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In this report, we construct numerical algorithms for the solution of inverse scattering
problems in layered acoustic media. Our inverse scattering schemes are based on a
collection of so-called trace formulae, and can be viewed as extension of the work
started in [3].
The speed c of propagation of sound, the density ρ, and the attenuation γ
are the three parameters reconstructed by the algorithm, given that all of them
(ρ(x, y, z), c(x, y, z), γ(x, y, z)) are laterally invariant, i.e., depend only on the co-
ordinate z. For a medium whose parameters c, ρ, and γ have m ≥ 1 continuous
derivatives, and data measured for all frequencies ω on the interval [−a, a], the error
of our scheme decays as 1/am−1 as a→ ∞. In this respect, our algorithm is similar to
the Fourier Transform. Our results are illustrated with several numerical examples.
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1 Introduction

Inverse scattering has been an active field of research in science, mathematics, and engi-
neering over the past several decades (see e.g. [2], [3], [5], [7], [9], [10], [11], [13]). It
has applications in a wide range of fields, such as radar, medical imaging, oil exploration,
microscopy, etc. However, constructing reliable and efficient algorithms for the solution of in-
verse scattering problems involves three major difficulties. First, inverse scattering problems
are highly nonlinear except for the one-dimensional case, where the nonlinear problem can
be reduced to a linear one, although the procedure of the reduction is numerically unstable.
Second, numerical stability tends to be a problem, except in one dimension. Third, the time
and memory requirements are beyond the capabilities of present computers via currently
used methods. In this paper, we construct numerical algorithms for the solution of inverse
scattering problems in the acoustic environment in three dimensions. Our inverse scattering
scheme assumes that the speed c(x, y, z) of propagation of sound, the density ρ(x, y, z) and
the attenuation γ(x, y, z) are independent of the variables x, y, so that c(x, y, z) = c(z),
ρ(x, y, z) = ρ(z), γ(x, y, z) = γ(z); an acoustic medium possessing these properties will be
referred to as a layered medium, or layered environment.

1.1 Statement of the Problem

The inverse scattering problem is the problem of reconstructing the various parameters
of scattering objects, such as the density, the speed of sound, and the attenuation, with
the knowledge of the incident and the scattered field. Below is the formal mathematical
formulation of the three-dimensional inverse scattering problem in a layered acoustic medium.

1.1.1 The Helmholtz Equations

The inverse scattering problem we investigate arises from the time domain wave equation

∂2

∂2t
ψ(x, t) = c2(x) · ρ(x) ▽ · ( 1

ρ(x)
▽ψ(x, t)), (1)

where ψ(x, t) is the value of the scalar field at a point x at time t, c(x) is the local speed of
wave propagation at a point x, and ρ(x) is the density at a point x. In order to solve (1),
we assume

ψ(x, t) = ψk(x) e
i k c0 t, (2)

where k is a complex number with non-negative imaginary part, and c0 is the speed of wave
propagation outside of the scattering structure. Substituting (2) into (1), we obtain

ρ(x) ▽ · ( 1

ρ(x)
▽ψk(x)) + k2 · c20

c2(x)
ψk(x) = 0. (3)

Since the inverse scattering scheme assumes that the speed c(x, y, z) of propagation of sound,
the density ρ(x, y, z) and the attenuation γ(x, y, z) are independent of the variables x, y, i.e.,
c(x, y, z) = c(z), ρ(x, y, z) = ρ(z), γ(x, y, z) = γ(z), (3) can be rewritten by the formula

∂2ψk

∂x2
+
∂2ψk

∂z2
− 1

ρ(z)

dρ

dz
· ∂ψk

∂z
+ k2 · c20

c2(z)
· ψk = 0. (4)
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Throughout this paper, we use the notation

c20
c2(z)

= 1 + q(z) + i · γ(z), (5)

where q(z) and γ(z) are known as potential and attenuation of the layered acoustic medium,
and that ρ, q, γ ∈ c20([0, 1]), i.e., ρ, q, γ are twice continuously differentiable everywhere, and
are defined by the formulae

ρ(x) = ρ(0) ≡ ρ1, for all x ≤ 0, (6)

ρ(x) = ρ(1) ≡ ρ2, for all x ≥ 1, (7)

q(x) = q(0) ≡ q1, for all x ≤ 0, (8)

q(x) = q(1) ≡ q2, for all x ≥ 1, (9)

γ(x) = γ(0) ≡ γ1, for all x ≤ 0, (10)

γ(x) = γ(1) ≡ γ2, for all x ≥ 1. (11)

Suppose now that the angle of incidence with respect to the normal to the x-y plane is
θ, and

ψk(x, z) = ei k x sinθ · φ(z). (12)

Substituting (12) into (4), we obtain

φ′′(x, k) − ρ′(x)

ρ(x)
· φ′(x, k) + k2 · (1 + q(x) + i · γ(x) − α2) · φ(x, k) = 0, (13)

where
α = sin(θ). (14)

Equation (13) is the well-known scalar Helmholtz equation in layered acoustic media. For
any complex k, we consider solutions of the Helmholtz equation φ+(x, k) and φ−(x, k) defined
by the formulae

φ+(x, k) = φinc+(x, k) + φscat+(x, k), (15)

φ−(x, k) = φinc−(x, k) + φscat−(x, k), (16)

with
φinc+(x, k) = ei k

√
1+q1+i γ1−α2 x, for all x < 1, (17)

φinc+(x, k) = ei k
√

1+q2+i γ2−α2 x, for all x ≥ 1, (18)

φinc−(x, k) = e−i k
√

1+q1+i γ1−α2 x, for all x ≤ 0, (19)

φinc−(x, k) = e−i k
√

1+q2+i γ2−α2 x, for all x > 0, (20)

and φscat+, φscat− satisfying the outgoing radiation boundary conditions

φ′
scat±(0, k) + i k

√

1 + q1 + i γ1 − α2 φscat±(0, k) = 0, (21)
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φ′
scat±(1, k) − i k

√

1 + q2 + i γ2 − α2 φscat±(1, k) = 0. (22)

Combining equations (13) – (20), we obtain the equations

φ′′
scat+(x, k) − ρ′(x)

ρ(x)
· φ′

scat+(x, k) + k2 · (1 + q(x) + i · γ(x) − α2) · φscat+(x, k)

= −(k2 ((q − q1) + i (γ − γ1)) −
ρ′(x)

ρ(x)
i k
√

1 + q1 + i γ1 − α2) · ei k
√

1+q1+i γ1−α2 x,

for all x < 1, (23)

φ′′
scat+(x, k) − ρ′(x)

ρ(x)
· φ′

scat+(x, k) + k2 · (1 + q(x) + i · γ(x) − α2) · φscat+(x, k)

= −(k2 ((q − q2) + i (γ − γ2)) −
ρ′(x)

ρ(x)
i k
√

1 + q2 + i γ2 − α2) · ei k
√

1+q2+i γ2−α2 x

for all x ≥ 1, (24)

φ′′
scat−(x, k) − ρ′(x)

ρ(x)
· φ′

scat−(x, k) + k2 · (1 + q(x) + i · γ(x) − α2) · φscat−(x, k)

= −(k2 ((q − q1) + i (γ − γ1)) +
ρ′(x)

ρ(x)
i k
√

1 + q1 + i γ1 − α2) · e−i k
√

1+q1+i γ1−α2 x,

for all x ≤ 0, (25)

φ′′
scat−(x, k) − ρ′(x)

ρ(x)
· φ′

scat−(x, k) + k2 · (1 + q(x) + i · γ(x) − α2) · φscat−(x, k)

= −(k2 ((q − q2) + i (γ − γ2)) +
ρ′(x)

ρ(x)
i k
√

1 + q2 + i γ2 − α2) · e−i k
√

1+q2+i γ2−α2 x,

for all x > 0. (26)

Combining the equations (23) – (26) with the equations (6) – (11), we observe that, for any
complex k, there exist complex numbers µ1±(k) and µ0±(k) such that

φscat±(x, k) = µ1±(k) · ei k
√

1+q2+i γ2−α2 x for all x ≥ 1, (27)

φscat±(x, k) = µ0±(k) · e−i k
√

1+q1+i γ1−α2 x for all x ≤ 0; (28)

combining (18), (19), (27), and (28), we obtain

φ+(x, k) = (1 + µ1+(k)) · ei k
√

1+q2+i γ2−α2 x for all x ≥ 1, (29)

φ−(x, k) = (1 + µ0−(k)) · e−i k
√

1+q1+i γ1−α2 x for all x ≤ 0. (30)

Thus, for any complex k, the boundary value problems for φ+, φ− (equations (13) -(22)) are
reformulated as initial value problems (equations (13), (29), and (30)). Furthermore, for any
k ∈ C, coefficients 1 + µ1+(k) and 1 + µ0−(k) in (29), (30) are both nonzero. For example,
if 1 + µ1+(k) = 0, then φ′

+(1, k) = φ+(1, k) = 0, thus, due to uniqueness theorem on initial
value problems, φ+(x, k) = 0 for all x ∈ R, i.e.,

φscat+(x, k) = −φinc+(x, k) = −ei k
√

1+q1+iγ1−α2 x, (31)

for all x < 1, which contradicts (28). Similarly, we can prove that 1+µ0−(k) is also non-zero.
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1.1.2 The Impedance Functions

Denote the upper half complex plane by C+. For any k ∈ C+, we define the impedance
functions p+, p− : (R,C+) → C by the formulae

p+(x, k) =
φ′

+(x, k)

i k ρ(x)φ+(x, k)
, (32)

p−(x, k) =
φ′
−(x, k)

−i k ρ(x)φ−(x, k)
, (33)

where φ+, φ− are solutions of the Helmholtz equation (13) defined by (18) and (19), ρ is the
density of the scattering structure.

Remark 1.1 It is easy to see that the impedance functions p+, p− are independent of the
nonzero coefficients 1 +µ1+(k) and 1 +µ0−(k) in initial conditions (29), (30). Therefore, for
simplicity, the initial conditions (29), (30) are reformulated as

φ+(x, k) = ei k
√

1+q2+i γ2−α2 x for all x ≥ 1, (34)

φ−(x, k) = e−i k
√

1+q1+i γ1−α2 x for all x ≤ 0. (35)

The solutions φ+, φ− as solutions of equation (13) subject to boundary conditions (34), (35)
only differ from those subject to boundary conditions (29), (30) by constants.

Therefore, the inverse scattering problem for the equation (13) is stated as follows:
Suppose that the impedance function p+(0, k) is known for appropriately chosen frequen-

cies {kj, j = 1, 2, ...,M}, reconstruct the density ρ(z), the potential q(z), and the attenuation
γ(z), in the interval [0, 1] with the error that rapidly decreases with increasing M .

This paper is devoted to the construction of an algorithm for the solutions of the above
problem.

1.2 Overview

As discussed in [3], four types of algorithms exist for the solution of inverse scattering
problems.

1. Linearized inversion schemes, which approximate the inverse scattering problem by
the problem of inverting the appropriately chosen linear operator (see e.g. [9]).

2. Methods based on nonlinear optimization techniques, which obtain the scattering
parameters iteratively by solving a sequence of forward scattering problems (see e.g. [13]).

3. Gel’fand-Levitan and related techniques, converting the Helmholtz equation into the
Schrödinger equation, and solving an inverse problem in the form of a linear Volterra integral
equation for the latter (see e.g. [7]).

4. Methods based on trace formulae, which connect the high-frequency behavior of
the solutions of the Helmholtz equation to the parameters of the scattering objects to be
recovered (see e.g. [11]).

In this paper, we introduce an algorithm for the solution of inverse scattering problems
in layered acoustic media. The procedure falls into the category 4, and is an extension of

6



the procedure of [3], in the sense that while the latter recovers the parameters of a layered
medium in which only the speed of sound is permitted to change, the algorithm of my thesis
assumes that the speed of sound, the density, and the attenuation are variable, and recovers
all three.

The inverse scattering schemes we construct are based on a collection of so-called trace
formulae, and can be viewed as extension of the work started in [3], where the observation is
made that (at least in layered media) it is possible to construct inverse scattering algorithms
that, given a smoothly varying medium, require few measurements to reconstruct it. More
specifically, given a medium whose parameters c, ρ, and γ have m ≥ 1 continuous derivatives,
and data measured for all frequencies ω on the interval [−a, a], the error of the reconstruction
decays as 1/am−1 as a → ∞. In this respect, the algorithm of [3] is similar to the Fourier
Transform, and a strong argument is made that this is a very desirable property. While
the algorithm of [3] assumes that the parameters ρ and γ are constant and the parameter
c depends on z, the schemes of this paper reconstruct c, ρ, and γ, provided that they only
depend on the coordinate z.

