately
N −

[
1
4s

]
N

s .

Proof: Since u = 1, the vertices of the parabolas in the family given
by equations (5), (6) and (7) are close to c = [x2

0]N where x0 = [ 1
2s + r]N .

Let B(r) = r
(

[−N−1]sN+1
s

)
and V = [ 1

4s2 ]N . From equation (8), we have

[x2
0]N =

[
1

4s2
+ r2 +

r

s

]
N

=
[

1
4s2

+ r2 + r

(
[−N−1]sN + 1

s

)]
N

.
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We can assume that the value of r2 is negligible modulo N , which gives
us c = [x2

0]N ≈ [B(r) + V ]N . Moreover, since r/s < 1, we have B(r) =
r
(

[−N−1]sN+1
s

)
≈ r [−N−1]sN

s . For the top-most parabola we know, from

equation (10), that r[−N−1]s =
⌊

(N−V )s
N

⌋
. Therefore

B(r) ≈
⌊

(N − V )s
N

⌋
N
s

≈ ((N − V )s− [(N − V )s]N ) 1
s

= N − V − [(N − V )s]N
s

= N − V −
N −

[
1
4s

]
N

s .

Then c ≈ N − T ≈ [B(r) + V ]N = N −
N −

[
1
4s

]
N

s , and T ≈
N −

[
1
4s

]
N

s as
claimed.

Theorem 4 For a fixed u, if the small-squares algorithm4 for the family of
parabolas given by equations (5), (6) and (7) returns x as the small square,
then x2 mod N is at most s2 +2s

√
T , where N −T is the vertical coordinate

of the vertex of the top-most parabola.

Proof: Following equations (5), (6) and (7), let (
[

u
2s

]
N

+ r + si, ai2 +
bi + c) denote the parametric equation of the family of s parabolas chosen.
Let us assume that the top-most parabola is seen for r = r0. According to
equation (7) we have,

a = s2

b = 2r0s + u

c =
[

u2

4s2 + r2
0 + ur0

s

]
N

.
(11)

The vertical coordinate of the vertex of the top-most parabola is at

y = N − T = c− b2

4a
. (12)

Let i0 denote the parameter of the first point which exceeds N and
therefore is the small square returned by this algorithm, i.e. i0 denotes the
first point when ai2 + bi + c > N .

4We believe that it should be possible to generalize theorem 2 giving a small-squqres
algorithm for any u.
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Let

α =
b +

√
b2 − 4a(c−N)

2a
and β =

−b +
√

b2 − 4a(c−N)
2a

.

Using equation (12), this simplifies to

α =
b +

√
4aT

2a
and β =

−b +
√

4aT

2a
.

If α or β are integers then i0 = β + 1 or −α − 1. Otherwise i0 = dβe
or b−αc = dβe or −dαe depending on the one which gives the smaller y-
coordinate.

If β is an integer, then i0 = β +1. In this case, the value of small square
is bounded by ai20 + bi0 + c − (a(i0 − 1)2 + b(i0 − 1) + c) = 2ai0 − a + b =
2aβ + a + b = a +

√
4aT = s2 + 2s

√
T . For the case when i0 = −α− 1, the

value of the small square is also s2 + 2s
√

T .
When α or β are not integers, we shall substitute i0 in ai2 + bi + c. For

the case, i0 = dβe, we have

ai20 + bi0 + c = adβe2 + bdβe+ c

= (2adβe)2
4a + b(2adβe)

2a + c.

Since, 2adβe = 2aβ + [−2aβ]2a (where the [ ]N operator is extended for
reals)5, the value of small square is (after substitution and simplification)

ai20 + bi0 + c−N =
√

4aT [−2aβ]2a
2a + [−2aβ]22a

4a
≤ a +

√
4aT = s2 + 2s

√
T .

When i0 = −dαe, we also get the size of small square as s2 + 2s
√

T .

