©Copyright by Faisal Saied, 1950.
ALL RIGHTS RESERVED

A dissertation presented to the faculty of the Graduate School of Yale University in
candidacy for the degree of Doctor of Philosophy.

Numerical Techniques for the Solution
of the Time-dependent Schrodinger Equation
and their Parallel Implementation

Faisal Saied

Research Report YALEU/DCS/RR-811
July 1990

The author was supported in part by the Office of Naval Research under contracts
N00014-86-K-0310, N00014-88-K-0262 and N00014-86-K-1671.

ABSTRACT

Numerical Techniques for the Solution of the Time-dependent
Schrédinger Equation and their Parallel Implementation

Faisal Saied
Yale University

1990

We investigate numerical techniques for the solution of the time-dependent Schrodinger equa-
tion in one and two space dimensions. We introduce a framework for constructing finite difference
schemes based on Padé approximations for both the time and space discretization and apply this
framework to construct high order finite difference schemes for Schrédinger’s equation in conjunc-
tion with an operator splitting approach. We also discuss three level schemes as an alternative
to operator splitting.

‘The accuracy and stability of these methods is studied, and their efficiencies are compared.
The results of some numerical comparisons of the methods are presented.

For two space dimensions, some of the new techniques proposed include a split-step Crank-
Nicolson scheme, where the implicit equations at each time step can be solved by a fast Poisson
solver. The two-dimensional methods have ADI (alternating direction implicit) analogues which
reduce the complexity of the computations.

We describe how a balanced form of cyclic reduction and a method that exploits the trans-
pose operation on hypercubes lead to effective strategies for parallelizing the solution of multiple
tridiagonal equations that arise in the solution of the Schrodinger equation in two space dimen-
sions in the ADI approach. We show that in spite of the implicit nature of these schemes, they
can be parallelized with high efficiencies on MIMD hypercubes.

Contents

1 Introduction 1
1.1 The Schrédinger Equation 1
1.2 Outline of the Dissertation 2
1.3 Some Notation and Background 3

-2 Some Standard Numerical Techniques for the Schrédinger Equation in One
Space Dimension 5
2.1 The Crank-Nicolson Method 5
2.2 The Split-step Approach 6
2.3 The Split-step Approach for the Schrédinger Equation 10
2.4 The Split-step Fourier Method ™ 12

3 Padé Approximations and Difference Schemes for the Schrédinger Equation 14
3.1 Padé Approximations to the Exponential Function. 14
3.2 Padé Approximations to the Second Derivative Operator 18
3.3 A General Framework for Constructing Difference Schemes Based on Padé Ap-

proximations in Time and Space 20

4 Some Methods for the Schrédinger Equation in One Space Dimension 26
4.1 Split-step, Implicit Finite Difference Schemes 26
4.2 A Split-step Explicit Finite Difference Scheme 29
4.3 'Three-level, Implicit Finite Difference Schemes 31
4.4 Higher Orderin Time Schemes 32

4.4.1 Schemes based on a Taylor series approximation 33
4.4.2 Multi-level schemes 33

4.5 Otherschemes. 34
4.5.1 Leapfrogschemes. 34
45.2 Anexplicitscheme 35
4.5.3 The Chan-Kerkhovenscheme 35
4.5.4 Ordinary differential equation approaches 36
Perturbation methods 36

Methodof lines 36

4.5.5 Overviewofthemethods 36

A

Numerical Results for the One-dimensional Schrodinger Equation
5.1 The Test Problem e e e e e e e e e

6 Methods for the Schrodinger Equation in Two Space Dimensions
6.1 The Crank-Nicolson Method

6.2 The Split-step Fourier Method I
6.3 Split-step Padé Schemes
6.4 Split-step ADI Methods e e B
6.4.1 ADIschemesforius=tge+ Uyo oo i
6.4.2 Alternating sweep ordering in ADI methods

7 Solving Tridiagonal Linear Systems on a Hypercube Multiprocessor
7.1 Hypercube Multiprocessors e

7.1.1 The hypercube architecture and the Intel hypercubes
7.1.2 The performancemodel
7.1.3 Graycodes e e
7.1.4 Embedding a two-dimensional processor mesh in a hypercube
7.1.5 'Transposes on the hypercube
7.2 Hypercube Methods for a Single Tridiagonal System
7.2.1 Substructuring e
722 Cyclicreduction e
7.2.3 The CR({) hybrid scheme
7.2.4 Cyclicelimination. e
7.3 Hypercube Algorithms for Multiple Tridiagonal Systems
7.3.1 Unbalanced cyclicreduction,
7.3.2 Balanced cyclicreduction
7.3.3 Transpose with Gaussian elimination

7.3.4 A comparison of hypercube methods for multiple tridiagonal systems

8 ADI Methods on a Hypercube Multiprocessor

8.1 The CUBE-ADIMethod
8.2 The Parallel Cost of CUBE-ADI., ..
8.3 Performance of CUBE-ADI

8.3.1 Results for the iPSC/1 e e e e e e e

8.3.2 ResultsfortheiPSC/2 |
8.4 Communication-reducing Variants of CUBE-ADI
8.5 Effect of Aspect Ratio of Processor Mesh
8.6 Extensions to Large Hypercubes