The paper is organized as follows. In Section 2, we summarize several well-known math-
ematical facts to be used in the paper. In Section 3, we introduce analytical tools to be
used in the construction of the algorithm. Section 4 states the algorithm in details, and
a complexity analysis is included. In Section 5, several numerical examples are used to il-
lustrate the performance of the algorithm. Finally, Section 6 contains generalizations and
conclusions.

2 Analytical Preliminaries

In this section, we summarize several well-known mathematical facts to be used in the
sections below. These facts are given without proofs, since all of these are either found
in [1], [4], and [12], or easily derived from well-known results.

2.1 Notation

In this paper, we denote the upper half complex plane by C+.
For any function f : R → R, f ∈ cm0 ([0, 1]) states that f (m) is continuous everywhere,

and that f(x) = f1 for all x ≤ 0, f(x) = f2 for all x ≥ 1, where f1 = f(0), f2 = f(1).
Suppose that for any a > 0, the region K(a) ⊂ C is defined by the formula

K(a) = {k|k ∈ C, Im(k) ≥ 0, |k| ≥ a}. (36)

2.2 Basic Lemmas

In this section, we introduce several basic lemmas to be used in the sections below following
closely to [3].

For a function f : [a, b] → R1 and integer n ≥ 2, the n-point trapezoidal rule Tn is defined
by the formula

Tn(f) = h

( n−1
∑

i=0

f(a+ ih) −
(f(a) + f(b)

2

)

)

, (37)
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where

h =
b− a

n− 1
, (38)

and is widely used as an approximation to the integral
∫ b

a
f(x) dx. It is second order con-

vergent, as long as the function f has two continuous derivatives on [a, b]. In other words, if
f ∈ C2[a, b], then

∫ b

a

f(x) dx = Tn(f) +O(h2). (39)

Lemma 2.1 Suppose that f ∈ cl(R) with l a nonnegative integer. Suppose further that
f (j)(0) = 0 for 0 ≤ j ≤ l, f (l) is absolutely continuous. Then there exists a positive number
c such that

∫ x

0

f(t) ei k (x−t) dt = −
l
∑

j=1

(
1

2 i k
)
j

f j−1(x) + (
1

2 i k
)
l+1

(f l(x) + b(x, k)) (40)

with b : R× C+ → C an absolutely continuous function of x ∈ [0, 1] such that

|b(x, k)| ≤ c, (41)

for all x ∈ [0, 1], k ∈ C+. Furthermore, if f(x) = 0 for all x ≥ D with D a positive number,
then

|b(x, k)| ≤ c, (42)

for all (x, k) ∈ R× C+.

Lemma 2.2 Suppose that a : [0, 1] → R and b : [0, 1] → C are two continuous functions,
and that a(x) > 0, for all x ∈ [0, 1]. Then for any two solutions u and v of the second order
ODE

(a(x)φ′(x))′ + b(x)φ(x) = 0, (43)

there exists a constant c such that

a(x)(u(x)v′(x) − v(x)u′(x)) = c (44)

for all x ∈ [0, 1]. Furthermore, c 6= 0 if and only if u and v are linearly independent. (The
expression W (u, v) = u(x) v′(x) − v′(x) u(x) is referred to as the Wronskian of the pair u ,
v).

Lemma 2.3 (Gronwall’s inequality) Suppose that u, v, w : [0, a] → R are three continuous
and nonnegative functions, satisfying the inequality

w(x) ≤ u(x) +

∫ x

0

v(t)w(t) dt (45)

for all x ∈ [0, a]. Then,

w(x) ≤ u(x) +

∫ x

0

u(t) v(t) e
R x

t
v(τ) dτ dt, (46)

for all x ∈ [0, a].
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Lemma 2.4 Suppose that a : C → C is an entire function and that A : R × C → Cn×n is
an n× n-matrix whose entries ai,j(x, z), i,j=1,...,n are continuous functions of x and entire
functions of z for all x ∈ R Then for any z ∈ C, the differential equation

y′(x, z) = A(x, z) · y(x, z) (47)

subject to the initial condition
y(0) = c(z) (48)

has an unique solution y(x, z) for all x ∈ R. Moreover, y(x, z) is an entire function of z.

2.3 Schrödinger Equation and Riccati Equation

This section describes the basic facts about the Helmholtz equation and its connections with
the Schrödinger equation and the Riccati equation in the context of scattering problem.
Lemma 2.5 describes the fact that a Schrödinger equation with outgoing radiation conditions
can be converted into a second kind integral equation with the Green’s function of the
corresponding Helmholtz equation. Lemma 2.6 gives the mathematical form of the Green’s
function for Helmholtz equation with outgoing radiation conditions.

Lemma 2.5 Suppose that Gk : [0, 1] × [0, 1] → C is the Green’s function of the boundary
value problem

ψ′′(x, k) + k2 ψ(x, k) = 0 (49)

ψ′(0, k) + i k ψ(0, k) = 0 (50)

ψ′(1, k) − i k ψ(1, k) = 0 (51)

for any complex k 6= 0. Then the boundary value problem

ψ′′(x, k) + (k2 + η(x))ψ(x, k) = f(x, k) (52)

ψ′(0, k) + i k ψ(0, k) = 0 (53)

ψ′(1, k) − i k ψ(1, k) = 0 (54)

is equivalent to a second kind integral equation

ψ(x, k) = −
∫ 1

0

Gk(x, t) η(t)ψ(t, k) dt+ g(x, k) (55)

with f, g : [0, 1] × C → C and g defined by the formula

g(x, k) =

∫ 1

0

Gk(x, t) f(t, k) dt. (56)

Lemma 2.6 For any complex k 6= 0, the Helmholtz equation

ψ′′(x, k) + k2 ψ(x, k) = 0 (57)

with the outgoing radiation conditions (21), (22) has the Green’s function

Gk(x, t) =
1

2 i k

{

ei k (t−x) x ≤ t,
ei k (x−t) x ≥ t.

(58)
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The following lemma connects the solutions of the Helmholtz equation to those of Schrödinger
equation via direct transform.

Lemma 2.7 Suppose that q, γ, ρ : R → R are c2-functions such that 1 + q(x) − α2 > 0,
γ(x) > 0 , ρ(x) > 0, for all x ∈ R. Suppose further that the functions n, t : R → C,
η, g : C → C are defined by the formulae

n(x) =
√

1 + q(x) + i γ(x) − α2, (59)

t(x) =

∫ x

0

n(τ) dτ, (60)

η(t) =
1

4
(1 + q(x) + i γ(x) − α2)

−3
(

(2
ρ′′(x)

ρ(x)
− 3 (

ρ′(x)

ρ(x)
)2) · (1 + q(x) + i γ(x) − α2)

2

−(q′′(x) + i γ′′(x)) · (1 + q(x) + i γ(x) − α2) +
5

4
(q′(x) + i γ′(x))2

)

(61)

g(t) = f(x) · ρ− 1

2 (x) · (1 + q(x) + i γ(x) − α2)
− 3

4 . (62)

Finally, suppose that the function φ : R× C → C satisfies the equation

φ′′(x, k) − ρ′(x)

ρ(x)
φ′(x, k) + k2 (1 + q(x) + i γ − α2)φ(x, k) = f(x) (63)

and the function ψ : C × C → C is defined by the formula

ψ(t, k) = ρ−
1

2 (x) · (1 + q(x) + i γ(x) − α2)
1

4 · φ(x, k). (64)

Then the function ψ satisfies the Schrödinger equation

ψ′′(t, k) + (k2 + η(t)) · ψ(t, k) = g(t). (65)

Remark 2.1 Lemma 2.7 provides a connection between the solutions of the Helmholtz equa-
tion (63) and those of the appropriately chosen Schrödinger equation (65). This connection
will be used in the following chapter as an analytical tool. However, it is not useful in nu-
merical computations since the connection between η and q ( see equation (61)) is generally
ill-conditioned.

Corollary 2.8 Suppose that under the conditions of the preceding lemma that q, γ, ρ ∈
c20([0, 1]). Suppose further that the functions ψ+, ψ− : C×C → C are defined by the formulae

ψ+(t, k) = ρ−
1

2 (x) · (1 + q(x) + i γ(x) − α2)
1

4 · φ+(x, k), (66)

ψ−(t, k) = ρ−
1

2 (x) · (1 + q(x) + i γ(x) − α2)
1

4 · φ−(x, k). (67)

Then ψ+, ψ− satisfy the ODEs

ψ′′
+(t, k) + (k2 + η(t)) · ψ+(t, k) = 0, (68)
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ψ′′
−(t, k) + (k2 + η(t)) · ψ−(t, k) = 0, (69)

subject to the boundary conditions

ψ+(t, k) = ξ(k) · ei k(t−T1) (70)

for all Re(t) ≥ Re(T1), and

ψ−(t, k) = ρ
− 1

2

1 (1 + q1 − α2 + i γ1)
1

4 e−i k t, (71)

for all Re(t) ≤ 0 with T1, ξ(k) 6= 0 defined by the formulae

T1 =

∫ 1

0

√

1 + q(x) + i γ(x) − α2 dx (72)

ξ(k) = ρ
− 1

2

2 (1 + q2 − α2 + i γ2)
1

4 ei k
√

1+q2+i γ2−α2

. (73)

Furthermore,

p+(x, k) =
√

1 + q(x) + i γ(x) − α2
ψ′

+(t, k)

i k ρ(x)ψ+(t, k)
+

1
2

ρ′(x)
ρ(x)

− 1
4
(1 + q(x) + i γ(x) − α2)−1 · (q′(x) + i γ′(x))

i k ρ(x)
, (74)

p−(x, k) =
√

1 + q(x) + i γ(x) − α2
ψ′
−(t, k)

−i k ρ(x)ψ−(t, k)
−

1
2

ρ′(x)
ρ(x)

− 1
4
(1 + q(x) + i γ(x) − α2)−1 · (q′(x) + i γ′(x))

i k ρ(x)
. (75)

Observation 2.2 Suppose that q, γ, ρ ∈ c20([0, 1]). Then according to Lemma 2.7 and Corol-
lary 2.8,

t =
√

1 + q1 + i γ1 − α2 x (76)

and consequently

φ+(x, k) =
√
ρ1 · (1 + q1 + i γ1 − α2)−

1

4 · ψ+(t, k), (77)

for all x ≤ 0. Now, suppose the function ψ+ is defined by formula (66). Defining the scattered
field ψscat+ : C × C → C by the formula

ψ+(t, k) = ρ
− 1

2

1 · (
√

1 + q1 + i γ1 − α2)
1

4 · (ei k t + ψscat+(t, k)), (78)

we immediately obtain the Schrödinger equation

ψ′′
scat+(t, k) + (k2 + η(t))ψscat+(t, k) = ρ(x)−

1

2 · (1 + q(x) + i γ(x) − α2)
− 3

4 ·

(−k2 ((q − q1) + i (γ − γ1)) +
ρ′(x)

ρ(x)
i k
√

1 + q1 + i γ1 − α2) · ei k
√

1+q1+i γ1−α2 x, (79)

subject to outgoing radiation conditions (21), (22).
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The following lemma introduces the Riccati equations satisfied by the impedance functions
p+, p−. They are obtained from the definitions of impedance functions (32) (33) and the
Helmholtz equation (13).

Lemma 2.9 Suppose that under the conditions of the preceding lemma,

ψ+(x0, k0) 6= 0, (80)

ψ−(x0, k0) 6= 0, (81)

at some point (x0, k0) ∈ R×C. Then there exists a neighborhood D of (x0, k0) such that the
impedance functions p+, p− satisfy the Riccati equations

p′+(x, k) = −i k ρ(x) · (p2
+(x, k) − 1 + q(x) + i γ(x) − α2

ρ2(x)
), (82)

p′−(x, k) = i k ρ(x) · (p2
−(x, k) − 1 + q(x) + i γ(x) − α2

ρ2(x)
), (83)

for all (x, k) ∈ D.

