SOLVING THE POISSON EQUATION
ON THE FPS-164

Susan Temple O’Donnelll
Peter Geiger? .
Martin H. Schultz!

November 1983
Technical Report #293

IResearch Center for Scientific Computation, Department of Computer Science, Yale University, Box 2158, Yale
Station, New Haven, Conn 06520.
2Swiss Federal Institut of Technologie, Department of Applied Mathematics, 8092 Zuerich, Switzerland.

This work was supported in part by ONR Grant #N00014-82-K-0184, NSF Grant $#MCS-8106181 and External
Research Grants from Digital Equipment Corporation and Floating Point Systems.

1. Introduction

The architectural differences between a serial and a parallel machine raise a number of
questions regarding the efficiency of established algorithms. In this paper we explore several
algorithms which solve the Poisson equation on rectangular regions in two dimensions. The
solution of the Poisson problem is an example of one of the simplest nontrivial computations
which frequently occur in innermost loops of large scale scientific codes, and hence is a useful
test of different architectures for scientific computation. We compare solution times on the Vax
11/780 with solution times on the Floating Point System 164 (FPS-164) attached processor.>
Since the FPS-164 supports a sufficiently large memory and the host/attached processor 1/O is
relatively slow, it is of interest to solve large problems entirely on the FPS-164. We explore the
performance of the FPS-164 on both portable FORTRAN programs which have not been tuned
to its architecture and on moderately tuned FORTRAN programs which make calls to the FPS
assembly language math library, MATHLIB. Use of MATHLIB results in shorter programs
which are usually more efficient. We show that the speedup in execution time is more uniform
across the algorithms than might be anticipated and hence the choice of algorithm is still highly

significant.

In Section 2 we outline three standard algorithms, the complete Fourier algorithm based on
double Fourier transforms, the Fourier/Tridiagonal algorithm and the FACR(1) algorithm. In
Sectioh 3 we examine the tridiagonal linear system solution, which is part of the latter two
algorithms, in more detail. We analyze the classical Gauss algorithm and examine a refinement
of the tridiagonal linear system solution based on ideas of Malcolm and Palmer [9], which
appear to be too little known [12]. In Section 4, we consider optimizations of Cooley’s [2]
method for calculating the sine transform as a real transform of half size. We present timings
from our implementation of each of the algorithms for the Poisson problem in Section 5.

Finally, we give concluding remarks in Section 6.

3The Floating Point System 164 attached processor (AP) is a 64 bit, 11-MFLOP machine with a 182-nanosecond
cycle time. Multiple functional units together allow as many as 10 simultaneous operations.

2. Three Basic Algorithms
We begin by describing some fast direct methods which are commonly used to solve the

Poisson equation

-Au = f (1)

with Dirichlet boundary conditions in two dimensional rectangles.

For simplicity in notation we consider only the case of the square. Define the grid points
(xy¥,) = (ih,kh) for i,k = 0,..,n+1 with h = 1/(n+1) and the corresponding function values
w, = u(x,y,) and f;, = f(x,y,)- We consider the simple 5-point discrete Poisson equation

-AM = g

ik i,k =1,...,n, 2

ik’

‘where the 5-point Laplacian operator AW s defined by

m, =1_
AT v, = F[A et Yt Ve Y e] ()
subject to the boundary conditions
Uok = Ynetk = Yio = Yi e = 0. ik =1,...,n. 4

In Sections 2.1-2.3, we describe three well known fast direct methods for solving the discrete

Poisson equation.

2.1. The Complete Fourier algorithm
The approach of using Fast Fourier techniques to solve the above finite difference equations
originates with Hockney [8]. The first method we describe involves Fourier transforms in each

variable.

We extend the sequences u = {u, } and f = {f, } to be odd doubly periodic sequences of
period 2(n+1) in both variables. This is valid since u satisfies the boundary values (4) and we

may set fo, =1 k= fo = fi,n +1 = 0 since equation (2) does not restrict the values of f on

the boundary.

For the 5-point Laplacian operator, let d = {dik} be the doubly periodic sequence of period
2(n+1) defined by

= 0 otherwise.

With this notation, we may rewrite equation (2) as the convolution
d*u = hf (5)

which can be solved for u by using discrete double Fourier transforms.

Let X denote the discrete Fourier transform of the doubly periodic sequence x with period

2(n+1) in both variables. Equation (5) then implies

d-4 = n2f. 6)

A
The Fourier transform d of d can easily be calculated to be

/c\l =—1—— [l-lcos(g-lcos(k—”—)]
ik 4(n+1)2 2 n+l 2 n+l

A
and therefore we can solve for u

Ao A A
Ui = 07 dy ™
The discretization of the Poisson problem, represented by equation (2) can now be solved by

the following algorithm:

A
1. Calculate the Fourier transform f.

A
2. Calculate u by (7).

A
8. Perform the inverse Fourier transform to recover u from u.

We remark that since u is real and odd, it suffices in steps 1 and 2 to use a sine transform in

place of a Fourier transform.