A Sequential Tridiagonal Solvers

Bibliography

38
38
39
41

52
53
33
54
95
- 56

58
58
58
59
61
62
63
66
66
68
73
75
75
76
76
82
83

87
88
91
92
92
96
100
101
101

104

107

List of Figures

4.1

4.2

5.1
5.2
5.3
5.4

7.1

7.2
7.3
7.4

7.5
7.6

7.7
7.8
7.9

8.1
8.2
8.3

The condition number of the matrix of the Padé (1,1;,) difference scheme vs.

themeshratior. 30
Methods for the Schrodinger equation in one space dimension. 37
Work vs. Accuracy. Finite differences methods. Lowest mode. 44
Work vs. Accuracy. Finite differences methods. Higher modes. 45
‘Work vs. Accuracy. Spectral methods. Lowest mode. 46
Work vs. Accuracy. Spectral methods. Higher modes. 47
An 8 X 8 processor mesh embedded in a 64 processor cube, using the binary-

reflected Gray code. 64
Structure of the shuffle operation in a typical step in the hypercube transpose. . . 64
The substructuring algorithm for tridiagonal matrices. 67
Pattern of processor activity and communication in for cyclic reduction on a hy-

percube. L, 71
iPSC/1 times for the SS/CR({) method. 74
The relationship between processors, systems and rows in balanced cyclic reduc-

tiononahypercube. L L 79
Pattern of processor activity in the reduction phase of SS/BalCR. 80
Times on the Intel iPSC/1 to solve 128 tridiagonal systems of order 128. 85
Comparison of TGET, SS/TGET and SS/BalCR based on model times. 86
Efficiency vs. cube dimension for the CUBE-ADI algorithm (iPSC/1). 95
Efficiency vs. cube dimension for the CUBE-ADI algorithm (iPSC/2). 98
Sensitivity of the CUBE-ADI algorithm to variations in the aspect ratio of the

processormesh. L L 102

vi

List of Tables

3.1
3.2

4.1

5.1
5.2
5.3
5.4
5.5

7.1
7.2

8.1
8.2
8.3
8.4

Some Padé approximations t0 €. 15
Some Padé approximations to S(z). 19
Some doubly-diagonal Padé methods for the Schrodinger equation. | ... 28
Tableof methods. 40
Data for Figure 5.1, lowest mode of the linear harmonic oscillator. 48
Data for Figure 5.2, third and fourth modes of the linear harmonic oscillator. . . . 49
Data for Figure 5.3, lowest mode of the linear harmonic oscillator. 50
Data for Figure 5.4, third and fourth modes of the linear harmonic oscillator. . . . 51
Notation. R 60
A comparison of three different variants of the hypercube transpose. 66
Breakdown of the time for one full step of CUBE-ADI on the iPSC/1. 94
Breakdown of the time for one full step of CUBE-ADI on the iPSC/2. 97
A summary of the performance of CUBE-ADL 99

An example of the communication pattern in the CUBE-ADI algorithm. 100

vii

Chapter 1

Introduction

1.1 The Schrodinger Equation

The Schrodinger equation is a fundamental equation in quantum mechanics. It also arises in
underwater acoustics, where the Helmholtz equation for the acoustic pressure is transformed
into an equation of the same form by applying the so-called “parabolic approximation” (see [6]).
In this section, we introduce the time-dependent Schrodinger equation in one dimension.
The one-dimensional Schrédinger equation is (SE-1d)
2
8 gy = O

5 72 TV(@tu, ce(ab), >0, (1.1)

u(a,t) = u(b,t) =0, t>0,
u(z,0) = ¢(z),

where V' (z,1) is a given real-valued potential function and #(z) is a complex-valued initial con-
dition, and u is a complex-valued function of z and ¢. 4

Equation (1.1) has essentially the same structure as the corresponding equation in quantum
mechanics and the standard parabolic equation in underwater acoustics and numerical methods
for solving it can be applied to the quantum mechanics and underwater acoustics problems. The
Schrodinger equation conserves the L,-norm of the solution. Dissipation can be introduced by
adding an appropriate imaginary part to the potential V. In this dissertation, we shall focus on
numerical schemes for the solution equation and not attempt to attach a physical interpretation
to the computed solution. ‘

In Chapter 6, we will introduce the two-dimensional analogue of (SE-1d) and present methods
for its numerical solution.

The time-dependent Schrédinger equation in quantum mechanics is formulated as a Cauchy
problem (initial value problem) for z € R with the requirement that the solution u(z,t) €
L?(R), for each t. In practical computations, the domain is usually truncated and the problem
is converted to the initial/boundary-value form that we are considering. We will not discuss the
approximations that are made in going from an unbounded to a bounded domain.

1

1.2 Outline of the Dissertation

In this dissertation, we investigate numerical techniques for solving the time-dependent Schrédinger
equation in one and two space dimensions. In the first part (Chapters 2-6), we consider the nu-
merical methods in the traditional setting of sequential computation, where the total number of
arithmetic oper.a.tions required to produce a result with a prescribed accuracy is a good measure
of a method’s performance. In the second part (Chapters 7 and 8), we study the parallel imple-
mentation of some of the methods on hypercube multiprocessors, the Intel iPSC/1 and iPSC/2,
and evaluate the relative merits of different approaches to parallelizing the computations.