Observation 2.3 Combining formulae (34), (35), we easily observe that

p+(x, k) =

√

1 + q2 + i γ2 − α2

ρ2
, for all x ≥ 1, (84)

p−(x, k) =

√

1 + q1 + i γ1 − α2

ρ1
, for all x ≤ 0, (85)

for all complex k 6= 0.

Observation 2.4 If γ(x) = 0 for all x ∈ R, it is easy to see from equations (82), (83),
(84), and (85) that

p+(x, k) = p+(x,−k), (86)

p−(x, k) = p−(x,−k). (87)

for all real k, since p+(x, k) and p+(x,−k) satisfy identical differential equations and bound-
ary conditions, and the same is true for p−(x, k) and p−(x,−k), too.

3 Mathematical Apparatus

In this section, we introduce analytical tools to be used in the construction of the algorithms
of this paper. This section discusses the following three facts.

(A) For any x ∈ R, the impedance functions p+(x, k), p−(x, k), defined by (32), (33), are
analytic functions of k in the upper half plane C+. Furthermore,

p+(x, k) =
1

ρ(x)
·
√

1 + q(x) + i γ − α2

− 1

i k
· ρ(x) · (q

′(x) + i γ′(x)) − 2 · (1 + q(x) + i γ(x) − α2) · ρ′(x)
4 · ρ2(x) · (1 + q(x) + i γ(x) − α2)

+ (k−2), (88)
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p−(x, k) =
1

ρ(x)
·
√

1 + q(x) + i γ − α2

+
1

i k
· ρ(x) · (q

′(x) + i γ′(x)) − 2 · (1 + q(x) + i γ(x) − α2) · ρ′(x)
4 · ρ2(x) · (1 + q(x) + i γ(x) − α2)

+O(k−2), (89)

as |k| → ∞ for all x ∈ R, k ∈ C+.
(B) For any fixed x ∈ R, the difference between the impedance functions p+(x,−k) and

p−(x, k) decays like a constant times k−m, where k ∈ R, and m is the smoothness of the
scatterer. In other words,

p+(x,−k) − p−(x, k) = O(k−m), (90)

as |k| → ∞, k ∈ R.
(C) For any a > 0, and all x ∈ R,

ρ(x) · (q′(x) + i γ′(x)) − 2 · ρ′(x) · (1 + q(x) + i γ(x) − α2)

=
2

π
(1 + q(x) + i γ(x) − α2) ρ2(x)

∫ a

−a

(p+(x, k) − p−(x, k)) dk +O(a−(m−1)), (91)

where m is the smoothness of the scatterer, p+(x, k) and p−(x, k) are impedance functions
defined by (32) and (33), ρ is the density of the scattering object, q is the potential, and γ
is the attenuation. (91) is an example of a trace formula.

The proofs in this section are modeled after those in [3].

3.1 Boundedness

This section establishes the basic properties of the impedance functions p+, p−, defined
by (32), (33). Lemma 3.1 describes the behavior of φ+, φ− in the vicinity of k = 0 in the
complex plane. Lemma 3.2 describes the properties of the impedance functions p+, p− near
k = 0. Lemma 3.3 shows that φ−, φ+ are nonzero for all real x and complex k 6= 0.

The following lemma describes the behavior of φ+, φ− in the vicinity of k = 0 in the
complex plane.

Lemma 3.1 Suppose that ρ, q, γ ∈ c20([0, 1]), and A > 0 is a real number. Then, there exist
positive numbers δ, ε, and η such that

|φ+(x, k) − 1| ≤ ε |k|, (92)

|φ−(x, k) − 1| ≤ ε |k|, (93)

|φ′
+(x, k) − i k

√

1 + q2 + i γ2 − α2 · ρ(x)
ρ2

| ≤ η |k|2, (94)

|φ′
−(x, k) + i k

√

1 + q1 + i γ1 − α2 · ρ(x)
ρ1

| ≤ η |k|2, (95)

φ+(x, k) 6= 0, (96)

φ−(x, k) 6= 0, (97)

for all real x ∈ [−A,A] and complex k such that |k| < δ. In (92)-(97), q1,q2,γ1,γ2, are defined
in Section 2.1, α is define by (14), and φ±(x, k) is the field at x.
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Proof. Since the proofs of this lemma for φ+,φ′
+ and for φ−,φ′

− are identical, we only prove
it for φ−,φ′

−. Defining two auxiliary functions φ1,ψ: R × C+ → C by the formulae

φ1(x, k) = φ−(x, k) − 1, (98)

ψ(x, k) =
φ′
−(x, k)

ρ(x)
+
i k

ρ1
·
√

1 + q1 + i γ1 − α2, (99)

and combining (98), (99) with (13) and initial conditions (34), (35), we obtain the linear
first order ODEs

φ′
1(x, k) = ρ(x)ψ(x, k) − i k

√

1 + q1 + i γ1 − α2
ρ(x)

ρ1
, (100)

ψ′(x, k) = − k2

ρ(x)
(1 + q(x) + i γ(x) − α2)(φ1(x, k) + 1), (101)

subject to the initial conditions
φ1(0, k) = 0, (102)

ψ(0, k) = 0. (103)

We begin by showing that there exist two continuous functions M,N : R+ ×R+ → R+ such
that for any s ∈ R+, M(s, t), N(s, t) are monotonically increasing functions of t and

|φ1(x, k)| ≤M(A, |k|) |k|, (104)

|ψ(x, k)| ≤ N(A, |k|) |k|2. (105)

Integrating (100) from 0 to x, we have

φ1(x, k) =

∫ x

0

(−i k
√

1 + q1 + i γ1 − α2 ρ(t)
1

ρ1
+ ρ(t)ψ(t, k)) dt, (106)

an substituting into (101) and integrating the result, we have

ψ(x, k) = −k2 ·
∫ x

0

1 + q(t) + i γ(t) − α2

ρ(t)
·

(

1 +

∫ t

0

(
−i k

√

1 + q1 + i γ1 − α2 ρ(τ)

ρ1
+ ρ(τ)ψ(τ, k)) dτ

)

dt. (107)

Denoting |ψ(x, k)| by a(x, k), we have

a(x, k) ≤ c1 |k|2
(

|x| + 1

2
c2 x

2 |k| + c3

∫ x

0

(x− t) a(t, k) dt

)

, (108)

where

c1 = sup
−A<x<A

∣

∣

∣

∣

1 + q(x) + i γ(x) − α2

ρ(x)

∣

∣

∣

∣

, (109)

c2 = sup
−A<x<A

∣

∣

∣

∣

√

1 + q1 + i γ1 − α2 · ρ(x)
ρ1

∣

∣

∣

∣

, (110)
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c3 = sup
−A<x<A

|ρ(x)| . (111)

Using Lemma 2.3, we rewrite (108) in the form

a(x, k) ≤ |k|2 u(x) + |k|4
∫ x

0

u(t) v(t)(1 + e−
1

2
c1 c2 k2 (x−t)2) dt, (112)

where

u(t) = c1 |t| +
1

2
c1 c2 t

2 |k|, (113)

v(t) = c1 c3 (x− t). (114)

Now, (105) follows immediately with N(A, |k|) defined by the formula

N(A, |k|) = sup
−A<x<A

u(x) + |k|2
∫ x

0

u(t) v(t)(1 + e−
1

2
c1 c2 k2 (x−t)2) dt. (115)

It is easily observed from (106) that

|φ1(x, k)| ≤ c2 |x| |k| + c3N(A, |k|) |x| |k|2, (116)

with c2, c3, N(A, |k|) defined by (110), (111), (115), respectively. Therefore, (104) follows
immediately with M(A, |k|) defined by the formula

M(A, |k|) = A(c2 + c3N(A, |k|) |k|). (117)

Since M(A, t) is a continuous, monotonically increasing function of t, there exists a real δ
such that

M(A, δ) · δ < 1 (118)

Denoting M(A, δ) by ε, N(A, δ) by η

c3
, and observing that M(A, |k|),N(A, |k|) are mono-

tonically increasing functions, we have

|φ1(x, k)| ≤M(A, |k|) |k| ≤M(A, δ) |k| = ε|k|, (119)

|ψ(x, k)| ≤ N(A, |k|) |k| ≤ N(A, δ) |k| =
η

c3
|k|2, (120)

from which (93), (95) follow immediately.
Finally, combining (119) with (118), we obtain (97). �

The following lemma describes the properties of the impedance functions p+, p− near
k = 0.

Lemma 3.2 Suppose that ρ, q, γ ∈ c20([0, 1]) and A > 0 is a real number. Then there exists
a real number δ > 0 such that the impedance functions p+,p−, defined by (32), (33), are
continuous functions of (x, k) for all real (x, k) ∈ D, where

D = {(x, k)|x ∈ [−A,A], k ∈ C, k 6= 0, |k| ≤ δ}. (121)
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Furthermore,

lim
k→0

p+(x, k) =

√

1 + q2 + i γ2 − α2

ρ2
, (122)

lim
k→0

p−(x, k) =

√

1 + q1 + i γ1 − α2

ρ1

, (123)

where q1, q2, γ1, γ2, ρ1, ρ2 are defined in Section 2.1, α, p+, p− are defined by (14), (32),
(33), perspectively.

Proof. Due to Lemma 3.1, there exists a real number δ > 0 such that φ+(x, k) 6= 0,
φ−(x, k) 6= 0 for all real (x, k) ∈ D. Therefore, the impedance functions p+, p− are well-
defined in D, and their continuity follows from the continuity of φ+ , φ− , φ′

+, φ′
+ , ρ, as

well as their definitions (32), (33). (122), (123) are obtained via the direct application of
(92)-(95) and (32), (33). �

Remark 3.1 Due to Lemma 3.2, if we define p+(x, 0) =

√
1+q2+i γ2−α2

ρ2
,

p−(x, 0) =

√
1+q1+i γ1−α2

ρ1
, then p+, p− are continuous functions even at k = 0.

The following lemma states that φ+, φ−, φ′
+, φ′

− are nonzero for all real x and complex k 6= 0.

Lemma 3.3 For all x ∈ R and complex k 6= 0,

φ+(x, k) 6= 0, (124)

φ′
+(x, k) 6= 0, (125)

φ−(x, k) 6= 0, (126)

φ′
−(x, k) 6= 0. (127)

Proof. Since the proofs of this lemma for φ+, φ′
+ and for φ−, φ′

− are identical, we only
prove (126) and (127). We decompose φ− into two parts by the formulae

φ−(x, k) = u(x, k) + i v(x, k), (128)

φ′
−(x, k) = u′(x, k) + i v′(x, k), (129)

such that functions u,v: R × C → C satisfy equation (13). Combining the initial condi-
tion (35) with (128), we obtain that

u(x, k) = cos(k
√

1 + q1 + i γ1 − α2 x), (130)

v(x, k) = sin(k
√

1 + q1 + i γ1 − α2 x), (131)

for all x ≤ 0 and k 6= 0. Lemma 2.2 states that the Wronskian W (u, v) of the pair u, v is
given by

W (u, v) =
√

1 + q1 + i γ1 − α2 · k, (132)

for any x ∈ R. Therefore, for any k 6= 0, u(x, k), v(x, k) can not both be zero simultaneously,
nor can u′(x, k), v′(x, k). Now, (126), (127) follows immediately given (128), (129). �

16



3.2 Asymptotics and Smoothness

The principal purpose of this section is to formulate and prove the facts (A) and (B) de-
scribed in the beginning of Section 3. We begin by deriving equations (88), (89), and
Lemma 3.4, assuming that such asymptotic forms exist for impedance functions. Then, we
demonstrate the existence of such asymptotic expansions (Lemma 3.9), by converting the
Schrödinger equation into an integral equation (Lemma 3.5) and applying the Neumann
series (Lemma 3.6). Finally, the statements (A) and (B) are formulated and demonstrated
by Theorems 3.10, 3.12. The following lemma yields the first two terms in the asymptotic
forms of the impedance functions p−, p+.

Lemma 3.4 Suppose that impedance functions p+(x, k), p−(x, k), defined by (32), (33), are
given by the asymptotic series

p+(x, k) = a0(x) +
a1(x)

i k
+
a2(x)

(i k)2
+ · · ·, (133)

p−(x, k) = b0(x) +
b1(x)

i k
+
b2(x)

(i k)2
+ · · ·, (134)

for large real k. Then,

a0(x) = b0(x) =
1

ρ(x)
·
√

1 + q(x) + i γ − α2, (135)

a1(x) = −b1(x) = −ρ(x) · (q
′(x) + i γ′(x)) − 2 · (1 + q(x) + i γ(x) − α2) · ρ′(x)

4 · ρ2(x) · (1 + q(x) + i γ(x) − α2)
, (136)

where ρ, q, γ, α are defined in (13).