The complete Fourier algorithm also provides an easy way to solve the 9-point discretization
and other more precise approximations to equation (2), see Henrici [7]. For example, if we use

the fourth order 9-point discretization for the Laplacian

1
(h) — -
Byl vy, = v (=200, + 4ujy *dup, e v Ay

Uk Y Vst Yisnker T Vi e (®)
and for the right hand side of equation (2) we use the mean values g = {gik}’ where

1
Bk =17 (8 i * T * T * Tiar * T) @

we get an equation of the same form as (5) to solve:

d*u = hg. (10)

In this case, we have

2.2. The Fourier/Tridiagonal algorithm
In the literature, this algorithm is often simply called the Fourier or basic Fourier algorithm,

see Temperton [12]. It is based on matrix decomposition, see Buzbee, Golub and Nielson [1].

The discretized Poisson equation (2)-(3), can written in matrix form:

Mu= hWf =y (11)

where the vector u (similarly f and y) may be written

ul ull

u, Uio
u = . and u, =

un uin

The eigenvalues A\, and eigenvectors v, = {v,, } of A are known to be

)‘k=—4+2cos(%ra, k=1,...,n,
_ [T . (ikr L
v, = =T sin (Fl—), i,k=1,...,n.

With VI=v = {v,.} and A the diagonal matrix diag(),), we have

VAV = 4 .

We may rewrite equation (11) as

(12)

(13)

(14)

(15)

(16)

Au, +u, =y, ,
ui-l+Aui +ui-r1 =yi ’ i=2,...,n-1
uII‘l + Aun = yn s
and with (16) this becomes
Au1 tu, =y,.
;i—l * A;i * ~.+1 = ;. . i=2,...,n1
u_, +‘A“n =y, .
where
;1 = Vu, ,
and
yi =W,

If we rearrange the equations (18), we get for each k = 1,...n

MUpe * Uy T Yy
Uikt Nt Y T Yk i=2,...,n"1

-~

Utk ¥ MNeYnk = Yok -

Thus we get the following algorithm:

1. Perform the transformation (20).
2. Solve the n tridiagonal linear systems (21).
3. Solve (19) for u,, i.e. perform the inverse

transform.

an

(18)

(19)

(20)

(21)

2.3. The FACR(1) algorithm
Following Hockney [8], we start by eliminating the vectors u, with odd indices from equation
(17), i.e., considering u as a matrix, we eliminate the odd rows. We could also eliminate the

odd columns of u, f, see Temperton [12].

In fact, for indices i = 4,8,...,n-3 ,

u,_, +t Ay, + u =¥iq -

i-2

+ A“i + u. =Y (22)
up AL U, T Y

and similar equations for i = 2 and i = n-1. Multiplying the middle equation of 22 by -A and

adding all three equations, we get
2 = -
U, + QIO v, = oyt AY Yy

and hence the following system, where we assume that n is odd. (For the case where n is even,

the last equation will differ.)

21-A2 I u, Y, *tY¥Y; Ay,
I 21-A%2 1 u, Yo *¥s -~ Ay,
. . . = . (23)
I 21-A2 I U3 Yo-a P Vo2 T Ayn-3
I 21-A U Yoo T Yy T Ayn-l

Continuing this step of eliminating of every other row leads to the algorithm of cyclic
reduction. In the literature this is sometimes refered to as the FACR (Fourier and Cyclic
Reduction) algorithm. We stop after one reduction step and use the Fourier/Tridiagonal
algorithm to solve system (23). This is called the FACR(1) algorithm. We replace matrix A of
Section 2.2 with the matrix 2I - A2. Since B = 21 - A%is a polynomial p = p(A) in A, it has
the same eigenvectors as A and eigenvalues Ag = p(X,) = 2 - X A2' The solution on the odd
rows is obtained by solving the tridiagonal system corresponding to the middle equation of (22)

for u;:

Auy =y, -9y,

Au, = yi - “i-l - ui*l ’ i =8,5,...,n-2, (24)

Au 2y, "4 -

The algorithm is summarized as follows:

1. Set up the right hand side of (23).
2. Solve (23) by the algorithm from (2.2).

3. Calculate the solution on the odd rows from (24).

3. Refinement of the Tridiagonal Linear System Solution
Two of the algorithms for solving the Poisson equation in rectangular regions require solving

many tridiagonal systems of linear equations.

The problem to be solved is of the form

Ax =y (25)

where A is an nxn tridiagonal matrix of the form

Al
1 1 O
A = . (26)
O 1 X 1

For all A we have |\| > 2. Therefore the system is definite and we are assured of the existence

of a solution.

Basically there are two important efficiency issues: (1) avoiding divisions, and (2) keeping the
pipelines filled. In Section 3.1 we discuss Gauss elimination and in Section 3.2 we describe the

improvements of the Malcolm and Palmer method [9].