In the next section, we develop some notation and review some background material.

Chapter 2 introduces two well-known numerical methods, the Crank-Nicolson and the split-
step Fourier methods and summarizes their properties. The purpose is to introduce both concepts
and terminology that are needed to describe some new methods that are introduced in later
chapters.

In Chapter 3, we introduce a Padé framework for constructing difference schemes for the
Schrodinger equation. In this framework, we synthesize previous work on Padé methods for
approximating operator exponentials and the second derivative operator and define a four-
parameter family of difference methods based on Padé approximations in time and space. This
framework reproduces many of the classical numerical methods and provides a simple mechanism
for constructing and analyzing certain natural generalizations.

In Chapter 4, we introduce a number of new schemes for the time-dependent Schrodinger
equation in one space dimension. One of these is a split-step implementation of an explicit
scheme. We then combine the split-step approach and the Padé framework developed in earlier
chapters to define a family of split-step finite difference schemes. Some issues relating to efficiency
are discussed. Next, we introduce an analogous family of schemes that uses a three-level scheme
instead of the split-step approach. We then discuss a few approaches to constructing schemes
that have a higher order of accuracy in time. We conclude this chapter by briefly reviewing
several methods that have been applied by other authors for solving the Schrodinger equation,
and other partial differential equations with a related structure.

In Chapter 5, we present numerical results for several of the new methods proposed here and
for some of the other methods we have discussed. In particular, the efficiency of these methods
for a test problem is compared. We employ a heuristic that has been used by some other authors
to select the time and space mesh sizes optimally. This applies to the finite difference methods
in particular. The results in this chapter make clear the relative merits of the various methods
as the accuracy requirements and the “energy” in the solution are varied.

In Chapter 6, we consider extensions of a number of these methods to two space dimen-
sions. We also introduce split-step alternating direction methods that have no one-dimensional
analogues.

In Chapter 7, we introduce the hypercube architecture . A simple and widely used model
for analyzing the performance of parallel algorithms is described. We then consider various

2

approaches to solving a system of tridiagonal equations on a hypercube and extend these methods
to the case of multiple tridiagonal systems. An empirical (based on experiments on the iPSC /1)
and theoretical comparison of hypercube algorithms for multiple tridiagonal systems is presented.

In Chapter 8, we describe CUBE-ADI, a hypercube algorithm for the ADI schemes discussed
in Chapter 6 for the Schrédinger equation in two space dimensions. Experimental results from
the iPSC/1 and the iPSC/2 are presented that indicate that our approach to parallelizing ADI
on a hypercube is an effective one. We conclude the chapter by showing how some of the methods
could be modified for large (but not massively parallel) hypercubes.

1.3 Some Notation and Background

Let z1,...,2Zm be a uniform discretization of (a,b), with mesh width A = (b— a)/(m + 1) and
z; =a+ jh. Let k be the time step and let ¢, = nk. The quantity

k

]

is called the mesh ratio.

The approximate solution to (SE-1d) at (z;,t,) will be denoted by U?. The expression U,
without a subscript, will denote an m-vector, (UF,...,Un)T.

Let V* = V(zj,t,) and let V™ be the m x m diagonal matrix whose j-th diagonal entry is
V(a:j,tn). ‘

In discussing finite difference schemes, we will use the following standard notation,

bzv(z;) = v(z; + g) —v(z; — g) (1.3)

whereby the dependence on A is not explicitly displayed. An immediate consequence of this
definition is that

6§U; =UL, —2U7 + U}y, (1.4)

which corresponds to the most common finite difference discretization of the second derivative
operator (without the 1/A? factor). When 62 is applied to U”, it will be interpreted as the m x m
real, symmetric, tridiagonal, Toeplitz matrix T defined by

=2, for 1=
Ti;=<1, for t=j—-1 or t=7+1
0, for |t—j|. L

We will use the following notation for the operators denoting differentiation with respect to
z’

D2

5
dz?’

3

The complex conjugate of a will be denoted by a.

We will use the standard O(-) and o(:) notation (see, for example, [3]). We will say that a
function of k and A is O(k™, ™) if its dominant part has both O(k") and O(h™) terms (in the
appropriate limit).

A computation scheme for advancing a discrete approximation to the solution of a linear
differential equation of the form u; = Hu from t, to t,41 = t, + k will be denoted by an m x m
matrix C(k):

Ut = C(k)U™,

where m is the number of components in U™. The spatial dependence has been suppressed in the
above expression. C(k) can be viewed as an approximation to the evolution operator, ezp(kH),
where the operator exponential is defined by

oo -Hj
kHEZk]—tT.
j=o0 J:

We now recall some standard definitions.

Definition 1.3.1 The local truncation error of a scheme C(k) that approzimates the Schrodinger
equation is defined to be

TE = %{u(x,t + k) = C(k)u(z, 1)}, (15)

where u(z,t) satisfies (SE-1d).

The scheme C(k) is called consistent if the truncation error is O(kP), for some p > 0.

The scheme C(k) is stable if C(k)" is uniformly bounded for k < kmsr and nk < T, for a fized
T, asn — oco.