Proof. It is easily observed from (82), (83) that the impedance functions p+(x,−k), p−(x, k)
satisfy the same Riccati differential equation (83). Hence, we have

ai(x) = bi(x), for all the even i, (137)

ai(x) = −bi(x), for all the odd i. (138)

(135), (136), as well as other asymptotic coefficients bi(x), i = 2, 3, ..., are obtained by
plugging (134) into (83) and comparing terms of different orders of k. �

The following lemma converts the Schrödinger equation (69) into an integral equation.

Lemma 3.5 Suppose, for all x ∈ R and complex k 6= 0,

t(x) =

∫ x

0

√

1 + q(τ) − α2 + i γ(τ) dτ, (139)

m(t, k) = ei k t ψ−(t, k), (140)

n(t, k) = −e
i k t

i k
ψ′
−(t, k), (141)
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where ψ− is defined in (67), q, ρ, γ ∈ c20([0, 1]) such that 1+q(x)−α2 > 0, γ(x) > 0, ρ(x) > 0.
Suppose further that Γ is a path defined in the complex plane such that

{Γ : t ∈ Γ, x ∈ R, t(x) =

∫ x

0

√

1 + q(τ) − α2 + i γ(τ) dτ}. (142)

Then, the differential equation (69) subject to boundary condition (71) can be converted into
integral equations by the formulae

m = Fk(m) + (1 + q1 + i γ1 − α2)
1

4 ρ
− 1

2

1 , (143)

n(t, k) = m(t, k) − 1

2 i k

∫ t

0

η(τ) e2 i k (t−τ)m(τ, k) dτ, (144)

where

Fk(f)(t) =
1

2 i k

∫ t

0

η(τ) (1 − e2 i k(t−τ)) f(τ) dτ. (145)

Proof. Combining (69), (71) with (140), (141), we observe that m satisfies the equation

m′′(t, k) − 2 i k m′(t, k) = −η(t)m(t, k), (146)

subject to the initial conditions

m(0, k) = (1 + q1 + i γ1 − α2)
1

4 ρ
− 1

2

1 , (147)

m′(0, k) = 0. (148)

Multiplying (146) by e−2 i k t and integrating the result from 0 to t, we have

m′(t, k) = −
∫ t

0

η(τ) e2 i k(t−τ)m(τ, k) dτ. (149)

(143) is obtained immediately via integrating (149) from 0 to t, and equation (144) follows
from (149), (143), (144). �

Observation 3.2 Since η(τ) is continuous on the entire complex plane and zero outside of
a bounded region, the functions η(τ)(1− e2 i k (t−τ)) and η(τ) e2 i k (t−τ) are bounded for all real
t, τ , and k ∈ C+. Therefore, there exists a real number c1 > 0 such that

|Fk| ≤
c1
|k| , (150)

and hence there exists a real number A > 0 such that

|Fk| ≤ 1, (151)

for all k ∈ K(A), defined in Section 2.1.
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Remark 3.3 For complex, not purely real t and τ , (150) does not hold. Due to (59) and
(60), it is easy to observe that t, τ are real if and only if the attenuation does not enter
into our scattering problem, i.e. γ(x) = 0 for all x ∈ R. Therefore, (150) holds only in the
absence of attenuation γ. While our analysis applies only to the case when γ = 0, numerical
experiments in Section 5 indicate that our scheme still works, when the attenuation is small,
i.e. |γ(x)| ≪ |1 + q(x) − α2|, for all x ∈ R, When the attenuation is relatively large, our
scheme does not work.

Lemmas 3.6 and 3.7 yield the Neumann series for the integral equation (143) and an estimate
of the error for using a truncation of the series.

Lemma 3.6 Suppose that q, ρ, γ ∈ cµ0([0, 1]), µ ≥ 2, q(µ), ρ(µ), γ(µ) are absolutely continuous
for all x ∈ R. Suppose further that Γ is a path defined in the complex plane such that

{Γ : t ∈ Γ, x ∈ R, t(x) =

∫ x

0

√

1 + q(τ) − α2 + i γ(τ) dτ}. (152)

Then for any integer 1 ≤ l ≤ µ, there exist aj : Γ → R, j = 1, ..., µ− 1,, aµ : Γ × C+ → C,
where

dµ−jaj(t)

dtµ−j
(153)

are bounded and absolutely continuous for all t ∈ Γ, j = 1, ..., µ− 1, and

aµ(t, k) (154)

is bounded and absolutely continuous function of t for all (t, k) ∈ Γ × C+, such that

ml(t, k) = (1 + q1 + i γ1 − α2)
1

4 ρ
− 1

2

1 +

µ−1
∑

j=1

(
1

2 i k
)j aj(t) + (

1

2 i k
)µ aµ(t, k), (155)

where ml : Γ × C+ → C is defined by the formulae

m0(t, k) = 0, (156)

ml(t, k) = (1 + q1 + i γ1 − α2)
1

4 ρ
− 1

2

1 + Fk(ml−1)(t, k)

= (1 + q1 + i γ1 − α2)
1

4 ρ
− 1

2

1 +
1

2 i k

∫ t

0

η(τ)(1 − e2 i k(t−τ))ml−1(τ, k) dτ. (157)

Proof. We prove this lemma by induction. For l = 1, formulae (156), (157) yield

m1(t, k) = (1 + q1 + i γ1 − α2)
1

4 ρ
− 1

2

1 (158)

for all (t, k) ∈ Γ ×C+, which is already in the form (155) satisfying conditions (153), (154).
For l ≥ 1, assuming that ml(t, k) is in the form (155) satisfying conditions (153), (154), we
obtain ml+1 using (157):

ml+1(t, k) = (1 + q1 + i γ1 − α2)
1

4 ρ
− 1

2

1 +
1

2 i k

∫ t

0

η(τ)(1 − e2 i k(t−τ))ml(τ, k) dτ

= (1 + q1 + i γ1 − α2)
1

4 ρ
− 1

2

1 + I1(t, k) + I2(t, k) + I3(t, k) + I4(t, k) (159)
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with Ij : Γ × C+ → C, 1 ≤ j ≤ 4 defined by the formulae

I1(t, k) =
1

2 i k

∫ t

0

η(τ) dτ +

µ−1
∑

j=2

(

1

2 i k

)j ∫ t

0

η(τ) aj−1(τ) dτ, (160)

I2(t, k) = − 1

2 i k

∫ t

0

η(τ) (1 − e2 i k(t−τ)) dτ, (161)

I3(t, k) = −
µ−1
∑

s=2

(

1

2 i k

)s ∫ t

0

η(τ) as−1(τ) e
2 i k (t−τ) dτ

≡ −
µ−1
∑

s=2

Js(t, k), (162)

I4(t, k) =
1

2 i k

∫ t

0

η(τ) aµ(τ)(1 − e2 i k (t−τ)) dτ. (163)

Clearly, we only need to show that Ij , 1 ≤ j ≤ 4 can be expressed in the form

µ−1
∑

j=1

(

1

2 i k

)j

αj(t) + (
1

2 i k
)µαµ(t, k) (164)

with αj : Γ → R, 1 ≤ j ≤ µ − 1 satisfying condition (153) and αµ : Γ × C+ → C satisfying
condition (154). Obviously, I1 and I4 are already in the form (164). We now use Lemma 2.1
to show that I2, I3 can also be expanded in the form (164). Observing that η(t(x)) = 0 for

all x /∈ (0, 1), η(µ−2) is absolutely continuous, and that a
(µ−j)
j , 1 ≤ j ≤ µ − 1 are absolutely

continuous (due to the inductive assumption), we can use formula (40) to expand I2 and
each term Js(s = 1, ..., µ− 1) of I3 as

I2(t, k) =

µ−1
∑

j=2

(

1

2 i k

)j

η(j−2)(t) +

(

1

2 i k

)µ

b1(t, k), (165)

Js(t, k) =

(

1

2 i k

)s ∫ t

0

η(τ) as−1(τ) e
2 i k(t−τ) dτ

= −
µ−1
∑

j=s+1

(

1

2 i k

)j
d(j−s−1)

dt(j−s−1)
(η(t) as−1(t)) −

(

1

2 i k

)µ

bs(t, k) (166)

with bs : Γ × C+ → C uniformly bounded on Γ × C+ (see Lemma 2.1). Therefore, I2 is in
the form (164) due to (165), and I3 is of the form (164) due to (166), (162). Thus, ml+1(t, k)
can indeed be written in the form (155) satisfying conditions (153), (154). �
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Lemma 3.7 Suppose that the functions m,n,mµ, nµ : R × C+ → C are defined by the
formulae (147), (148), (157) and

nµ(t, k) = mµ(t, k) − 1

2 i k

∫ t

0

η(τ)e2 i k(t−τ)mµ(τ, k) dτ (167)

respectively. Then under the conditions of the preceding lemma, there exist positive real
numbers A, c1, c2, c3 such that

|m(t, k) −mµ(t, k)| ≤ c1
|k|µ , (168)

|n(t, k) − nµ(t, k)| ≤
c2
|k|µ , (169)

for all (Re(t), k) ∈ R×K(A), and

| n(t, k)

m(t, k)
− 1| ≤ c3

|k|µ , (170)

for all (Re(t), k) ∈ [T1,∞) ×K(A).

Proof. Due to (150), the norm of the integral operator Fk in (157) is of the order O(|k|−1)
for any k ∈ C+, from which we observe that there exists A ≥ 0, such that (168) is true.

Subtracting (167) from (144), we obtain

n(t, k) − nµ(t, k)

= m(t, k) −mµ(t, k) − 1

2 i k

∫ t

0

η(τ) e2 i k(t−τ)(m(τ, k) −mµ(τ, k)) dτ. (171)

Now, the estimate (169) is a direct consequence of (171), (168), and the fact stated in
Observation 3.2 that in (171), the expression

1

2 i k
η(τ)e2 i k (t−τ) (172)

is bounded for all k ∈ K(A), −∞ < τ ≤ t <∞ . We now prove (170) by showing that there
exists a positive number c3 such that

| nµ(t, k)

mµ(t, k)
− 1| ≤ c3

|k|µ (173)

for all (Re(t), k) ∈ [Re(T1),∞)×K(A). Lemma 3.6 states that aµ(t, k) in (155) is bounded
and absolutely continuous for all (t, k) ∈ Γ × C+, and aj(t) in (155) is also independent
of k. Therefore, we can assume that the constant A has been chosen such that for all
(Re(t), k) ∈ R×K(A),

∣

∣

∣

∣

∣

µ−1
∑

j=1

(
1

2 i k
)j aj(t) + (

1

2 i k
)µ aµ(t, k)

∣

∣

∣

∣

∣

≤ 1

2
· (1 + q1 + i γ1 − α2)

1

4 ρ
− 1

2

1 , (174)
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or equivalently,

|mµ(t, k)| ≥ 1

2
· (1 + q1 + i γ1 − α2)

1

4 ρ
− 1

2

1 . (175)

Combining (167) with (155), we obtain

nµ = mµ + I2(t, k) + I3(t, k) + I5(t, k), (176)

with I2(t, k), I3(t, k) defined by (161), (162), and I5(t, k) defined by the formula

I5(t, k) = (
1

2 i k
)
µ+1 ∫ t

0

η(τ)aµ(τ, k)e2 i k(t−τ) dτ. (177)

Noticing that η(τ) = 0 for all Re(t) ≥ Re(T1), we have

I2(t, k) =

(

1

2 i k

)µ

b1(t, k), (178)

Js(t, k) =

(

1

2 i k

)µ

bs(t, k), (179)

for all (Re(t), k) ∈ [Re(T1),∞)×K(A), due to (165), (166). Consequently, there exists c > 0
such that

|I2(t, k) + I3(t, k) + I5(t, k)| ≤
c

|k|µ (180)

for all (Re(t), k) ∈ [Re(T1),∞)×K(A), since aµ(t, k), bs(t, k) are bounded for all (Re(t), k) ∈
[Re(T1),∞) ×K(A), and s = 1, ..., µ− 1.