3.1. The classic Gauss algorithm

The easiest way so solve the system (25) is the well known Gauss elimination in three steps:

1. LR-factorization: A = LR* with

l1 1 ry
1 12 O 1 r, (0]
L = .. and R = (27)
(0] O O 1 r
1 1 1

/

“We use notation A = LR in preference to the usual LU notation to avoid confusion with the u from Section 2.

10

From A = LR we get recursion formulas for the elements /, and I

’1=>" lkrk=1 }
. k=1,...,n.
A

by * 1 =

2. Forward substitution: Lw =y,

<
—

Yo 7 Y1

W, = — w, = k =2 n
1 » k ’ ’ ’
Il 'k
3. Backward substitution: Rx = w
X, = W, X S W T Xy k=n-1,...,1

This algerithm requires n multiplications, 2n divisions and 3n additions/subtractions.

Since !, and r, are reciprocal values we need only one of them. To avoid as many divisions

as possible we eliminate /. If we definer =1/l we get:

1 1
1 rI:._ , rk=———————-, k=2,...,n. (28)
A AN-rg
2. w =y w, = rly, - v, k=2,...,n. (29)
3 X, =W, , X, S M T X k=n-1,...,1. (30)

This form of the algorithm needs 2n multiplications, n divisions, and 3n

additions/subtractions.

In applications where we have to solve several Poisson equations with the same mesh size, we

could precompute the r, but this would double the amount of storage.

11

3.2. A more efficient algorithm to solve the tridiagonal systems

There exist several algorithms which improve the storage requirements of the tridiagonal
solver. The algorithm of Evans [3] and Evans and Hatzopoulos [4] reduces the number of stored
elements r, from n to n/2. Fischer et al [5] use a Fourier-Toeplitz method which does not need

to store any of the r, but which requires more operations.

On many machines, reducing the division count improves the efficiency of an algorithm. This
is particularly true on the FPS-164, as division is done in software and consumes much more

time than any other basic operation. The relevant times are

APFTN single division 29 cycles
APFTN vector division 18 cycles/element
APAL single division 22 cycles
APAL vector division 7 cycles/element

as compared to

multiplication 3 cycles
addition 2 cycles

Note that multiplication and addition operations may be initiated every cycle. Significant

savings can therefore be made by reducing the number of divisions.

Malcolm and Palmer [9] derive an algorithm which applies to linear systems with real,
symmetric, diagonally dominant, tridiagonal coefficient matrices with constant diagonals. This
algorithm needs both fewer operations and much less storage. Malcolm and Palmer
demonstrate that the entries 1, and the r, of Section 3.1 converge, and give lower and upper
bounds on the rate of convergence, as a function of X\, to a relative error of ¢. We use an

equivalent upper bound,

!
=[] -

k

where w is defined by w = z,/z,, and where z, and 1, are the solutions of z = 1/(\ - z), the
equation satisfied by the limit of ry, such that |z,| > |z,|. We derive k, in Appendix A. To
solve each tridiagonal system, we compute k, from equation (31), perform only k, steps in the
Gaussian elimination and use uko for the remaining entries in the factor. It is this method that

we use for the tridiagonal solver in our implementation of the Fourier/Tridiagonal and

12

FACR(1) methods for solving the Poisson problem.

If |\| is not too close to 2 we have remarkably fast convergence, and ko is the exact index of
convergence. In Table 3-1, we show the actual index of convergence for ¢ = 10'!® for varying
values of \. In Table 3-1, k = denotes the index where convergence actually takes place, (see

Appendix A), and k; denotes the estimate from (31).

l A I kconv k0
2.0001 1445 1842
2.0010 492 582
2.0100 167 184
2.1000 56 58
2.5000 26 26
3.0000 19 19
4.0000 13 13
5.0000 11 11
6.0000 10 10

Table 3-1: Index of convergence (with € = 10-18) in tridiagonal solver
This gives a dramatic reduction in the number of divisions when we solve Poisson’s equation
using a nxn grid. In this case we solve n systems of form (25) with

_ _ km _
)‘—)\k- 4*2cos(n—+I-), k=1,...,n.

In Table 3-2, we display a count of the number of divisions required for problems of varying

size.

Due to the cost of evaluating (31), we start to cut the amount of work only when n > 31,
but for larger n we have eliminated almost the entire LR-factorization. Our programs use the

improved tridiagonal solver only for problems of size > 31.

The effect of this method on the Fourier/Tridiagonal algorithm for the Poisson problem may
be seen by comparing the times spent solving n linear systems in the solution of the Poisson

problem. Refer to the Fourier/Tridiagonal algorithm in Section 2.2.

This method largely eliminates any advantage of preprocessing in that few factors need be

15
31
63
127
255
511
1023
2047

31
63
127
255
511

13

divisions
in the original
algorithm = n?