From theorem 3, the value of T for the top-most parabola is close6 to
N −

[
1
4s

]
N

s . Substituting this value of T in s2 + 2s
√

T , we get the size of

the small square returned by the algorithm as s2 + 2
√

s
[
− 1

4s

]
N

= O(N5/8)

(if s < N1/4).
If g is embedded in f (at Λ) and if Λ is a sufficiently large set, then we

can observe the function f in a plot of the function g for x ∈ ZN . The
5In general, the [ ]N operator cannot be extended for reals unless we are considering

the additive group only.

6T =
N −

�
1
4s

�
N

s + O(s2). If we choose a s < N1/4, then O(s2) term can be ignored.
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points which lie on the function f seen in the plot are precisely the points
{(x, g(x))|x ∈ Λ}. Henceforth, the informal terminology, f is observed in
the plot of g shall mean that g is embedded in f at Λ over some appropriately
defined set Λ.

4 When N ± 1 is smooth
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Figure 4: Plots of y = x2 mod N for x = 0, . . . , N − 1 when N + 1 is a
smooth number. Note that 6720 = 26.3.5.7 and 5880 = 23.3.5.72

In this section, we shall explain the two main parabolic patterns shown in
Figure 4. These two patterns intersect at the vertex of the central parabola.
Such patterns are observed in these plots when N + 1 is a smooth number.
The points on these patterns should be on or close to the parabolas y =

x2

N + 1 and y = (N − x)2
N + 1 for 0 ≤ x < N . We shall prove this conjecture

in theorems that follow only for the parabola y = x2

N + 1; analysis for the
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other parabola is similar.

Theorem 5 If N is such that N +1 is a smooth number; let N +1 =
l∏

i=1
pαi

i ,

then the points (x, [x2]N ) with x-coordinate x = Ψu for u = 0, . . . ,
√

NQ

{i|αi odd}
pi

lie on the parabola y = x2

N + 1 where

Ψ =
l∏

i=1

pβi
i and βi =

{
αi/2 if αi even
(αi + 1)/2 if αi odd

Proof: It is easy to verify that Ψ2 = (N + 1)
∏

{i|αi odd}
pi. Therefore,

we have
x2

N + 1
=

Ψ2u2

N + 1
= u2

∏
{i|αi odd}

pi

and also

[x2]N = [Ψ2u2]N =

u2(N + 1)
∏

{i|αi odd}

pi


N

=

u2
∏

{i|αi odd}

pi


N

Since u <
√

NQ

{i|αi odd}
pi

, [x2]N = u2
∏

{i|αi odd}
pi.

For example, if N = 6719, we have N + 1 = 26.3.5.7. If we choose
Ψ = 23.3.5.7 = 840, then the points (x = 840u, [x2]N ) for u = 0, . . . , 7 lie on

the parabola y = x2

6720.
We have now shown that the points with x-coordinate x = Ψu lie on

the parabola y = x2

N + 1. However, there are several other points which
are close but do not lie on this parabola. These points play a significant
role in creating the pattern. In the following theorem we shall show that
if x2 ≡ a mod (N + 1) then the points with this x-coordinate lie on the

parabola y = x2 + aN
N + 1 . Later, we shall count the number of such points

when a is a quadratic residue mod N + 1.

Theorem 6 The points (x, [x2]N ) with x-coordinate which satisfies x2 ≡
a mod (N + 1), a ∈ ZN+1 and x <

√
N2 + (1− a)N lie on the parabola

y = x2 + aN
N + 1 .

12



Proof: Let x2 = (N + 1)k + a. Since the x-coordinates of the points
satisfy the equation x2 ≡ a mod (N + 1), then x2 + aN ≡ a + aN ≡ 0 mod

(N + 1). Hence, x2 + aN
N + 1 is an integer and x2 ≡ x2 + aN

N + 1 mod N . Since,

x <
√

N2 + (1− a)N , x2 + aN
N + 1 < N and therefore [x2]N = x2 + aN

N + 1 .