Now, the estimate (173) is a direct consequence of (176), (180) and (175). The esti-
mate (170) is a direct consequence of (173), (168), and (169). �

The proof of the following lemma is to that of Lemma 3.7, and is therefore omitted.

Lemma 3.8 Suppose, for all x ∈ R and complex k 6= 0,

t(x) =

∫ x

0

√

1 + q(τ) − α2 + i γ(τ) dτ, (181)

f(t, k) = e−i k tψ+(t, k), (182)

g(t, k) =
e−i k t

i k
ψ′

+(t, k), (183)

where ψ+ is defined in (66), q, ρ, γ ∈ c20([0, 1]) such that 1+q(x)−α2 > 0, γ(x) > 0, ρ(x) > 0.
Then under the conditions of the Lemma 3.7, there exist positive numbers A, d3 such that

∣

∣

∣

∣

g(t, k)

f(t, k)
− 1

∣

∣

∣

∣

≤ d3

|k|µ , (184)

for all (Re(t), k) ∈ (−∞, 0] ×K(A).
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Now, we are ready to show the existence of the asymptotic expansion (133), (134)
for impedance functions p+, p− by converting Schrödinger equation into an integral equa-
tion (Lemma 3.5) and using the Neumann series (Lemma 3.6).

Lemma 3.9 Suppose that impedance functions p+(x, k) p−(x, k) are defined by (32), (33),
for all x ∈ R, k ∈ C. Then, there exist asymptotic series expansions for p+ and p−; that
is, there exist sequences of complex functions a = {ai : R → C}, and b = {bi : R → C},
i = 0, 1, 2, ... such that p+ and p− are asymptotic given by the series

p+(x, k) = a0(x) +
a1(x)

i k
+
a2(x)

(i k)2
+ · · · (185)

p−(x, k) = b0(x) +
b1(x)

i k
+
b2(x)

(i k)2
+ · · ·, (186)

as |k| → ∞.

Proof. Combining (74) with (168), (169), (140), (141), (155), and (176), we obtain (186).
(185) is derived similarly. �

Theorems 3.10, 3.12 concern the statements (A) and (B) outlined in the beginning of
Section 3.

Theorem 3.10 Suppose that q, ρ, γ ∈ c20([0, 1]), 1 + q(x) − α2 > 0, γ(x) > 0, ρ(x) > 0 for
all x ∈ R and q′′, ρ′′, γ′′ are absolutely continuous. Suppose further that

D = {(x, k)|x ∈ R, Im(k) ≥ 0}. (187)

Then
(a) φ+ and φ− are continuous functions of (x, k) and analytic functions of k for all x ∈ R

and k ∈ C;
(b) p+ and p− are continuous functions of (x, k) and analytic functions of k in D;
(c) For all (x, k) ∈ D,

p+(x, k) =
1

ρ(x)
·
√

1 + q(x) + i γ − α2

− 1

i k
· ρ(x) · (q

′(x) + i γ′(x)) − 2 · (1 + q(x) + i γ(x) − α2) · ρ′(x)
4 · ρ2(x) · (1 + q(x) + i γ(x) − α2)

+O(k−2), (188)

p−(x, k) =
1

ρ(x)
·
√

1 + q(x) + i γ − α2

+
1

i k
· ρ(x) · (q

′(x) + i γ′(x)) − 2 · (1 + q(x) + i γ(x) − α2) · ρ′(x)
4 · ρ2(x) · (1 + q(x) + i γ(x) − α2)

+O(k−2), (189)
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Proof. We only give the proof for φ−, p− since the proof for φ+, p+ is very similar. We
introduce two auxiliary functions φ1,φ2: R× C+ → C by the formulae

φ̂(x, k) = φ−(x, k) − 1, (190)

φ̌(x, k) =
φ′
−(x, k)

ρ(x)
+
i k

ρ1
·
√

1 + q1 + i γ1 − α2, (191)

and combining (190), (191) with (13) and initial conditions (34), (35), we obtain the linear
first order ODEs

φ̂′(x, k) = ρ(x) φ̌(x, k) − i k
√

1 + q1 + i γ1 − α2
ρ(x)

ρ1
, (192)

φ̌′(x, k) = − k2

ρ(x)
(1 + q(x) + i γ(x) − α2)(φ̂(x, k) + 1), (193)

subject to the initial conditions
φ̂(0, k) = 0, (194)

φ̌(0, k) = 0. (195)

According to Lemma 2.4, φ̂, φ̌ are continuous functions of x and analytic functions of k
for all x ∈ R and k ∈ C, from which part (a) follows immediately. Similarly, we obtain
part (b) by combining part (a) with (33) and the fact that φ−(x, k) 6= 0 for all (x, k) ∈ D
(see Lemma 3.3). The expansion (189) follows immediately from Lemmas 3.9 and 3.4. �

Corollary 3.11 Under the conditions of the preceding theorem, there exist positive number
c1, c2 such that

∣

∣

∣
ei k

R x

t
p+(τ,k) ρ(τ) dτ

∣

∣

∣
≤ c1, (196)

∣

∣

∣
ei k

R x

t
p−(τ,k) ρ(τ) dτ

∣

∣

∣
≤ c2, (197)

for all t, x ∈ [0, 1], k ∈ R, or for all 0 ≤ t ≤ x ≤ 1, k ∈ C+.

Proof. Due to parts (b) and (c) of Theorem 3.10, the real part of the functions

Re

(

i k

∫ x

t

p+(τ, k) dτ

)

≤ c3, (198)

Re

(

i k

∫ x

t

p−(τ, k) dτ

)

≤ c4, (199)

where c3 and c4 does not depend on t or x for t, x ∈ [0, 1], k ∈ R, or for all 0 ≤ t ≤ x ≤ 1,
from which (196) (197) follow immediately. �
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Theorem 3.12 Suppose that q, γ, ρ ∈ cm0 ([0, 1]), m ≥ 2, q(m), ρ(m), γ(m) are absolutely
continuous and 1 + q(x) − α2 > 0, γ(x) > 0, ρ(x) > 0 for all x ∈ R. Then there exists a
positive real number a such that

|p+(x,−k) − p−(x, k)| ≤ a

|k|m (200)

for all (x, k) ∈ R× C+

Proof. Due to (74), (75), we obtain

p+(x,−k) − p−(x, k) =
√

1 + q(x) + i γ(x) − α2 · 1

−i k ρ(x) · (ψ
′
+(t,−k)
ψ+(t,−k) −

ψ′
−(t, k)

ψ−(t, k)
). (201)

Combining Lemmas 3.7, (34), 3.8 and (35) yields that (201) is true for all x /∈ (0, 1). In order
to prove the theorem for x ∈ (0, 1), we observe that p+(x,−k) and p−(x, k) obey the same
Riccati equation (83) due to (82) and (83). The difference s(x, k) = p+(x,−k) − p−(x, k)
satisfies the ODE

s′(x, k) = i k ρ(x) (p+(x,−k) + p−(x, k)) s(x, k). (202)

Clearly, the solution to (202) is

s(x, k) = ei k
R x

0
(p+(t,−k)+p−(t,k)) ρ(t) dt s(0, k). (203)

(196) and (197) show that there exists constant b > 0 such that

|ei k
R x

0
(p+(t,−k)+p−(t,k)) ρ(t) dt| < b (204)

for all (x, k) ∈ [0, 1] × R. Due to (85), (74), and Lemma 3.8, there exists a positive number
c such that for all k ∈ R,

|s(0, k)| = |p+(0,−k) − p−(0, k)| = |p+(0,−k) −
√

1 + q1 + iγ1 − α2

ρ1
| ≤ c

|k|m . (205)

Now, (200) for x ∈ (0, 1) follows immediately from (203), (205). Thus, we have (200) for all
(x, k) ∈ R× C+. �

3.3 Trace Formula

In this section, we prove Theorem 3.13, which is the principal analytical tool of this paper.
Theorem 3.13 describes what are known as the trace formulae for the impedance functions
p+, p− in the context of varying density, speed of propagation, and attenuation.

Theorem 3.13 (Trace Formula). Suppose that q, ρ, γ ∈ cm0 ([0, 1]), m ≥ 2, q(m), γ(m),
ρ(m) are absolutely continuous and 1 + q(x) − α2 > 0, γ(x) > 0, ρ(x) > 0 for all x ∈ R.
Then,

ρ(x) · (q′(x) + i γ′(x)) − 2 · ρ′(x) · (1 + q(x) + i γ(x) − α2)

=
2

π
(1 + q(x) + i γ(x) − α2) ρ2(x)

∫ ∞

−∞
(p+(x, k) − p−(x, k)) dk. (206)
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Moreover, there exists a positive number c such that

|ρ(x) · (q′(x) + i γ′(x)) − 2 · ρ′(x) · (1 + q(x) + i γ(x) − α2)

− 2

π
(1 + q(x) + i γ(x) − α2) ρ2(x)

∫ a

−a

(p+(x, k) − p−(x, k)) dk| ≤ c

a(m−1)
, (207)

for all x ∈ R, a > 0.

Proof. Due to part (C) of Theorem 3.10, there exists c > 0 such that

|(p+(x, k) − p−(x, k))−

(− 1

i k
· ρ(x) · (q

′(x) + i γ′(x)) − 2 · (1 + q(x) + i γ(x) − α2) · ρ′(x)
2 · ρ2(x) · (1 + q(x) + i γ(x) − α2)

)| ≤ c

|k|2
(208)

for all (x, k) ∈ R × C+. Denoting by Υ the upper half circle of radius A, with clockwise
orientation, in the complex k-plane, i.e.,

Υ = {k|k ∈ C+, |k| = A}, (209)

and noting that p+ − p− is an analytical function of k ∈ C+, we obtain
∫ A

−A

(p+(x, k) − p−(x, k)) dk =

∫

Υ

(p+(x, k) − p−(x, k)) dk. (210)

Substituting (208) into (210), we have

2

π
(1 + q(x) + i γ(x) − α2) ρ2(x) ·

∫ A

−A

(p+(x, k) − p−(x, k)) dk =

ρ(x) · (q′(x) + i γ′(x)) − 2 · ρ′(x) · (1 + q(x) + i γ(x) − α2) +O(k−1) (211)

from which (206) follows immediately. In order to prove (207), we rewrite (206) as

ρ(x) · (q′(x) + i γ′(x)) − 2 · ρ′(x) · (1 + q(x) + i γ(x) − α2) =

2

π
(1 + q(x) + i γ(x) − α2) ρ2(x) ·

∫ a

−a

(p+(x, k) − p−(x, k)) dk + I(a) (212)

with I(a) given by the formula

I(a) =
2

π
(1 + q(x) + i γ(x) − α2) ρ2(x) ·

(
∫ −a

−∞
+

∫ ∞

a

)

(p+(x, k) − p−(x, k)) dk. (213)

Due to the symmetry of the integrals in (213), we have

I(a) =
2

π
(1 + q(x) + i γ(x) − α2) ρ2(x) ·

(
∫ −a

−∞
+

∫ ∞

a

)

(p+(x,−k) − p−(x, k)) dk, (214)

and using (200), we obtain a constant c such that

|I(a)| ≤ c

a(m−1)
, (215)

from which (207) follows immediately. �
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Remark 3.4 As there are two unknowns in (206), (view q(x) + i γ(x) as one complex un-
known, ρ(x) as the other), at least two α’s are needed in order to solve ρ′, q′, r′ in (206). In
particular, we obtain the trace formulae

ρ′(x) =
Re(F (α1)) − Re(F (α2))

2 (α2
1 − α2

2)
(216)

q′(x) =
1

ρ(x) (α2
1 − α2

2)

(

Re(F (α1)) (1 + q(x) − α2
2) − Re(F (α2)) (1 + q(x) − α2

1)
)

(217)

γ′(x) =
Im(F (α1)) · (α2

1 − α2
2) + γ(x) · (Re(F (α1)) − Re(F (α2)))

ρ(x) (α2
1 − α2

2)
(218)

with

F (α) =
2

π
(1 + q(x) + i γ(x) − α2) ρ2(x)

∫ a

−a

(p+(x, k) − p−(x, k)) dk, (219)

for the case of two α’s. Multiple (more than two) choices of α’s would lead to an overdeter-
mined complex linear system, and thus can be used to control the effects of noise.