For linear, well-posed problems, the Lax-Richtmyer equivalence theorem [4] states that a
consistent scheme is convergent if, and only if, it is stable.

For constant coefficient problems with periodic boundary conditions, the stability analysis
can be carried out in the manner of von Neumann (see [2]), by examining the growth factor
associated with the Fourier modes.

The Schrodinger equation conserves the 2-norm of the solution and many of the numerical
schemes we will consider satisfy conditions that are stronger than stability. With this in mind,
we introduce the following definitions.

Definition 1.3.2 A scheme C(k) is contractive if ||C(k)|| < 1. C(R} is unitary if ||C(k)|| = 1.

Clearly, unitary = contractive = stable. Note that like stability, contractivity and unitarity
are properties of the scheme only. It is desirable that the stability properties of a scheme hold
without any restriction on the mesh ratio r. When this is true, we refer to the scheme as being
unconditionally stable (unconditionally contractive, unconditionally unitary).

4

Chapter 2

Some Standard Numerical Techniques
for the Schrodinger Equation in One
Space Dimension

In this chapter, we will discuss two widely used numerical methods for the Schrédinger equation
in one space dimension (SE-1d), namely the Crank-Nicolson method and the split-step Fourier
method.

2.1 The Crank-Nicolson Method

Consider the following one-parameter family of finite difference methods for (1.1).

i n n n n
LU) = 7553, Uz + (1 - o)u7
+ [pvrtuptt + a-oyvrur], (2.1)

with 6 € [0,1]. The choices § = 0 and § = 1 yield the forward and backward Euler methods,
respectively.

For § = 1/2, we get the well-known Crank-Nicolson scheme, which can be written in matrix-
vector notation as follows:

AP I LT Y 2 ko o
I+56,,+?V Uttt = I-—-—-6 ——V u". (2.2)

This scheme is second-order accurate in time and space and is unconditionally stable. The time
step is restricted in practice by the accuracy requirements. The local truncation error is

a*
TE = 12k 8t3u(,t) + 12h E 4u(:z: t) + o(k*, A*). (2.3)

The properties of the Crank-Nicolson method for the Schrédinger equation are discussed in
[11] in the context of underwater acoustics.

If V does not depend on t, then the Crank-Nicolson method for the Schrédinger equation is
unitary. If V depends on ¢, then it can be shown to be unconditionally stable by the method of
energy inequalities [14]. v

The matrix on the left-and side of (2.2) is diagonally dominant for sufficiently small r and
k. If we neglect the £V term, this matrix is I + £7T, where T is defined in (1.5). This matrix is
diagonally dominant for all r and the diagonal dominance increases as |r| decreases. For example,
if we scale T + %T to have ones on the off-diagonals, then the absolute value of the diagonal
entry is = 2.25, 2.81, and 4.4 for r = 2,1, and 0.5, respectively.

The work per time step is a matrix-vector product to form the right-hand side and the solution
of a tridiagonal system of equations by Gaussian elimination. If both sides of (2.2) are scaled so
that the matrix on the left hand side has ones on the off-diagonals and there are m grid points
in the z direction, then the cost of one time step is 26m (real) floating point operations, if V
does not depend on %, and 40m, if it does (and we have to update the matrices and recompute
the LU factors). These counts can be reduced somewhat by using an implementation described
in [66] that exploits the form of (2.2) to avoid the matrix-vector product. Instead of using (2.2),
we can compute U™ 1as follows.

[53, + R — 2%1] grt = pr

Uttt = —Ur—4-.

2.2 The Split-step Approach

In this section, we review the split-step approach for solving a time-dependent partial differential
equation

?E=Lu,

ot

where L = A+ B. Split-step methods are also referred to as time-split methods [13] or methods

of fractional steps [16]. Alternating direction methods and locally one-dimensional methods [1]
are among the best known methods of this class.

In the following discussion, we will assume that L is time-independent. Then
u(t + k) = eFATB)y (1), (2.4)
Definition 2.2.1 The commutator of A and B is [A,B] = AB — BA.

Definition 2.2.2 A splitting SP(A,B,k) of e¥A*B) is an approzimation to e**+B) consisting of
a finite linear combination of finite products with factors of the form e®*4 gnd ¢°*B,

A splitting of e¥(4+B) has an expansion of the form

SP(A,B,k)=ijpJ‘(A,B), (25) |
=0 '
where the p; are homogeneous polynomials of degree j in two non-commuting variables. A simple
example of such a polynomial is p(A, B) = (A+ B)? = A+ AB+ BA+ B?, for non-commuting
A and B.
Some well-known splittings are.

SPi(A,B,k) = et (2.6)
SPy(A,B,k) = eiBetAcrB (2.7)
SPu(A,B,k) = (4e"? + ¢"Pek) /2 ' (2.8)

SP, and SP,, are due to Strang [15].
We define the splitting error in a manner similar to the definition of the truncation error.
The splitting error operator defined in [13] is closely related to the following definition.

Definition 2.2.3 The splitting error for SP(A, B, k) is defined to be

SE(A, B, k)u(z, t) = % {44+8) _ 5P(4, B,)} u(s, 1),
for an appropriate u. A splitting SP(A, B, k) is y-th order accurate if
(A+ By

g!