Therefore, the solutions of the congruence x2 ≡ a mod (N + 1) cor-

respond to points (x, [x2]N ) which lie on the parabola y = x2 + aN
N + 1 ≈

x2

N + 1 + a. For small values of a, these points lie close to the parabola

y = x2

N + 1. These points will give rise to the patterns observed in Fig-

ure 4. Suppose N + 1 =
l∏

i=1
pαi

i , then by the Chinese Remainder Theo-

rem we know that the product of the number of solutions of the congru-
ences x2 ≡ a mod pαi

i for i = 0, . . . , l, denote the number of points on the

parabola y = x2 + aN
N + 1 . Hence, we will have several points lying close to

the parabola and this leads to the formation of the specific pattern. The
following theorems count the number of solutions of the congruences of the
form x2 ≡ a mod pe when p is a prime.

Theorem 7 For an odd prime p, x2 ≡ a mod pe, e ≥ 1, a ∈ Zpe −{0}, has
a solution iff aφ(pe)/2 ≡ 1 mod pe. When a solution exists there are exactly
2 solutions.

Proof: The theorem follows directly from a more general theorem on
nth power residues in Ireland and Rosen [5, p. 45].

Theorem 8 For a prime p, x2 ≡ 0 mod pe, e ≥ 1 has pe/2 solutions if e is
even and p(e−1)/2 solutions if e is odd.

Proof: The case e = 1 is clear, For e ≥ 2, x = 0 is a solution. Let
x0 be a non-zero solution of the congruence x2 ≡ 0 mod pe and pl be the
highest power of p in x0. pe|x2

0 implies that 2l ≥ e. Therefore, x0 is of
the form t0p

e/2 if e is even and t0p
(e+1)/2 if e is odd for some non-zero t0.

Since x0 ∈ Zpe , the possible values of t0 are 1, . . . , pe/2 − 1 if e is even and
1, . . . , p

e−1
2 − 1 if e is odd. Thus, the number of solutions is as claimed.

In particular, when p = 2 and e ≥ 1 the number of solutions to the
congruence x2 ≡ 0 mod 2e is 2e/2 if e is even and 2(e−1)/2 if e is odd.
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Lemma 9 The number of solutions of the congruence x2 ≡ 4a mod 2e, e ≥
3, 4a ∈ {0, . . . , 2e − 1} is twice the number of solutions of x2 ≡ a mod 2e−2.

Proof: If x0 is a solution of the congruence x2 ≡ a mod 2e−2, then
it is easy to verify that 2x0 and 2e−1 + 2x0 are distinct solutions of the
congruence x2 ≡ 4a mod 2e. It is also not hard to see that distinct solutions
of x2 ≡ a mod 2e−2 correspond to distinct solutions to x2 ≡ 4a mod 2e

according to the mapping given above.
We shall now prove that there are no more solutions to the congruence

x2 ≡ 4a mod 2e. It can be shown that any solution to this congruence
is even7. So, if 2x0 is a solution to x2 ≡ 4a mod 2e then, it implies that
x2

0 ≡ a mod 2e−2, thereby showing that we have counted every solution.

Corollary 10 The number of solutions of the congruence x2 ≡ 2kb mod 2e,
e ≥ 3, k < e is 2k/2 times the number of solutions of the congruence x2 ≡
b mod 2e−k if k is even.

Proof: Apply Lemma 9 k/2 times.

Lemma 11 There are no solutions to the congruence x2 ≡ 2a mod 2e, e ≥
2, 2a ∈ Z2e, when a is odd.

Proof: If x0 is a solution of the congruence x2 ≡ 2a mod 2e then
x2

0 = 2a + 2ek for some k. Hence, x0 has to be even. Let x0 = 2x1. On
substitution and simplification, we have 2x2

1 = a + 2e−1k which implies that
a is even. A contradiction.

Now, we shall count the solutions of the congruence x2 ≡ a mod 2e. It
is easy to verify that for e ≤ 2, the solutions exists only when a is 0 or 1.
When e = 1, the solutions are x = 0 for a = 0 and x = 1 for a = 1. When
x = 2, the solutions are x = 0, 2 for a = 0 and x = 1, 3 for a = 1. The
theorems that follow consider the case when e ≥ 3.

Theorem 12 The equation x2 ≡ a mod 2e, a ∈ Z2e and odd, e ≥ 3 has
solutions iff a ≡ 1 mod 8. When a solution exists there are 4 solutions.