4 The Algorithm

This section describes the algorithm of the present paper and gives details about its imple-
mentation and computational costs.

4.1 Description of the Algorithm

In this section, we describe a reconstruction algorithm for the scalar Helmholtz equation in
layered acoustic media

φ′′
±(x, k) − ρ′(x)

ρ(x)
· φ′

±(x, k) + k2 · (1 + q(x) + i · γ(x) − α2) · φ±(x, k) = 0, (220)

subject to the initial conditions

φ+(x, k) = ei k
√

1+q2+i γ2−α2 x for all x ≥ 1, (221)

φ−(x, k) = e−i k
√

1+q1+i γ1−α2 x for all x ≤ 0. (222)

In (220) – (222), x is a real number, k is a complex number in the upper half plane, α is the
sine of the angle of incidence with respect to the normal to the interface of layers, φ+ and
φ− are the scalar fields associated with right-going and left-going waves, respectively; the
parameters to be recovered in this algorithm are the density ρ, potential q, and attenuation
γ of the layered media. We assume ρ, q, γ ∈ cm0 ([0, 1]), i.e., ρ, q, γ have m continuous
derivatives everywhere, and are defined by equations (6) – (11).

As discussed in Sections 2 and 3, in order to reconstruct parameters ρ, q, γ, we consider
a system of integro-differential equations

p′+(x, k) = −i k ρ(x) ·
(

p2
+(x, k) − 1 + q(x) + i γ(x) − α2

ρ2(x)

)

(223)
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p′−(x, k) = i k ρ(x) ·
(

p2
−(x, k) − 1 + q(x) + i γ(x) − α2

ρ2(x)

)

(224)

ρ′(x) =
Re(F (α1)) − Re(F (α2))

2 (α2
1 − α2

2)
(225)

q′(x) =
1

ρ(x) (α2
1 − α2

2)

(

Re(F (α1)) (1 + q(x) − α2
2) − Re(F (α2)) (1 + q(x) − α2

1)
)

(226)

γ′(x) =
Im(F (α1)) · (α2

1 − α2
2) + γ(x) · (Re(F (α1)) − Re(F (α2)))

ρ(x) (α2
1 − α2

2)
(227)

with

F (α) =
2

π
(1 + q(x) + i γ(x) − α2) ρ2(x)

∫ a

−a

(p+(x, k) − p−(x, k)) dk, (228)

subject to the initial conditions
p+(0, k) = p0(k) (229)

p−(0, k) =

√

1 + q1 + i γ1 − α2

ρ1
, (230)

ρ(0) = ρ1, (231)

q(0) = q1, (232)

γ(0) = γ1. (233)

In (223), (224), the impedance functions p+, p− : (R,C+) → C are defined by the formulae

p+(x, k) =
φ′

+(x, k)

i k ρ(x)φ+(x, k)
, (234)

p−(x, k) =
φ′
−(x, k)

−i k ρ(x)φ−(x, k)
. (235)

(223) and (224) are Riccati equations obtained directly from the Helmholtz equation (220)
and the definitions of impedance functions (234), (235); equations (225), (226), (227) are
known as trace formulae, connecting the Fourier components of the solutions of the Helmholtz
equation to the parameters of the scattering objects to be recovered.

Our reconstruction algorithm for the inverse scattering problem in layered acoustic media
amounts to solving numerically a self-contained set of ODEs, i.e., (223) – (227), subject to
the initial conditions (229) – (233). In this paper, the ODE solver from [8] is used.

As we shall see in Section 5, for sufficiently large a, the system of ODEs (223) - (227) has a
unique solution for all x ∈ [0, 1], and this solution is stable with respect to small perturbations
of the initial data p0(k). The inversion algorithm is (m− 1)th-order convergent for all three
parameters ρ, q, γ to be recovered, where m is the smoothness of ρ, q, and γ.
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4.2 Implementation

In implementing the algorithm stated above, the integral

∫ a

−a

(p+(x, k) − p−(x, k)) dk (236)

in (228) is approximated by the trapezoidal rule Tn, i.e.,

Tn(p+(x, k) − p−(x, k)) = h

M−1
∑

j=−M+1

(p+(x, kj) − p−(x, kj))

+
h

2
((p+(x,−a) − p−(x,−a)) + (p+(x, a) − p−(x,−))), (237)

with h = a/M , kj = j h, j = −M, ...,M . Thus, the system of integro-differential equations
(223) – (227) subject to initial conditions (229) – (233) is converted into a system of 8M +7
ODEs

p′+(x, kj) = −i kj ρ(x) ·
(

p2
+(x, kj) −

1 + q(x) + i γ(x) − α2

ρ2(x)

)

(238)

p′−(x, kj) = i kj ρ(x) ·
(

p2
−(x, kj) −

1 + q(x) + i γ(x) − α2

ρ2(x)

)

(239)

ρ′(x) =
Re(F (α1)) − Re(F (α2))

2 (α2
1 − α2

2)
(240)

q′(x) =
1

ρ(x) (α2
1 − α2

2)

(

Re(F (α1)) (1 + q(x) − α2
2) − Re(F (α2)) (1 + q(x) − α2

1)
)

(241)

γ′(x) =
Im(F (α1)) · (α2

1 − α2
2) + γ(x) · (Re(F (α1)) − Re(F (α2)))

ρ(x) (α2
1 − α2

2)
(242)

with

F (α) =
2

π
(1 + q(x) + i γ(x) − α2) ρ2(x) · T2M+1(p+(x, k) − p−(x, k)), (243)

and subject to the initial conditions

p+(0, kj) = p0(kj) (244)

p−(0, kj) =

√

1 + q1 + i γ1 − α2

ρ1
, (245)

ρ(0) = ρ1, (246)

q(0) = q1, (247)

γ(0) = γ1. (248)
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Remark 4.1 In all the numerical examples in Section 5, the values of the initial impedance
functions p0(kj), j = −M, ...,M , required for the reconstruction scheme, are provided by
solving forward scattering problems, namely, 4M + 1 independent ODEs

φ′′(x, kj) −
ρ′(x)

ρ(x)
· φ′(x, kj) + k2

j · (1 + q(x) + i · γ(x) − α2) · φ(x, kj) = 0, (249)

subject to the boundary conditions

φ+(x, kj) = ei kj

√
1+q2+i γ2−α2 x for all x ≥ 1, (250)

for kj = j · a
M

, j = −M, ...,M and α = α1, α2. Again, we used the ODE solver in [8].

Remark 4.2 Due to Observation 2.3, for all x, k ∈ R,

p+(x, k) = p+(x,−k), (251)

p−(x, k) = p−(x,−k), (252)

thus, the integral
∫ a

−a
(p+(x, k) − p−(x, k)) dk in (228) is equal to

2 ·
∫ a

0

Re(p+(x, k) − p−(x, k)) dk. (253)

Therefore, the dimensions of the system of ODEs we consider (see equations (238) – (242) )
is reduced to 4M + 7 from 8M + 7.

Remark 4.3 According to Lemma 3.2 and Remark 3.1, impedance functions p+(x, k),
p−(x, k) are continuous in the vicinity of k = 0. This allowed us to use Lagrange inter-
polation to get the values of p+(x, k), p−(x, k) at k = 0.

4.3 Complexity Analysis

The time cost of the inverse scheme is of the order O(Nk · Nz), where Nk is the number of
measurements in the frequency domain, and Nz is the number of nodes in the space domain,
since the computational cost for the ODE solver we use is proportional to the dimension
of the ODE system (Nk in our case) and the number of discretization points in the space
domain (Nz).

Further, the storage requirements of the algorithm are also determined by Nk and Nz,
and is of the form

S = O(K ·Nk) +O(Nz), (254)

where K is a constant determined by the precision required by the ODE solver in [8]. For
single precision, K = 22; for double precision, K = 60.
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5 Numerical Examples

The algorithm of Section 4 has been implemented in Fortran 77 in double precision. In this
section, we illustrate the performance of the scheme as applied to several different classes of
scattering objects, from Gaussian to discontinuous staircase-shaped ones. The experiments
were carried out on a 2.8GHz Pentium D desktop with 2 Gb of RAM and an L2 cache
of 1 Mb. The calculations reported in Examples 1 and 2 were carried out with a requested
accuracy of 10−16 in the ODE solver; the calculations reported in Examples 3 - 7 were carried
out with a requested accuracy of 10−7.

In Examples 1 - 3, the scatterers satisfy the smoothness conditions of Theorem 3.3. In
Examples 4 - 4.4, the scatterers violate the smoothness conditions mildly, as the scatterers
are continuous but their derivatives are not continuous. In Examples 5 - 6, the scatterers
strongly violate the smoothness conditions, as those scatterers are discontinuous. In Example
7, we performed a crude test of stability of the algorithm by truncating the input scattering
data p+(−1, k) and using it in the reconstruction algorithm. The headings of the Tables are
defined as follows:

a is the largest frequency used in the algorithm;
hk is the step size in the discretization of frequency;
Nx is the number of discretization points in [−1, 1];
E2

ρ , E
2
q , E

2
γ are the relative L2 norms of error of ρ, q, γ;

E∞
ρ , E∞

q , E∞
γ are the relative maximum norms of error of ρ, q, γ;

tCPU is the CPU time required in seconds.
Example 1 : In this example, we reconstruct scattering parameters ρ, q, and γ of the

Gaussian distribution given by the formulae

ρ(x) = 1000 + 500 · e−40 x2

, (255)

q(x) = e−40 x2

, (256)

γ(x) = 0.01 + 0.01 · e−40 x2

. (257)

This is an example of scatterer whose ρ, q, and γ are in C∞
0 in the interval [−1, 1] up to

double precision. Tables 1 and 2 illustrate the numerical behavior of the reconstruction
algorithm, and Figure 1 contains graphs of the exact and the recovered ρ, q, γ ∈ C∞

0 (they
are almost indistinguishable in the graph) and the input impedance function p+(−1, k). In
this example, the algorithm converges extremely rapidly as we would expect.

Example 2 : In this example, we reconstruct a more complicated scattering object given
by the formulae

ρ(x) = 1000 + 1000 · e−40 x2 · cos(30 x) · e
5 x − e−5 x

e5 x + e−5 x
, (258)

q(x) = e−40 x2 · cos(20 x) · e
5 x − e−5 x

e5 x + e−5 x
, (259)

γ(x) = 0.01 + 0.004 · e−40 x2 · sin(10 x) · e
5 x − e−5 x

e5 x + e−5 x
. (260)
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Figure 1: Reconstruction of Example 1 with a = 50
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Figure 2: Reconstruction of Example 2 with a = 100

This is another example of a smooth scatterer in the interval of [-1,1], i.e., ρ, q, γ, ∈
C∞

0 [−1, 1]. Tables 3 and 4 illustrate the numerical behavior of the algorithm; graphs con-
taining the exact and the reconstructed ρ, q, γ as well as the input impedance functions
p+(−1, k) are included in Figure 2. The algorithm also yields superalgebraic convergence,
although not as fast as that of Example 1 due to the highly oscillating character of the
scatterer and the impedance functions, as can be seen in Figure 2.
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Table 1: CPU time and accuracies for Example 1
a hk Nx E2

ρ E2
q E2

γ tCPU

25 0.2 250 3.19E-05 6.95E-05 4.45E-05 3.5E+00
50 0.2 250 9.96E-06 2.05E-05 1.13E-05 7.0E+00
50 0.1 500 7.20E-09 1.48E-08 8.73E-09 1.9E+01
50 0.05 1000 7.13E-09 1.47E-08 8.60E-09 5.8E+01
100 0.2 500 9.54E-10 2.00E-09 1.28E-09 1.8E+01
100 0.1 1000 1.56E-12 3.22E-12 3.23E-12 5.9E+01
100 0.05 2000 4.21E-12 9.08E-12 9.08E-12 2.3E+02

Table 2: CPU time and accuracies for Example 1
a hk Nx E∞

ρ E∞
q E∞

γ tCPU

25 0.2 250 9.48E-05 1.83E-04 1.26E-04 3.5E+00
50 0.2 250 3.03E-05 5.56E-05 3.90E-05 7.0E+00
50 0.1 500 1.87E-08 3.50E-08 2.05E-08 1.9E+01
50 0.05 1000 1.87E-08 3.50E-08 2.03E-08 5.8E+01
100 0.2 500 3.46E-09 6.43E-09 4.52E-09 1.8E+01
100 0.1 1000 3.74E-12 7.28E-12 7.28E-12 5.9E+01
100 0.05 2000 9.58E-12 1.82E-11 1.82E-11 2.3E+02