49

225

961
3969
16129
65025
261121
1046529
4190209

Table 3-2: Division count in the two tridiagonal solvers

time for the
original algorithm

0.0088
0.0388
0.1331
0.5271
2.1036

divisions
using our index
of convergence

49
202
560

1402
3339
7733
17565
39296
86919

time for
new algorithm

0.0091
0.0244
0.0704
0.2196
0.7414

100.
89.
58.
35
20.
11

103
72
53
42
35

Table 3-3: Execution time (sec) to solve n tridiagonal systems in APFTN

computed; hence the need to store precomputed factors is eliminated. In addition, the solution
of the tridiagonal systems is no more expensive than the normalization in the complete Fourier
method, implying that the Fourier/Tridiagonal method is necessarily faster than the complete
Fourier method, regardless of the speed of the FFT.

A second major efficiency issue is pipelining. At cost in storage, we explore the tradeoff of
the faster run time that becomes possible by solving 4, 8, 16, 32, or n systems in parallel,

performing forward solves for multiple systems followed by the back solves.

presented in Section 5.

00

27

.32

.89
.73
.75
.07

The results are

14

4. The Fourier Transform

In this section, we compare the efficiency of different Fourier Transforms implemented on the
VAX and on the AP in FORTRAN, and on the AP using the FPS APMATH library routines.
We used compiler optimization level 3 of the Revision D04 APFTN compiler. We took
advantage of the problem being both real and odd to implement the sine transform for the
FFT, and we also present results using the real FFT. The APMATH library includes a routine
for computing a real FFT, but not a sine transformation. @We implement our sine

transformation using the algorithm by Cooley [2].

prob size n VAX AP AP
(FORTRAN) (FORTRAN) (LIBRARY ROUTINES)
128 0.039 0.0029 0.0014
256 0.08 0.0073 0.0032
512 0.19 0.0150 0.0066
1024 0.39 0.0312 0.0147
2048 0.87 0.0649 0.0292
4096 2.28 0.1519 0.0645
8192 4.68 0.3186 0.1335
16384 10.3 0.6561 0.2913

Table 4-1: Execution time (sec) for one complex FFT

prob size n VAX AP AP
(FORTRAN) (FORTRAN) (LIBRARY ROUTINES)
128 0.031 0.0023 0.0009
256 0.04 0.0043 0.0017
512 0.11 0.0098 0.0037
1024 0.24 0.0201 0.0076
2048 0.51 0.0412 0.0166
4096 1.12 0.0836 0.0330
8192 2.72 0.1924 0.0721
16384 5.79 0.3967 0.1487

Table 4-2: Execution time (sec) for one real FFT

In Tables 4-1, 4-2, and 4-3, we present the times for one FFT for problems of one dimension.

Note that the real and the complex FFT require arrays of length double the problem size. The

15

prob size n VAX AP AP

(FORTRAN) (FORTRAN) (Cooley)

128 0.02 0.0015 0.0006

256 0.03 0.0028 0.0013

512 0.05 0.0054 0.0021

1024 0.13 0.0121 0.0046

2048 0.25 0.0244 0.0091
4096 0.56 0.0497 0.0201
8192 1.22 0.1022 0.0400
16384 2.95 0.2275 0.0882

Table 4-3: Execution time (sec) for one sine transform

algorithm for the sine transform presented by Cooley [2] involves pack and unpack operations in
addition to a real transform. As the times for our sine transform are significantly higher than
the expected time of an APAL version, in our Poisson problem we vectorize the computation of
the n sine transforms by packing and unpacking some number of vectors, m, in one loop. This
allows the APFTN compiler to take significant advantage of pipelining. The storage cost of
performing m sine transforms in pérallel is nxm/2. We save .0002 seconds per transform in the
255 by 255 size problem, which reduces the number of seconds per sine transform from .0013 to
.001. This compares very respectably to the time for a real transform of .0017 seconds. In the
511 by 511 size problem, the number of seconds per sine transform is reduced from .0021 to
.0018. The time for the real transform is .0037 seconds. Our tables in Section 5 refer to the
vectorized sine transform by the notation, Vecsin. Unless the vectorized sine method is
specifically mentioned, the sine transform we implemented is the non-vectorized implementation

of Cooley’s algorithm.

Note that as is shown in Table 4-4, the complete Fourier algorithm has the most to gain from
an efficient sine transform. In section 5 we show that even with the vectorized sine transform,

the complete fourier algorithm is not competitive with the FACR(1) method.

16

Fourier Fourier/Trid FACR(1)
Sine transf. of length n 4n 2n n
Trid. systems of order n 0 n n/2*
Trid. systems of order n/2* 0 0 n

*) 1/2 may be either n/2 or n/2 + 1/2

Table 4-4: Count of components required in each algorithm

17

5. Numerical Results for the Poisson Problem

We present execution times for the two dimensional Poisson problem using the algorithms
described in the previous sections. Each algorithm was applied to discretizations varying in size
from 31 x 31 points to 511 x 511 points. Each algorithm was implemented in FORTRAN77 on
the VAX 11/780 with a FPA, in APFTN64 on the FPS-164, and in APFTN64 with extensive
calls to APMATH library routines from the FPS math library. We used compiler optimization
level 3 of the Revision D04 APFTN compiler. The FPS-164 supports sufficiently large memory
that the problems run on the FPS-164 were solved entirely on the FPS-164.