Proof: The theorem follows directly from a more general theorem in
Ireland and Rosen [5, p. 46].

7Since a ∈ ZN denotes a residue class we can classify it as even or odd only if N is
even.
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Theorem 13 The equation x2 ≡ a mod 2e with a = 2kb where b is odd and
e ≥ 3 has solutions iff k is even and x2 ≡ b mod 2e−k is solvable. When
a solution exists, there are 2k/2+2 solutions if e − k ≥ 3 and (e − k)2k/2

solutions if e− k ≤ 2.

Proof: We know from Corollary 10 that the number of solutions of
x2 ≡ 2kb mod 2e is 2k/2 times the number of solutions of the congruence x2 ≡
b mod 2e−k. If the congruence is solvable then it follows from theorem 12
that it has 4 solutions when (e− k) ≥ 3, 2 solutions when e− k = 2 and 1
solution when e− k = 1. Moreover, Lemma 11 implies that there will be no
solutions when k is odd.

Congruence (a 6= 0) Number of Necessary and Sufficient Conditions
solutions

x2 ≡ a mod pe, p odd, e ≥ 1 2 aφ(pe)/2 ≡ 1 mod pe

x2 ≡ a mod 2e, e = 1 1 a odd
x2 ≡ a mod 2e, e = 2 2 a ≡ 1 mod 4
x2 ≡ a mod 2e, a odd, e ≥ 3 4 a ≡ 1 mod 8
x2 ≡ 2kb mod 2e, b odd, e ≥ 3 (e− k)2k/2 k even, x2 ≡ b mod 2e−k has a solution
1 ≤ (e− k) ≤ 2
x2 ≡ 2kb mod 2e, b odd, e ≥ 3 2k/2+2 k even, x2 ≡ b mod 2e−k has a solution
(e− k) ≥ 3

Congruence Number of solutions Conditions
x2 ≡ 0 mod pe pe/2 e even
x2 ≡ 0 mod pe p(e−1)/2 e odd

Table 1: Number of solutions of congruence x2 ≡ a mod pe, p prime.

Table 1 summarizes the results of theorems given above. Let us consider
the specific example of N = 6719. In this case, N + 1 = 6720 = 26.3.5.7.
We know that there are 2 solutions each to the congruences x2 ≡ 1 mod p
where p = 3, 5 or 7. We also know that x2 ≡ 1 mod 26 has 4 solutions.
We can therefore conclude that the total number of points lying on the

parabola y = x2 + N
N + 1 is 32. Similarly, the total number of points lying on

the parabola y = x2 + 4N
N + 1 is 23.8 = 64.

Similarly, if N − 1 is a smooth number we observe the parabolas with
concavities reversed as shown in Figure 5.
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Figure 5: Plots of y = x2 mod N for x = 0, . . . , N − 1 when N − 1 is a
smooth number. Note that 7680 = 29.3.5 and 6480 = 24.34.5

5 When N ± c is smooth

The patterns shown in Figure 6 can be explained by generalizing the results
of Section 4. In this case, if N + c is a smooth number then the plots of
y = x2 mod N have several points which lie on or close to the translations

of parabolas y = cx2

N + c along the X and Y axes. We will prove this claim
in the next theorem.

Theorem 14 If c and N + c are relatively prime8 to N , then for every 0 ≤
k ≤ c the points (x, [x2]N ) with x-coordinate x = Ψu − k for k

Ψ ≤ u < N+k
Ψ

and Φu2c − 2kΨu + k2 < N lie on the parabola y − y0 = c(x− x0)2
N + c where

8Since, we are interested in using these results for improving the current algorithms
for factoring, relative primality with N is a sufficient condition for our analysis.
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Figure 6: Plots of y = x2 mod N for x = 0, . . . , N − 1 when N + c is a
smooth number. Note that 10069+11 = 10080 = 25.32.5.7 and 12089+7 =
12096 = 26.33.7

x0 = kN
c , y0 = [−k2]cN

c and

Ψ =
l∏

i=1

pβi
i and βi =

{
αi/2 if αi even
(αi + 1)/2 if αi odd

Proof: It is easy to verify that Ψ2 = (N + c)Φ where Φ =
∏

{i|αi odd}
pi.