Table 3: CPU time and accuracies for Example 2
a hk Nx E2

ρ E2
q E2

γ tCPU

50 0.05 1000 1.08E-02 2.68E-02 2.66E-03 5.9E+01
100 0.1 1000 5.66E-04 2.25E-03 2.04E-03 6.0E+01
100 0.05 1000 3.79E-05 9.86E-05 3.70E-05 1.4E+02
100 0.025 2000 3.91E-05 1.05E-04 4.02E-05 5.0E+02
200 0.1 2000 3.65E-04 1.45E-03 1.32E-03 2.3E+02
200 0.05 2000 3.32E-08 1.28E-07 8.83E-08 5.0E+02
200 0.05 4000 3.14E-08 1.21E-07 8.08E-08 9.0E+02

Table 4: CPU time and accuracies for Example 2
a hk Nx E∞

ρ E∞
q E∞

γ tCPU

50 0.05 1000 2.30E-02 1.03E-01 1.22E-02 5.9E+01
100 0.1 1000 1.62E-03 1.05E-02 8.04E-03 6.0E+01
100 0.05 1000 9.99E-05 4.14E-04 1.57E-04 1.4E+02
100 0.025 2000 1.06E-04 4.55E-04 1.71E-04 5.0E+02
200 0.1 2000 1.04E-03 6.83E-03 5.23E-03 2.3E+02
200 0.05 2000 9.83E-08 5.99E-07 3.55E-07 5.0E+02
200 0.05 4000 9.28E-08 5.62E-07 3.26E-07 9.0E+02
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Example 3 : In this example, we reconstruct a scatterer defined by the formulae

t = (x+ 1) · π (261)

ρ(x) = 1000 + 100 ·
(

(1 − cos(4t)) − 22

25
(1 − cos(5t)) +

6

49
(1 − cos(7t))

)

, (262)

q(x) = 0.4 ·
(

(1 − cos(3t)) − 1215

2783
(1 − cos(11t)) +

7

23
(1 − cos(12t))

)

, (263)

γ(x) = 0.01 + 0.003 ·
(

(1 − cos(2t)) − 16

21
(1 − cos(3t)) +

5

28
(1 − cos(4t))

)

. (264)

The scatterer is a c50-function in R with support in the interval [−1, 1]. The performance of
the algorithm is demonstrated in Tables 5, 6 and Figures 3, 4. As we can see from those
tables, the convergence of the algorithm is actually better than our prediction of 4th-order
convergence.
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Figure 3: Reconstruction of Example 3 with a = 50
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Figure 4: Reconstruction of Example 3 with a = 100
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Table 5: CPU time and accuracies for Example 3
a hk Nx E2

ρ E2
q E2

γ tCPU

25 0.025 1000 7.95E-02 2.58E-01 6.78E-02 1.7E+01
50 0.025 1000 1.86E-02 6.57E-02 1.84E-02 4.1E+01
100 0.025 4000 1.87E-04 4.72E-04 3.34E-04 3.5E+02
200 0.0125 8000 8.50E-07 2.55E-06 9.45E-07 2.7E+03

Table 6: CPU time and accuracies for Example 3
a hk Nx E∞

ρ E∞
q E∞

γ tCPU

25 0.025 1000 2.44E-01 1.24E+00 4.40E-01 1.7E+01
50 0.025 1000 5.24E-02 2.20E-01 1.05E-01 4.1E+01
100 0.025 4000 5.18E-04 1.56E-03 1.12E-03 3.5E+02
200 0.0125 8000 2.12E-06 7.46E-06 3.86E-06 2.7E+03
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Example 4 : In this example, we construct a scatterer with discontinuous derivatives
supported on [−1, 1], defined by the formulae

ρ(x) = 1000 + 500 · sin(7x), (265)

q(x) = 0.2 · cos(30 x) · e
3 x − e−3 x

e3 x + e−3 x
, (266)

γ(x) = 0.01 + 0.004 · cos(20 x) · e
11 x − e−11 x

e11 x + e−11 x
. (267)

Tables 7 and 8 illustrate the numerical behavior of the algorithm; Figure 5 demonstrate
the exact and the reconstructed ρ, q, γ, and the input impedance function p+(−1, k). The
algorithm is not convergent in this case, although the input impedance function p+(−1, k)
behaves properly. Further investigations (see Figure 6) show that, as we move with the ODE
solver towards the right boundary of the scattering structure, both the impedance function
p+(x, k) and the integrand p+(x, k)− p−(x, k) in the trace formulae (206) become extremely
oscillatory and blow up as k increases. This phenomena is closely related to the interaction
between non-smooth behavior of ρ, q and the accumulated effect of attenuation. Example
4.1 and Example 4.2 explore this phenomenon in more detail..

Example 4.1 : This example uses the same ρ and q as in Example 4, but with zero
attenuation; thus we have

ρ(x) = 1000 + 500 · sin(7x), (268)

q(x) = 0.2 · cos(30 x) · e
3 x − e−3 x

e3 x + e−3 x
, (269)

γ(x) = 0. (270)

Table 9 illustrates the numerical behavior of the reconstruction algorithm, and Figure 7 con-
tains graphs of the exact and the recovered ρ, q. The algorithm exhibits linear convergence.
Unlike Example 4, the integrand p+(x, k)− p−(x, k) in the trace formulae (206), and thus in
the ODE system, is not increasing with k as the wave travels through the scattering object
(see Figure 8).

Example 4.2 : This example uses the same ρ and q as in Example 4 and the same γ as
in Example 3 (c50-function); thus we have

t = (x+ 1) · π (271)

ρ(x) = 1000 + 500 · sin(7x), (272)

q(x) = 0.2 · cos(30 x) · e
3 x − e−3 x

e3 x + e−3 x
, (273)

γ(x) = 0.01 + 0.003 ·
(

(1 − cos(2t)) − 16

21
(1 − cos(3t)) +

5

28
(1 − cos(4t))

)

. (274)

Tables 10, 11 illustrate the numerical behavior of the reconstruction algorithm.
Example 4.3: This example uses the same q and γ as in Example 4, but with a constant

ρ; thus we have
ρ(x) = 1000, (275)
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Table 7: CPU time and accuracies for Example 4
a hk Nx E2

ρ E2
q E2

γ tCPU

25 0.025 1000 1.74E-02 4.10E-02 1.73E-01 1.7E+01
50 0.025 1000 3.22E-02 1.88E-01 1.66E-01 4.0E+01
100 0.025 2000 2.11E-02 1.30E-01 8.29E-02 1.7E+02
200 0.025 4000 1.71E-02 1.13E-01 1.62E-01 6.7E+02

Table 8: CPU time and accuracies for Example 4
a hk Nx E∞

ρ E∞
q E∞

γ tCPU

25 0.025 1000 4.97E-02 1.04E-01 4.89E-01 1.7E+01
50 0.025 1000 1.27E-01 7.17E-01 6.67E-01 4.0E+01
100 0.025 2000 7.74E-02 4.58E-01 3.40E-01 1.7E+02
200 0.025 4000 8.94E-02 5.44E-01 7.49E-01 6.7E+02

Table 9: CPU time and accuracies for Example 4.1
a hk Nx E2

ρ E2
q E∞

ρ E∞
q tCPU

25 0.025 1000 1.92E-02 6.32E-02 5.43E-02 1.81E-01 8.2E+00
50 0.025 1000 3.15E-02 1.85E-01 1.22E-01 6.91E-01 1.7E+01
100 0.025 2000 1.54E-02 9.59E-02 5.87E-02 3.20E-01 8.0E+01
200 0.05 2000 5.98E-03 3.68E-02 2.35E-02 1.17E-01 8.0E+01
400 0.05 4000 3.33E-03 2.06E-02 1.31E-02 6.90E-02 3.5E+02
800 0.05 4000 1.97E-03 1.22E-02 7.70E-03 4.15E-02 7.0E+02

Table 10: CPU time and accuracies for Example 4.2
a hk Nx E2

ρ E2
q E2

γ tCPU

25 0.025 1000 1.74E-02 3.98E-02 1.19E-02 1.7E+01
50 0.025 2000 3.26E-02 1.90E-01 3.68E-02 8.1E+01
100 0.025 2000 2.34E-02 1.43E-01 4.01E-02 1.7E+02
200 0.05 4000 3.86E-02 2.44E-01 1.83E-01 3.5E+02

Table 11: CPU time and accuracies for Example 4.2
a hk Nx E∞

ρ E∞
q E∞

γ tCPU

25 0.025 1000 4.93E-02 1.03E-01 5.33E-02 1.7E+01
50 0.025 2000 1.28E-01 7.25E-01 1.01E-01 8.1E+01
100 0.025 2000 8.46E-02 5.14E-01 9.85E-02 1.7E+02
200 0.05 4000 2.50E-01 1.63E+00 9.21E-01 3.5E+02
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Figure 5: Reconstruction of Example 4 with a = 100
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Figure 6: Reconstruction of Example 4 with a = 200
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Figure 7: Reconstruction of Example 4.1 with a = 200

q(x) = 0.2 · cos(30 x) · e
3 x − e−3 x

e3 x + e−3 x
, (276)

γ(x) = 0.01 + 0.004 · cos(20 x) · e
11 x − e−11 x

e11 x + e−11 x
. (277)

Table 12 illustrates the numerical behavior of the reconstruction algorithm. Figure 9 contains
the exact and the reconstructed q and γ, and the input impedance function p+(−1, k). Linear
convergence is observed for both q and γ.

Example 4.4: This example uses the same discontinuous γ as in Example 4, but with
constant ρ, q; thus we have

ρ(x) = 1000, (278)

q(x) = 0, (279)

γ(x) = 0.01 + 0.004 · cos(20 x) · e
11 x − e−11 x

e11 x + e−11 x
. (280)

Table 13 illustrates the linear convergence of the reconstruction algorithm, as we can expect
given Example 4.3. Figure 10 contains the exact and the reconstructed γ, and the input
impedance function p+(−1, k).
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Figure 8: Reconstruction of Example 4.1 with a = 200
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Table 12: CPU time and accuracies for Example 4.3
a hk Nx E2

q E2
γ E∞

q E∞
γ tCPU

25 0.05 1000 7.73E-02 1.35E-01 2.06E-01 4.67E-01 8.1E+00
50 0.1 1000 4.46E-02 1.20E-01 1.24E-01 4.63E-01 8.5E+00
100 0.1 2000 2.22E-02 7.67E-02 6.61E-02 3.41E-01 3.3E+01
200 0.1 4000 1.15E-02 1.74E-02 3.53E-02 6.12E-02 1.6E+02

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

-1 -0.5  0  0.5  1
(9.1) Reconstruction of 1 + q

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

-1 -0.5  0  0.5  1
(9.2) Reconstruction of γ

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0  20  40  60  80  100 120 140 160 180 200
(9.3) Real Part of p+(−1, k)

Figure 9: Reconstruction of Example 4.3 with a = 200
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Table 13: CPU time and accuracies for Example 4.4
a hk Nx E2

γ E∞
γ tCPU

25 0.05 1000 4.71E-02 1.08E-01 8.1E+00
50 0.1 1000 2.26E-01 4.51E-02 8.0E+00
100 0.2 2000 1.11E-02 2.06E-02 8.2E+01
200 0.2 8000 5.74E-03 1.02E-02 6.7E+02
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Figure 10: Reconstruction of Example 4.4 with a = 200
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Example 5 : In this example, we reconstruct a scatterer defined by the formulae

ρ(x) =







1000 x ∈ (−∞,−0.5]
1200 x ∈ (−0.5, 0.5]
1000 x ∈ (0.5,∞)

(281)

q(x) =







0 x ∈ (−∞,−0.5]
0.4 x ∈ (−0.5, 0.5]
0 x ∈ (0.5,∞)

(282)

γ(x) =







0.010 x ∈ (−∞,−0.5]
0.015 x ∈ (−0.5, 0.5]
0.010 x ∈ (0.5,∞)

. (283)

In this example, ρ, q, γ are discontinuous. Tables 14, 15 illustrates the numerical behavior of
the reconstruction algorithm, and Figure 11 contains graphs of the exact and the recovered
ρ, q, γ and the input impedance function p+(−1, k). The algorithm does not converge as
we can expect from Example 4; The integrand p+(x, k) − p−(x, k) is highly oscillatory and
blows up as k increase for all x ∈ R (see Figure 12).