One set of tests was run using the real Fast Fourier Transform for the FFT. A second set of

tests was run substituting the sine transformation for the real FFT, cf. Section 4.

The times apply to the solution of the Poisson equation and do not include the overhead costs
of the transfer of program and data to the AP or of paging on the VAX. These are considered
separately. The VAX was run single-user with an unrealistically large working-set to eliminate

dependence on working set size.

5.1. Computation times

Our results indicate that the gain from the FPS-164 architecture is more uniform across
algorithms than might be anticipated. Graphs for each algorithm are presented in Figure 5-1.
The ratios of timings on the two machines for the algorithms using the real FFT are presented

in Table 5-2.

The results presented in Figure 5-1 and Table 5-1 are for FORTRAN programs which, other
than for calls to the MATHLIB, have not been specially tuned for the APFTN compiler. In this
table, the sine transform refers to the non-vectorized implementation of Cooley’s algorithm. In
the remainder of this section, we examine several possible improvements to these three

algorithms.

We begin by presenting a breakdown of the percentage of time spent in each section of the

programs. (See Table 5-3.)

To determine whether or not the complete Fourier algorithm is necessarily less efficient on

the parallel architecture of the AP, we first vectorized the normalization, which reduced the

DBUBLE FBURIER METHZD (USING REAL TRANSF@RM)

200 ¢

180
o 160
=140 t
2120 -
2:100 -
80
60
40 |
20 t

TIME 1

_

FBURIER/TRIDIAGBNAL METHA@D (USING REAL TRANSFERM)

S0 100 150 200 250 300 350 400 450 500 S50
PRBBLEM SIZE (2-DIMENSIBNAL., SQUARE)
V - VAX 11/780
F - AP USING APFTNG4 .
M - AP USING APFTN64 AND MATHLIB

)

50 100 150 200 250 300 350 400 450 SO0 S50
PRBBLEM SIZE (2-DIMENSI@NAL, SQUARE)
V - VAX 11/780
F - AP USING RPFTNB4
M - AP USING RPFTN64 AND MATHLIB

FACR(1) METHBD (USING REAL TRHNSFBRM)

200 |
180
o 160 }
S0 f
=2
QIZO :
2100 |
80 f
80
40 |
20 f

TIME I

=i

S50 100 1S0 200 250 300 350 400 450 500 S50
PROBLEM SIZE (2-DIMENSIBNAL. SQUARE)
V - VAX 11/780
F - AP USING APFTNG4
M - RP USING RPFTNB4 AND MATHLIB

18

DBUBLE FAURIER METH@D (USING SINE TRANSF@RM)

100

90 |
8o |
70 |
60 |
so |
ag |
30}
20 |
10 |
0-.

TIME IN SECBNDS

_

0

S0 100 150 200 2S0 300 350 400 450 500 550
PROBLEM SIZE (2-DIMENSIBNAL, SQUFRE)
V - VAX 11/780
F - AP USING RPFTNG4
M - AP USING APFTNG64 AND MATHLIB

FBURIER/TRIDIAGBNAL METH@D (USING SINE TRANSFEZRM)

100 |
90 |
80 |
70 |
60 |
50 |
40 |
30 f
20}
10

TIME IN SEC@NDS

—

50 100 150 200 250 300 350 400 450 500 S50
PROBLEM SIZE (2-DIMENSI@NAL, SQUARE)
V - VAX 11/780
F - AP USING RPFTNG4
M - AP USING RPFTNG4 RAND MATHLIB

FACR(1) METHAD (USING SINE TRANSFERM}

100
80
80
70
60
S0t
40
30t
20
10 }

TIME IN SEC@NDS

—3

S0 100 150 200 250 300 350 400 450 500 S50
PRBBLEM SIZE (2-DIMENSIBNAL, SQUARE)
vV - vAX 11/780
F - AP USING RPFTNG4
M - AP USING RPFTNG4 AND MATHLIB

Figure 5-1: Execution times (sec) to solve Poisson’s equation

19

Poisson Problem

Using Real Transform Using Sine Transform

FFT FFT/Trid FACR(1) FFT FFT/Trid FACR(1)
VAX (FORTRAN) 0.62 0.36 0.25 0.44 0.28 0.29
31x31 AP (FORTRAN) 0.10 0.05 0.03 0.08 0.04 0.03
AP (MATHLIB) 0.04 0.03 0.02 0.04 0.03 0.02
VAX (FORTRAN) 2.61 1.49 0.99 1.64 1.00 0.73
63x63 AP (FORTRAN) 0.34 0.19 0.12 0.24 0.14 0.10
AP (MATHLIB) 0.16 0.10 0.08 0.18 0.10 0.08
VAX (FORTRAN) 10.39 5.99 3.93 6.72 4.12 3.90
127x127 AP (FORTRAN) 1.21 0.67 0.43 0.87 0.50 0.35
AP (MATHLIB) 0.62 0.37 0.27 0.46 0.29 0.24
VAX (FORTRAN) 50.33 27.95 17.78 26.86 16.47 14.5
255x255 AP (FORTRAN) 5.830 2.85 1.76 3.20 1.79 1.28
AP (MATHLIB) 2.42 1.39 1.00 1.77 1.07 0.85
VAX (FORTRAN) 206.9 116.74 74.84 123.07 73.59 58.16
511x511 AP (FORTRAN) 21.31 11.26 6.89 13.64 7.43 4.99
AP (MATHLIB) 10.22 5.65 3.97 6.76 3.93 3.10