Since, 0 ≤ x < N and x = Ψu − k, we get the bounds on u given in the

17



theorem. Now, we have,

y = c(x− kN/c)2
N + c + [−k2]cN

c

= c(Ψu− k − kN/c)2
N + c + [−k2]cN

c

= (Ψuc− k(N + c))2

c(N + c) + [−k2]cN
c .

After expanding the square term, regrouping and some simplification we get,

y =
Ψ2u2c

N + c
− 2kΨu + k2 +

(k2 + [−k2]c)N
c

.

Since, Ψ2 = (N + c)Φ and [−k2]c + k2 = cq for some positive integer q, we
have, y = Φu2c−2kΨu+k2+qN . We also know that Φu2c−2kΨu+k2 < N .
Hence, it is an integer less than N .

It is not hard to verify that in this case,

x2 ≡ y0 +
c(x− x0)2

N + c
mod N.

Hence, the points (x = Ψu−k, [x2]N ) lie on the parabola y− [−k2]cN
c =

c(x− kN/c)2
N + c .

For example, if N = 10069, we have N + 11 = 25.32.5.7. If we choose
Ψ = 23.3.5.7 = 840, then the points (x = 840u− 3, [x2]N ) for u = 1, . . . , 11

lie on the parabola y − 2N/11 = 11(x− 3N/11)2
N + 11 .

The following theorem characterizes the points that lie close to the

parabola y − [−k2]cN
c = c(x− kN/c)2

N + c . It is a more general form of Theo-
rem 6.

Theorem 15 If c and N + c are relatively prime to N , then for every 0 ≤
k ≤ c, the points (x, [x2]N ) with x-coordinate which satisfies (x + k)2 ≡ a mod N + c,

a ∈ ZN+c and x < x0 +
√

(N−y0)(N+c)−aN
c lie on the parabola y − y0 =

c(x− x0)2 + aN
N + c where x0 = kN

c and y0 = [−k2]cN
c .
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Proof: First, we shall show that if (x + k)2 ≡ a mod (N + c) then

y = y0 + c(x− x0)2 + aN
N + c is an integer. In this case,

y = c(x− kN/c)2 + aN
N + c + [−k2]cN

c

= (cx− kN)2 + aN
c(N + c) + N [−k2]c

c

= cx2 − 2kxN + N2q + N [−k2]c + aN
N + c

(where k2 + [−k2]c = cq for some q ∈ Z+).

Now, since N ≡ −c mod (N + c) and (x + k)2 ≡ a mod (N + c), we have,

cx2 − 2kxN + N2q + N [−k2]c + aN ≡ cx2 + 2kxc + c2q − c[−k2]c − ac mod (N + c)
≡ cx2 + 2kxc + ck2 − ac mod (N + c)
≡ c(x + k)2 − ac mod (N + c)
≡ 0 mod (N + c).

Hence, y = y0+
c(x− x0)2 + aN

N + c is an integer when (x+k)2 ≡ a mod (N+c).

Since x < x0 +
√

(N−y0)(N+c)−aN
c , this integer is less than N .

It is also not hard to verify that in this case

x2 ≡ y0 +
c(x− x0)2 + aN

N + c
mod N

and hence the theorem follows.

The above theorem says that the points (x, [x2]N ) such that (x + k)2 ≡

a mod (N+c) lie on the parabola y− [−k2]cN
c = c(x− kN/c)2 + aN

N + c . Thus,
if N + c is a smooth number we can count the number of points that lie on
this parabola in a manner similar to that described in section 4.

6 Future Work

In this report, we have been able to give certain embeddings of the function
[x2]N . However, we have not been able to find all possible embeddings
(see figure 7). In general, it would be interesting to be able to give all the
embeddings of [x2]N for a given N .

The embeddings described in sections 4 and 5 could provide some novel
way of improving existing algorithms or developing new algorithms for fac-
toring numbers.
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Figure 7: 11760 = 24.3.5.72. In addition to the embedding explained in
Section 4, we also see several other embedding similar to the one explained
but translated by different amounts.
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