Example 5.1 In this example, we reconstruct a scatterer whose attenuation γ is discon-
tinuous and density ρ, potential q are constant, given by the formulae

ρ(x) = 1000, (284)

q(x) = 0, (285)

γ(x) =







0.010 x ∈ (−∞,−0.5]
0.015 x ∈ (−0.5, 0.5]
0.010 x ∈ (0.5,∞)

. (286)

The numerical results are demonstrated in Table 16; the exact and the reconstructed γ, as
well as the input impedance function p+(−1, k) are contained in Figure 13. The convergence
of the algorithm is of the order O( 1√

a
), where a is the largest frequency in the reconstruction

algorithm. The convergence of the algorithm for discontinuous γ is quite similar to that of
discontinuous ρ, as reported in [3].
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Table 14: CPU time and accuracies for Example 5
a hk Nx E2

ρ E2
q E2

γ tCPU

25 0.05 500 1.18E-02 2.58E-02 3.08E-02 4.2E+00
50 0.05 1000 7.94E-03 2.02E-02 2.27E-02 1.7E+01
100 0.025 4000 1.36E-02 2.92E-02 2.78E-02 1.7E+02
200 0.025 8000 1.28E-02 2.76E-02 2.53E-02 1.3E+03

Table 15: CPU time and accuracies for Example 5
a hk Nx E∞

ρ E∞
q E∞

γ tCPU

25 0.05 500 7.75E-02 1.91E-01 2.39E-01 4.2E+00
50 0.05 1000 6.43E-02 1.78E-01 2.13E-01 1.7E+01
100 0.025 4000 1.25E-01 3.52E-01 4.93E-01 1.7E+02
200 0.025 8000 1.14E-01 3.44E-01 4.77E-01 1.3E+03

Table 16: CPU time and accuracies for Example 5.1
a hk Nx E2

γ E∞
γ tCPU

25 0.05 1000 3.13E-02 2.36E-01 8.3E+00
50 0.1 1000 2.20E-02 2.37E-01 8.7E+00
100 0.2 1000 1.56E-02 2.35E-01 8.5E+00
200 0.2 4000 1.27E-02 2.26E-01 6.9E+01
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Figure 11: Reconstruction of Example 5 with a = 50
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Figure 12: Reconstruction of Example 5 with a = 100
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Figure 13: Reconstruction of Example 5.1 with a = 200
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Example 6 : Here, we reconstruct a staircase-shaped scatterer defined by the formulae

ρ(x) =































1050 x ∈ (−∞,−0.8]
1150 x ∈ (−0.8,−0.4]
1250 x ∈ (−0.4, 0.0]
1350 x ∈ (0.0, 0.4]
1300 x ∈ (0.4, 0.8]
1200 x ∈ (0.8,∞)

(287)

q(x) =































0 x ∈ (−∞,−0.8]
0.1 x ∈ (−0.8,−0.6]
0.2 x ∈ (−0.6,−0.2]
0.3 x ∈ (−0.2, 0.2]
0.2 x ∈ (0.2, 0.8]
0 x ∈ (0.8,∞)

(288)

γ(x) =







































0.01 x ∈ (−∞,−0.8]
0.012 x ∈ (−0.8,−0.6]
0.01 x ∈ (−0.6,−0.2]
0.008 x ∈ (−0.2, 0.2]
0.007 x ∈ (0.2, 0.6]
0.008 x ∈ (0.6, 0.8]
0.009 x ∈ (0.8,∞)

. (289)

The example is similar to the preceding one, but the shape of the scatterer is more compli-
cated. The numerical results are shown in Table 17, 18 and Figures 14, 15, 16, and 17. The
algorithm does not converge in this situation.
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Figure 14: Reconstruction of Example 6 with a = 25
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Figure 15: Reconstruction of Example 6 with a = 100
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Figure 16: Reconstruction of Example 6 with a = 200
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Figure 17: Reconstruction of Example 6 with a = 200
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Table 17: CPU time and accuracies for Example 6
a hk Nx E2

ρ E2
q E2

γ tCPU

25 0.05 500 1.81E-02 3.77E-02 2.83E-02 4.2E+00
50 0.05 1000 2.55E-02 5.50E-02 2.25E-02 1.8E+01
100 0.1 1000 2.10E-02 4.53E-02 2.39E-02 1.8E+01
200 0.05 4000 3.77E-02 7.85E-02 5.06E-02 3.5E+02

Table 18: CPU time and accuracies for Example 6
a hk Nx E∞

ρ E∞
q E∞

γ tCPU

25 0.05 500 4.99E-02 1.05E-01 1.79E-01 4.2E+00
50 0.05 1000 5.69E-02 1.23E-01 1.49E-01 1.8E+01
100 0.1 1000 7.22E-02 1.78E-01 1.95E-01 1.8E+01
200 0.05 4000 2.72E-01 6.57E-01 2.71E-01 3.5E+02
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Figure 18: Reconstruction of Example 1 with D=3

Example 7. In this example, we investigate the sensitivity of the reconstruction to per-
turbations of the initial data. We perturb the initial data for the algorithm by truncating it
after a specified number D of decimal digits (both the real and the imaginary parts). Thus,
the maximum relative error is of the order 10D−1, e.g., when the number 1.999 is truncated
after D = 2 digits, the result is 1.9.

Tables 19, 20 demonstrates the numerical results of the reconstruction of Example 1 with
various truncations of the input data. In each case, a, hk, Nx is chosen properly so that
the error caused by the inaccuracy of the input data is much larger than that caused by the
insufficient a, hk or Nx. Figures 18, 19, 20, 21 demonstrate the exact and the reconstructed
ρ, q and γ for different orders of perturbations.
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Table 19: Accuracies for Example 1 with Truncated Data
D a hk Nx E2

ρ E2
q E2

γ

3 50 0.0125 4000 1.52E-01 3.72E-01 3.65E-01
3 100 0.0125 8000 1.47E-01 3.57E-01 3.50E-01
4 50 0.025 2000 4.97E-02 9.52E-02 9.47E-02
4 100 0.025 4000 4.99E-02 9.53E-02 9.48E-02
5 50 0.025 2000 1.00E-02 2.07E-02 2.08E-02
5 100 0.025 4000 1.01E-02 2.07E-02 2.09E-02
6 50 0.00625 8000 5.92E-04 1.20E-03 1.19E-03
6 100 0.00625 16000 5.94E-04 1.20E-03 1.20E-03

Table 20: Accuracies for Example 1 with Truncated Data
D a hk Nx E∞

ρ E∞
q E∞

γ

3 50 0.0125 4000 8.22E-01 2.32E+00 2.31E+00
3 100 0.0125 8000 5.09E-01 1.27E+00 1.27E+00
4 50 0.025 2000 1.16E-01 2.29E+00 2.28E+00
4 100 0.025 4000 1.37E-01 2.56E+00 2.57E+00
5 50 0.025 2000 2.02E-02 3.97E-02 4.00E-02
5 100 0.025 4000 2.09E-02 4.23E-02 4.23E-02
6 50 0.00625 8000 1.56E-03 2.91E-03 2.90E-03
6 100 0.00625 16000 1.60E-03 3.01E-03 2.99E-03
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Figure 19: Reconstruction of Example 1 with D=4
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Figure 20: Reconstruction of Example 1 with D=5
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Figure 21: Reconstruction of Example 1 with D=6
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The following observations can be made from the tables above, and from a wide range of
numerical tests performed by us.

1. For scatterers satisfying the conditions of Theorem 3.3 (Example 1, 2, 3), the numerical
algorithm of Section 4 displays convergence of order m − 1, where m is the smoothness of
the scatterer; the CPU time required is proportional to Nk · Nx, where Nk and Nx are the
numbers of discretization points in frequency and space domain, respectively.

2. For general scatterers violating the conditions of Theorem 3.3 mildly, the algorithm
does not converge. However, the algorithm exhibits linear convergence (see Example 4.1,
4.3, 4.4) for the following two particular categories of scatterers violating the conditions of
Theorem 3.3 mildly,

A. ρ, q are continuous but their derivatives are not, and γ is absent
B. q, γ are continuous but their derivatives are not, and ρ is a constant.
3. When the scatterer is discontinuous (Example 5, 5.1, 6), the algorithm produces

results demonstrated in Figures 11 - 17. The oscillatory behavior near the discontinuities
is the well-known Gibbs phenomenon. In general, the algorithm is not convergent for such
scatterers. However, for scatterers of the following categories

A. q is discontinuous, ρ is a constant, γ is absent,
B. γ is discontinuous, ρ and q are constants,
the convergence of the algorithm is of the order O( 1√

a
), where a is the largest frequency.

4. When the initial data is perturbed (Example 7), the error of the reconstruction is
proportional to the magnitude of the perturbation, and the proportion coefficient is 1.

6 Conclusions

In this paper, we construct numerical algorithms for the solution of inverse scattering prob-
lems in layered acoustic media in three dimensions. The speed c of propagation of sound, the
density ρ, and the attenuation γ are the three parameters reconstructed by the algorithm.
The computational complexity of the algorithm is O(Nk ·Nx), where Nk, Nx are the number
of discretization points in the frequency and space domains, respectively.

The inverse scattering schemes we construct can be viewed as an extension of [3], and are
based on a collection of trace formulae, which connect the Fourier components of the solutions
of the Helmholtz equation to the parameters being recovered. Under the assumption of mild
attenuation and a smoothly varying medium, our inverse scattering algorithms require only
a few measurements, in the sense that given a medium whose parameters c, ρ, and γ have
m ≥ 1 continuous derivatives, and data measured for all frequencies ω in the interval [−a, a],
the error of the reconstruction decays as 1/am−1 as a → ∞. In this respect, our algorithm
is similar to the Fourier transform.

Acknowledgments. The authors would like to thank M. Tygert for constructive dis-
cussions.

63



References

[1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Applied Math.
Series (National Bureau of Standards), Washington, DC, 1964.

[2] Y. Chen, Inverse Scattering via Heisenberg’s Uncertainty Principle, Inverse Problems.
Vol. 13, No.2, pp. 253-282, 1997.

[3] Y. Chen, V. Rokhlin, On the Inverse Scattering Problem for the Helmholtz Equation in
One Dimension, Inverse Problems. Vol. 8, pp. 365-391, 1992.

[4] E. A. Coddington, N. Levinson Theory of Ordinary Differential Equations, McGraw
Hill, New York, 1955.

[5] D. L. Colton, M. Piana, R. Potthast, A Simple Method Using Morozov’s Discrepancy
Principle for Solving Inverse Scattering Problems, Inverse Problems. Vol. 13, pp. 1477-
1493, 1997.

[6] R. Duan, V. Rokhlin, On the inverse scattering problem in the acoustic environment,
Technical Report, YALEU/DCS/TR-1395, 2008.

[7] I. W. Gel’fand, B. M. Levitan, On the determination of a differential equation by its
spectra function, Dokl. Akad. Nauk. USSR Vol. 77, pp. 557-560, 1951.

[8] A. Glaser, V. Rokhlin, A new class of highly accurate solvers for ordinary differntial
equations, Technical Report, YALEU/DCS/TR-1382, 2007.

[9] M. Kaveh, M. Soumekh, Computer-assisted Diffraction Tomography, Image Recovery:
Theory and Application. pp. 369-413, 1987.

[10] J. H. Lin, W. C. Chew, Solution of the three-dimensional electromagnetic inverse prob-
lem by the local shape function and the conjugate gradient fast Fourier transform meth-
ods, Journal of the Optical Society of America. Vol. 14, pp. 3037-3045, 1997.

[11] D. C. Stickler, Application of the Trace Formula Methods to Inverse Scattering for Some
Geophysical Problems, Inverse Problems. Vol. 44, pp. 1218-1225, 1984.

[12] J. Stoer, R. Bulirsch Introduction to Numerical Analysis, Springer, Berlin, 1984.

[13] W. W. Symes, J. J. Carazzone, Velocity Inversion by Differential Semblance Optimiza-
tion, Geophysics, Vol. 56, pp. 654-663, 1991.

64