Table 5-1: Execution times (sec) to solve Poisson’s equation

Algorithm VAX/AP(FTN) AP(FTN)/AP(MATHLIB) VAX/AP(MATHLIB)

Fourier 10.59 2.08 22.08
Fourier/Trid 11.25 1.99 22.54
FACR(1) 11.84 1.74 20.56

Table 5-2: Ratios of times (sec) on different architectures for each algorithm using real FFT

percentage of time spent in the normalization from 17% to 8%. (See Table 5-4.) For the 255 x
255 size problem, .16 seconds was saved by the vectorized divide in a normalization that
otherwise took .28 seconds, for a 57% reduction in normalization time, and a 10% savings in

the entire Poisson problem.

As was discussed in Section 4, the complete Fourier algorithm has the most to gain from an

efficient sine transform. We implemented the vectorized sine transform from Section 4 for each

20

of our algorithms. These results are given in Table 5-5.

31x31 127x127 511x511

Preparation 0.5 0.1 0.0

Sine FFT in X 21.9 20.9 20.7

Fourier Sine FFT in Y 22.1 21.0 20.7
Normalization 11.5 16.0 17.1

Back FFT in Y 22.1 21.0 20.7

Back FFT in X 21.9 20.9 20.7
Preparation 0.5 0.1 0.0

Sine FFT 33.0 28.5 27.5

FFT/Trid Trid System 30.4 39.8 41.9
(Std Trid) Back FFT 33.0 28.5 27.5
Normalization 3.1 3.1 3.0
Preparation 0.5 0.1 0.0

Sine FFT 32.6 35.1 37.8

FFT/Trid Trid System 31.1 25.9 20.3
(New Trid) Back FFT 32.6 35.1 37.8
Normalization 3.1 3.9 4.2
Preparation 0.4 0.1 0.0

0dd/Even Reduc 8.0 10.6 12.2

Sine FFT 18.8 20.4 22.6

FACR(1) Trid System 26.2 22.7 17.5
(New Trid) Back FFT 18.8 20.4 22.6
Normalization 5.4 6.1 6.6

Solve 0dd Rows 22.4 19.7 18.5

Table 5-3: % time spent in each algorithm using sine transform, MATHLIB

Poisson Problem

Using Real Transform Using Sine Transform

Fourier Fourier(Vec) Fourier Fourier(Vec)
31x31 .04 .04 .04 .04
63x63 .16 .15 .13 .13
127x127 .62 .58 .46 .43
255x255 2.42 2.27 1.78 1.61
511x511 10.22 9.58 6.76 6.11

Table 5-4: Times times (sec) using Fourier method with Vecdiv and MATHLIB

The vectorized sine transform does result in a noticable improvement in compute time

21

Poisson Problem
Fourier Fourier Fourier Fourier FACR(1) FACR(1) F/Trid F/Trid

Vecdiv Vecsin Vecdiv Vecsin Vecsin

Vecsin
31x31 .04 .04 .03 .03 .02 .02 .03 .02
63x63 .13 .13 .10 .09 .08 .07 .10 .08
127x127 .46 .43 .37 .33 .24 .21 .29 .25
255x255 1.78 1.61 1.46 1.30 .85 a7 0 1.07 .95
511x511 6.76 6.11 n/a n/a 3.10 2.87 3.93 3.52

Table 5-5: Times (sec) using complete Fourier method with optimizations and MATHLIB

although it is more storage intensive. Note however that the FACR(1) method still provides a

significant savings in time over the complete Fourier method.

To cut some of the added storage costs, we explored the method of solving m systems instead
of all n systems in the FACR(1) algorithm in parallel, for m = 16, 32, and 64. We noted that
for loops of size less than 32, the efficiency of the APMATH routines over APFTN optimization
level 3 is overshadowed by the overhead of the subroutine calls. We present times for the

APFTN-vectorized sine transform in Table 5-6.

Poisson Problem
block=16 block=32 block=64

31x31 .02 .02 .02
63x63 .08 .07 .07
127x127 .23 .22 .22
255x255 .81 .79 77
511x511 2.95 2.87 n/a

Table 5-8: Times (sec), blocked-vectorized sine transform, FACR(1) method, MATHLIB

An additional optimization which is important in the case where multiple problems are being
solved is the preprocessing of the normalization in the complete Fourier algorithm. Our
preprocessing consists of storing the reciprocal of the normalization constants, enabling
normalization to be done by a vector multiply. We present times for the preprocessed complete

Fourier algorithm in Table 5-7.