Definition 2.2.4 A consistent splitting is one that is at least first-order accurate and for which
the splitting error vanishes when A and B commute.

pi(4,B) = , for j=0,...,0u.

We will only consider consistent splittings. For such splittings, po(4, B) = I, p1(A, B) = A+ B,
and for p;(A, B) = (A+ B)?/j! for all j > 2 when A and B commute. (In general, A and B do
not commute and p;(A, B) can have up to 27 terms.)

The splittings we will consider all have an expansion for the splitting error of the form

71— {ek(A"'B) — SP.(A, B, k)} u(z,t) =3, kjsg-*)(A, B)u(z,), (2.9)

j=0

where sy‘) is a homogeneous polynomial of two non-commuting variables of degree j + 1. For a
given splitting, the p;’s and the s;’s clearly satisfy
pi(4, B) + s;-1(4, B) = (L7)/j. (2.10)

We note that SP,(B, A, k), SPy(B, A, k) and SP,.(B, A, k) are also splittings of e*(4+B), If
A and B commute, then the splitting error vanishes.

In the following three lemmas, we give the leading terms in the splitting errors for SP;, SP;
and SP,. The proofs of these lemmas are based on a direct computation and are omitted.

7

Lemma 2.2.1 Let SE (A, B, k) be the splitting error corresponding to SP,. Then

SE\(4,B,k) =3 Ks(4,B),

=0
’LUhB'I‘C
s(()l) = 0,
sV(4,B) = %[B-, Al and,
s$V(A,B) = %{—2AZB—2A32+ABA'+ BAB + BA? + B?A}.

Lemma 2.2.2 Let SEy(A, B, k) be the splitting error corresponding to SP,. Then

SEy(A,B,k) =Y ks (A, B),
j=0

where
s, s =0,
1
s7(4, B) = 5. {[B, B, All - 2[4, [4, BI]},
and

s$)(4,B) = Zlg {AB®— A’B’ - BAB® —24°B — 4BA’B
—B?AB - 2BA® — B?A%* 4+ B3A + 24BA
+2ABA’ +2ABAB + 2AB%A + 2BABA}.

Lemma 2.2.3 Let SE;,(A, B, k) be the splitting error corresponding to SP;,. Then

(>}

SEwn(A, B k) =Y k%A, B),

j=0
where
3(()2“), 8:(12‘1) =0
and
S£9(4,B) =~ {[4[4, B+ B,[B,]}

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

The statement that SP; converges, i.e., (e¥4eFB)" — e4+B as n — co with nk = 1, is the

well-known Trotter product formula [9]. We now estimate the “global” splitting error for SP,
and SP; in the following theorem.

Theorem 2.2.1 Let A, B be m x m matrices and let nk = 1, for positive integers n. There
exist constants Cy, Cy such that

l|eA+5 — (ekAekB)" | < Cik.
and
l|leA*2 — (e3PeH4e3P)" || < ok,
Proof. Our proof for SP; closely follows the one given in [9] (page 60), for SP.

eA+B _ (e5B kA egs)" — (ek(A+B))"' _ (egs oA e-’;B).n
n—-1 . .
— Z (ek(A+B))J (ek(A+B) _ egBekAegs) (egaemegs) n-1-j _
§=0
The second equality is due to the cancellation of consecutive pairs of terms in the expanded form
of the sum, with the exception of the first and last terms. It follows that

-1 N
”6A+B - (egsekAegs)" | < 3: ejk“A+B””ek(A+B) _ egseuegsu (e||A“+“B”)k(n-—l—J)
=

< nf|etA+B) _ (5B kd kB (IAIHIBI-F),

But from Lemma 2.2.2 we know that
||e¥(A+B) efBekAegB” < k3||.sg2)(A, B)||+ O(k*), as n — 0o,
and hence
||eA® — (egBekAe'gB)n” <Cok?, as n— oo,

for C; > ||s(A4, B)||el4IHIBI, m

For the Schrédinger equation, A and B can be chosen to be skew-Hermitian so that the
ell4I+IBI factor drops out of the bound for Cs.

The motivation for using split-step methods is that ¢*4 and €*? can often be approximated
more efficiently than e4+B). Broadly speaking, the use of operator splittings is desirable when
the gain in efficiency more than offsets the errors introduced due to the non-commutativity of
the operators A and B.

2.3 The Split-step Approach for the Schrodinger Equa-
- tion

In this section, we discuss some general properties of the split-step approach applied to the
Schrédinger equation. These properties will be common to all split-step methods that we will
discuss later.
We first compute the leading term of the splitting error when S P; is applied to the Schrédinger
equation with ‘
0%u

Au= —i—a? and Bu=-iVu. (2.16)

A similar computation for the parabolic wave equation of underwater acoustics is given in [12].
The proof of the following lemma is based on a direct computation and is omitted. In the
following, (/) denotes D3 f, the j-th partial derivative of a smooth function f, with respect to
z.

Lemma 2.3.1 Let u(z) and V(z) be two and four times differentiable with respect to x, respec-
tively. Then

[4, [4, Blu =1 (V®u + 4V Oul) 4 47y}, (2.17)
[B,[B, Al]u = 2i(V)?u. (2.18)

We substitute (2.17) and (2.18) into (2.13) to get to (SE-1d).