We next consider the Fourier/Tridiagonal algorithm. We try to enable the maximum

amount of pipelining in the tridiagonal solver by performing the forward substitutions for m

22

Poisson Problem

preprocessing Fourier-vecmul-vecsin
time excluding preprocessing
31x31 .00 .03
63x63 .01 .09
127x127 .03 .34
255x255 .12 1.22

Table 5-7: Execution times (sec) using Fourier method with preprocessing

systems in parallel followed by the backward substitutions in the solution of the tridiagonal
linear systems, cf. Section 3.2. In Table 5-8, we present times for problems of sizes as large as
255 x 255 using the real FFT. Though the method becomes more storage intensive as m grows,
we found that our times did not improve unless m was > 31. Note that the improvement in

the FACR(1) algorithm is necessarily less since only n/2 tridiagonal linear systems are solved.

Poisson Problem Using Real Transformation
Fourier/Trid Fourier/Vec-Trid FACR(1) FACR(1)/Vec-Trid

31x31 .03 .03 .02 .02
63x63 .10 .09 .08 .08
127x127 .37 .35 .27 .26
255x255 1.39 1.32 1.00 .98

Table 5-8: Times (secs) to solve Poisson’s equation, Vectorizing the tridiagonal solves

5.2. Compiler Efficiency

Finally we examine the capability of the architecture of the FPS-164 as demonstrated by use
of the MATHLIB routines and the extent to which the existing compiler utilizes it. The times
recorded by the APFTN programs vary significantly depending on both the level of
optimization of the FPS compiler and the release. Optimization level 3 of Version D04 of the
APFTNG64 compiler was used in all the tests of this paper. Previous runs had been made using
optimization level 2 (due to errors at opt level 3) of the Version C compiler, also at optimization

level 2 of the D04 compiler. We present these times for comparison in Table 5-9.

Note that the architecture of the FPS-164 offers a degree of parallelism that is not fully

23

Fourier/Trid using Sine Transform, APFTN
Opt2,RevC O0pt2,RevD04 0Opt3,RevDO4

31x31 .10 .05 .04
63x63 .33 .19 .14
127x127 1.16 .67 .50
255x255 4.39 2.44 1.07
511x511 18.29 10.01 5.0

FACR(1) using Sine Transform, APFTN
Opt2,RevC Opt2,RevD04 Opt3,RevDO4

31x31 .04 .04 .03
63x63 .15 .18 .10
127x127 .58 .48 .35
255x255 2.00 1.89 1.23
511x511 8.3 error 4.99

FACR(1) using Sine Transform, MATHLIB
Opt2,RevC 0Opt2,RevD04 Opt3,RevDO4

31x31 .03 .03 .02
63x63 .10 .09 .08
127x127 .31 .28 .24
255x255 1.10 1.06 .85
511x511 4.03 3.94 3.10

Table 5-9: Execution times (sec) for Version C and Version D APFTN compiler

utilized by any version of the compiler. The sections of the program which make use of the
APAL math library improve the running time of the entire Poisson problem by factors of as
much as 2, depending on the algorithm. We are expecting research in radical compiler

techniques at Yale to provide a FORTRAN compiler that will reduce these factors [6].

We conclude by comparing the best times we were able to calculate for the FPS-164 against
the published results obtained for the CDC 7600 by Swarztrauber [11]. We graph the time to
solve the Poisson equation for each of our three algorithms, making use of MATHLIB calls and

vectorization. These are presented in Figure 5-2.

24

BEST TIME C@MPARISENS BN FPS-164 VS CDC-7600

il EPEF A IS T AT W W AT AT IS AT I AT B AT SP RPN I R AP AT AT

0
SO 100 150 200 250 300 350 400 450 500 550
PREBLEM SIZE (2-DIMENSIBNAL., SQUARE)
D - DBUBLE FBURIER (VECDIV,VECSIN)
FBURIER/TRID (VECSIN)
FACR(1) (VECSIN)
7600 RESULTS - FBURIER/TRID
7600 RESULTS - FACR(1)

N~ 20—
)

Figure 5-2: Best times for the solution of the Poisson problem on the AP

5.3. Overhead in using the AP

We have found the time required to transfer the data over the Unibus connecting the AP and
the VAX to be significant. For the 31x31, 127x127 and 511x511 size problems, the entire
overhead including data transfer has been .8, 1.1, and 5.9 seconds. Our real throughput time to

transfer the data over the Unibus has been less than one half megabyte per second.

The FPS-164 supports a D84 subsystem which is directly connected to the FPS-164 1/O bus.
This has a maximum 1.2 megabyte/second transfer rate, which is comparable to the Unibus
transfer rate. One problem of future interest is the out-of-core Poisson problem. See
Schultz [10] for an algorithm analysis of this problem. We expect future results which make use
of a bulk memory system which we have interfaced to the FPS-164 I/O bus which achieves a 41

megabyte/second transfer rate.