2
k25§D (A, B)u = z% (2(V)2y — 2V @y — gVELM — gy @) (2.19)

One could implement the SP,-based split-step schemes with the roles of A and B interchanged
in (2.7), i.e.,

SP(A,B,k) = eiActBer4,

For the Schrédinger equation, this would mean that the leading term in the splitting error would
be

k2
i (V@ (3),,(1) (2),,2) _ (1)y2

224(V u+ 4V 4 4V 0y 4V)u)

If the expression in (2.17) is greater than thai "1 (2.18), this approach could lead to a somewhat
smaller splitting error.

kB

We now describe how ez*B is approximated; that is, we specify the scheme Cp(k) used for

the equation
iug = V(z)u. (2.20)

10

Once we have discretized the = variable, (2.20) represents a system of uncoupled ordinary differ-
- ential equations. Cp(k) is an m X m diagonal matrix, with

[Ca(k)];; = eV). | | | (2:21)

5T
For any Hermitian matrix H, the matrix exp(¢H) is unitary. Hence Cp(k) is a unitary matrix

and conserves the Ly-norm. The scheme defined by (2.21) is exact (there is no truncation error)

and we can write Cp(k) = e*P if the B in the exponent is interpreted to be the discretized form
of B. :

Definition 2.3.1 Let C4(k) be a scheme for
U = Au = —tu g (2.22)
and let Cg(k) be the scheme defined in (2.21). Then
k k .
C(k) = Cs(35) Ca(k) Cs(3)- (2.23)

is the resulting split-step method for the Schrédinger equation based on SP;. We refer to (2.23)
as the split-step “M” method, where “M” is the name of the scheme C (k).

The truncation error of the split-step scheme is a combination of the splitting error and
the truncation errors of the schemes C4(k) and Cp(k). The following theorem is similar to a
statement in [13] for a hyperbolic partial differential equation.

Theorem 2.3.1 Consider the split-step scheme (2.23) for the Schrédinger equation based on
SP,. Ifu(z,t) is a sufficiently smooth function of x and t that satisfies the Schrédinger equation,
then the truncation error is

71- {ek<A+B> -~ CB(g)oA(k)oB(-';-)} u(z,t) = SEy(A,B,k)u(z,t)

+ efBTE,(k)e?Bu(z,).

Proof. We replace C4(k) by €4 — kT E4(k) and Cp(k) by €*B, since there is no truncation
error for Cp(k).

e - caBrcamoa® b ate

_ %{ek(A+B) _ B (eA _ kTEA(k)) eéB}u(«'c, t)

1 .
= 7 {ek(A"'B) - (egBeAegB)}u(x,t) + e'g'BTI:.‘..(k)e%'Bu(a:, t).

Since Cg(k) is unitary, the stability analysis of a split-step method for the Schrédinger equa-
tion reduces to showing the stability of C4(k). Such an analysis is often easy to carry out because
we are approximating the solution of an equation with constant coefficients.

11

Theorem 2.3.2 Let C(k) be a split-step method (2.23)for the Schridinger equation based on
SP;. If Ca(k) is unconditionally contractive, then so is C(k). If Ca(k) is unconditionally
unitary, then so is C (k).

Proof: Suppose that C4(k) is contractive. Then

ol = 11055 ek e
=l 1ICA®] ucB<—’§)n (since Cp(3) is unitay)
= llCa@ll <1,

i.e., C(k) is contractive. When Cy4(k) is unitary, the inequality on the last line becomes an
equality and the second statement of the theorem follows. ®

2.4 The Split-step Fourier Method

The split-step Fourier (SSF) method, due to Hardin and Tappert [10], is the split-step method
obtained by using a spectral method to approximate exp(kA).

Let u(z) be a complex-valued function defined on the interval (0,5) that vanishes at the
end-points. We can approximate u by a sine series, truncated after the first m terms:

u(z) U(z) = ZU sin (sfz), where 0=

s=1

SR

(2.24)

If the periodic, odd extension of u(x) has j—1 continuous derivatives and u(%) is square integrable,
then the error incurred by truncating the sine series after m terms is O(m™) (see [9]). We can
differentiate (2.24) term by term to obtain

aa(i'c(zx) i (292) U, sin(s6z). (2.25)

We can use the discrete sine transform (DST?) to compute the coefficients U,, or, having U
(the m-vector consisting of the Fourier coefficients), to evaluate U at the equispaced grid pomts
We denote these operations by F and F~1. '

F .
vr = U~ . (2.26)
F

where the superscript n denotes the n-th time level (¢ = nk).

1The m x m DST matrix § is given by Sj = sm(;k%—) The normalization factor is given by the relation

= (1)1, where I is the identity matrix. For suitably chosen m (e.g. m = 2" — 1), the DST can be
xmplemented efficiently with the help of the Fast Fourier Transform (FFT) [5].

12

If we approximate A = —iD2 by F~'EF, then the corresponding approximation to exp(kA)
defines the scheme

Ca(k)U = F 1B FU = FTIDFU. (2.27)
Since E is a diagonal matrix with E,, = 1526, it follows that D is also diagonal, with
D,, = %, (2.28)

This choice of Cy4 in (2.23) gives the split-step Fourier (SSF') method [10]. If we use a different
splitting, the resulting split-step Fourier method will be referred to as SSF/SP;, SSF/SP,,, etc.
We now consider the stability of the split-step Fourier methods.

Theorem 2.4.1 The split-step Fourier methods SSF/SP, and SSF applied to Schrédinger’s
equation are unconditionally unitary for all real k. In particular, they are unconditionally stable.

Proof. Since 7, 7! and D are all unitary, C4(k) is also unitary for all real k, and the assertion
follows from Theorem 2.3.2. m

The number of Fourier modes m is equal to the number of equispaced grid points and must be
large enough to resolve both the solution u(z,.) and the potential V. Thus, even if the solution is
smooth enough to be accurately represented with a small m (i.e. if it is made up of eigenfunctions
corresponding to low eigenvalues of H), the potential might have steep gradients and this would
force the use of a larger m. When m is sufficiently large, the total error is dominated by the
splitting error, which means second order accuracy in time for S Pz.. If the splitting error is
small, then the SSF method is an efficient method for the numerical solution of the Schrédinger
equation.

With the FFT package we have used (FFTPACK, [5]), it is convenient to use the real sine
transform routine separately for the real and imaginary parts of the complex vector U to im-
plement 7 and F~'. The cost of applying F or F~! to a real vector of length m is roughly
(5/2)mlog, m real floating-point operations. The cost of applying the matrix Cp(k/2) twice
and D once is 18m floating-point operations. Hence the cost of one step of the SSF method is
roughly 10mlog, m + 18m. As pointed out by Strang [15], one can combine the last stage of a
given step of (2.23) with the first stage of the next step, provided that the value of the solution

is not required at that step. This reduces the number of applications of C5(k/2) to one per time
step.

13

Chapter 3

Padé Approximations and Difference
Schemes for the Schréodinger Equation

In this chapter, we develop a framework for constructing difference schemes for the Schrédinger
equation based on Padé approximation. The framework is a synthesis of two separate components
which have been used to discretize the time and space variables, respectively. The “Padé in
time” component is based on approximations to the exponential function. The “Padé in space”
component is based on approximations to a function that expresses the second derivative operator
in terms of the centered difference operator, §2. We will describe these two components in the first
- two sections and then show how they can be combined to give difference schemes for equations
of the form u; = au,,.

3.1 Padé Approximations to the Exponential Function

In this section, we consider time discretizations of equations of the form
— = tHu, (3.1)

where H is an Hermitian operator. Assuming that H does not depend on time, we can write the
evolution operator as an operator exponential to get

u(t + k) = e*Hy(t).

We consider numerical schemes for (3.1) based on Padé approximations to the exponential func-
tion. This approach was used in [35] for parabolic partial differential equations and by a number
of authors in the context of ordinary differential equations (e.g., [24], [36] [29]). This approach is
distinct from that of [31], where Padé approximations to (1—2)log(1—2) and — log(1— z) are used
to introduce families of explicit and implicit multistep schemes for spatial semidiscretizations of
parabolic partial differential equations.

We begin by defining Padé approximation [35].

14

Table 3.1:

Some Padé approzimations to e* in the notation of (3.3).

(nym) | Pom(2) Qnm(2) Cr | Accuracy
(0,1) |1+= 1 : O(z)
(1,0) |1 1-=2 -3 0(z)
(1,1) | 1432 1-1z -5 | O(z%)
(2,2) |1+324+52° [1-1z+L122 | L | O(z*)

Definition 3.1.1 Let f : C — C be an analytic function. Let m and n be non-negative integers.
Then the (n,m) Pad€ approzimant to f is the rational function R, n(2) given by

_ Pam(2)
,m(z) Qn,m()

where P, m and Qnm are polynomials of degree m and n, respectively, such that

& & .
i (0) = e Rum(0), for j =0,1,....m+n and Qnn(0)=1.

We will sometimes refer to Ry m(z) as the (n,m) entry in the Padé table for f.

From now on, we will use Ry m(2) = Prm(2)/Qnm(2) to denote the (n, m) Padé approximant
to e”. Padé (1892) has given explicit expressions for the polynomials P, and Qp p:

Pun(z) = f: (n+m — k)Im!

= d .
= (n+m)lkl(m — k)’ an '
2 (n+m—k)n! &
n,m = - ; 2
Qml@) = X T — B (32)
(see Varga [35]). The error in this approximation can be written as
€* — Ruym(2) = Cr2™™* + O(2™t™*+?) as 2 -0, (3.3)

where the error constant Cr depends on n and m (see Table 3.1).

We now introduce the notion of i-stability. The following definition is motivated by the fact
that .he Schrodinger equation conserves the L,-norm.

Definition 3.1.2 A Padé approzimation R, to €* is called i-stable if | R, m(iy)| < 1, for all

real y. Rnm is called conditionally i-stable if there ezists a y, > 0, such that |R,mn(iy)| < 1, for
all real y with |y| < yo.

15

Remark. The notion of i-stability has been used by a number of authors. In [32], it is referred
to as “stability on the imaginary axis” (and attributed to H.-O. Kreiss) and in [37], it is called
I-stability.