25

6. Conclusions
Some of the conclusions that should be noted are the following:
e The Malcolm and Palmer technique for the solution of the specialized tridiagonal

system of linear equations which results from the Poisson problem is very efficient.

o Efficient implementation of transforms lessen the difference between the complete
Fourier, Fourier/Tridiagonal and FACR(1) methods on the FPS-164. However, the
most efficient method for the FPS-164 architecture is still the FACR(1) method?®.

o Except for very small problems, in each of the algorithms, utilization of the

MATHLIB improves the execution time over FORTRAN code of up to a factor of 2.

e The overhead of data throughput is significant in proportion to the compute time on
the FPS-164.

e Optimized code for the FPS-164 has been shown to be more efficient than standard
code for the same algorithm on the CDC 7600.

Acknowledgments

We wish to thank Professor Stanley C. Eisenstat for his comments and suggestions.

%0ur FACR(1) method makes use of the Malcolm and Palmer solution of the tridiagonal system of linear
equations.

26

Appendix A

Upper bound for Convergent Tridiagonal Solver

In Section 3, we outlined the fast tridiagonal solver presented by Malcolm and Palmer [9].
They present upper and lower bounds of convergence of the r, of equation (28). In this
Appendix, we solve the nonlinear difference equation (28) explicitly and subsequently arrive at

an equivalent upper bound of convergence to a predefined accuracy.

Let z, and Z, be the solutions of z = 1/(\ - z), the equation satisfied by the limit of T, such
that |z;] > |z,]. Let w := z,/2,. For X\ < -2, as in the Poisson equation, we have X\ < z; < z,

< 0 and therefore 0 < w < 1.

Clearly
N - A2 -4 N+ N2 -4
z]:-————————, Z2=—-———"' »
2 2
A=z, +2z,=2, (1 +0w),
and
w= 22 .

1

It can be shown by induction that

k

1-w (32)
rn= — 32
k z, (1 - W)
is the general solution of the recurrence formula (28). This satisfies r; = 1/X. Given the

induction hypothesis, it follows that:

1 - o

AL - W -zl - WD

r

1
k=_
)\-rk_1

1 - o

- -1 _ y.-1 k _ -2 -2 k-1
210‘21)‘z1 w z2,°+ 2w)

27

1 - W
2, (1 +w) - A+ -w+ wh
1 -
) z,(1 - w1

Note that r, — 1/z, = z, and is monotone for k — co.

It is easy to determine the index k = such that r, has converged with maximum relative
conv

error e. We determine a simple upper bound, k.

k

r, -r 1l ~w
| =] = Il- R
Foo w
¥ - w)
(1 - o
< W <e.
Therefore
< . log €
kcoml — k0 T [log w] . (33)

This expression for k is equivalent to the upper bound given by Malcolm and Palmer.

[1]
[2]

3]
)
5]
Q
7]
]
o]
[10]

[11]

12]

28

References

Buzbee, B. L., Golub, G. H. and Nielson, C. W. On Direct Methods for Solving Poisson’s
Equations. SIAM J. Numer. Anal. 7:627-656, 1970.

Cooley, J. W., Lewis, P. A. W. and Welch, P. D. The Fast Fourier Transform Algorithm:
Programming Considerations in the Calculation of Sine, Cosine and Laplace Transforms.
J. Sound Vib. 12:350-337, 1970.

Evans, D. J. An Algorithm for the Solution of Certain Tridiagonal Systems of Linear
Equations. Comp. J. 15:356-359, 1972.

Evans, D. J. and Hatzopoulos, M. The Solution of Certain Banded Systems of Linear
Equations Using the Folding Algorithm. Comp. J. 19:184-187, 1976.

Fischer, D., Golub, G., Hald, O., Leiva, C. and Widlund, O. On Fourier-Toeplitz Methods
for Separable Elliptic Problems. Math. Comp. 28:349-368, 1974.

Fisher, J. A. Very Long Instruction Word Architectures and the ELI-512. Technical
Report #253, Yale University, 1982.

Henrici, P. Fast Fourier Methods in Computational Complex Analysis. SIAM Review
21:481-527, 1979.

Hockney, R. W. A Fast Direct Solution of Poisson’s Equation Using Fourier Analysis. J.
ACM 12:95-113, 1965.

Malcolm, M. A. and Palmer, J. A Fast Method for Solving a Class of Tridiagonal Linear
Systems. Comm.ACM 17:14-17, 1974.

Schultz, M. H. Solving Elliptic Problems on an Array Processor System. Technical
Report YALEU/DSC/RR-272, Yale University, 1983.

Swarztrauber, P. N. The Methods of Cyclic Reduction, Fourier Analysis and the FACR
Algorithm for the Discrete Solution of Poisson’s Equation on a Rectangle. SIAM Review
19:490-501, 1977.

Temperton, C. Direct Methods for the Solution of the Discrete Poisson Equation: Some
Comparisons. J. Comp. Physics 31:1-20, 1979.