Lemma 3.1.1 For all non-negative m and n and all real y, we have

| B (69| B (3)] = 1.

Proof. From the definition of P, ,, and @, m, it follows that Q. n(2) = P, m(—2) or, equivalently,
Pm,n(z) = Q’n,m(_z)‘ b

For all non-negative m and n and all real y,

an,m(zy)i = l-Rm,m("'iy)"

This follows from the fact that the coefficients of the polynomials P,,, and @, are real and
hence P, m(—ty) = (Pam(iy)) and similarly for @, m, and the lemma follows. =

Thus, for n # m, precisely one of R, , and R, ., is unconditionally i-unstable. The other
entry is i-stable or conditionally i-stable.

The diagonal entries in the Padé table for e* are particularly attractive for the Schrédinger
equation due to the following property.

Lemma 3.1.2 The (n,m) Padé approzimant to €* has modulus one on the entire imaginary azis
if and only if n = m.

Proof. If n = m, Lemma 3.1.1 says that |R, .(:y)|* = 1, for all real y.

If n 5 m, then |R, »(¢y)| = O(Jy|™ "), as |y| — oo and hence R, ,, cannot have modulus one
on the entire imaginary axis. H

The notion of A-acceptability of Padé approximants to the exponential function has been
studied in the context of A-stable schemes for ordinary differential equations, e.g., [24], [36] and
is related to the property of i-stability.

Definition 3.1.3 R, . is called A-acceptabdle if |Rnm(2)| <1 for all z with Re(z) < 0.

Clearly, A-acceptability implies i-stability.
A useful tool in the study of Padé approximations to the exponential function is Ngrsett’s
“E-polynomial” [36]: E(y) = |Qnm(ty)|*> = |Pam(iy)|%. When m < n,

n

m! 2 —1)n-r [n=r o
E(y) = ((m+n)') > En%r)'. {H(n —s+1)(m+s)(r—m—s)|y”, (3.4)

T=TQ s=1

m+n+2J

where rg = l. 5

(see [36]). |
Remark. R, isi-stable (conditionally i-stable) if and only if the corresponding E-polynomial
is non-negative for all real y (for all real y with |y| < yo for some yo > 0).

The following theorem was conjectured by Ehle [24] and proved by Wanner, Hairer and
Ngrsett [36].

16

Theorem 3.1.1 R, is A-acceptable if and only if m < n < m + 2.

We will show that the converse is not true.
Theorem 3.1.2 There ezist i-stable entries in the Padé table for e* that are not A-acceptable.

Proof. We will show that Rgp is i-stable. From Theorem 3.1. 1, we know that Rso is not
A-acceptable. Substituting n =6 and m = 0 in (3.4), we get ro = 4 and

Ey) = [é} g [180 - 243”4+ 4]

It is easily verified that the quadratic expression in y? in the brackets is positive for y = 0 and
has no real roots. Thus, E(y) is positive for all real y, and Rg is i-stable. m

From Theorem 3.1.1, we know that the main diagonal and the first two subdiagonals of the
Padé table are i-stable. In [29], in a partial proof of the Ehle conjecture, it is shown that for
n 2m+1, Rnm is unconditionally i-unstable for n — m = 0 (mod 4) and n — m = 3 (mod 4)
(and hence not A-acceptable). The following result is the “positive” form of this statement and
includes the super-diagonals of the Padé table for .

Theorem 3.1.3 Form # n, Ry, is conditionally i-stable if, and only if, n—m =1 or 2 (mod
4), form <n andn—m =0 or 3 (mod 4), for m > n. (In this statement, the i-stable entries
are regarded as a subset of the set of conditionally i-stable entries.)

Proof. We will first prove the statement for the case m < n, using (3.4). We can write

E(y) =" (a0 + 01y® + ... & Gy ® ™)) |

where

2 —ry mm

ap = [m!] (=)~ T (r =54 1)(m + 5)(ro — m — s).
(m+n)l] (n—ro)! 5

Clearly, Ry, is conditionally i-stable if and only if ap > 0. From the definition of ro, We have

that 0 < m < ro < n and the three factors in the product are positive for all integers s in the

specified range. Thus, sign(ag) = (—1)*". Thus, ag > 0, if and only if n —ro = n — | 2242 |

is even. If n + m = 2r, then n — |2M242] = 2=m _ 1 s even if and only if 257 is odd. If

2
n+m=2r+1, then n— | 2242 | = 2=8=1 i even if and only if [232] is odd. Thus for m < n,

o > 0 if and only if [23™] is odd. Ifwz v iten —m = j (mod 4), or n —m = 4s + j, for some
non-negative integer s, then I'""""I = [2s + 1] and this expression is odd, if and onlyifj =1or
2. This proves the assertion for m < n.

The result for the upper triangle in the Padé table follows from Lemma 3.1. 1, which implies

that precisely one of (n,m) and (m,n) is conditionally i-stable when n # m. ®

17

3.2 Padé Approximations to the Second Derivative Op-
erator

In this section, we review an approach for constructing approximations to the second derivative
operator (in space) using centered finite difference operators that is based on Padé approxima-
tions. This approach was used by Guardiola and Ros [26] to construct high-accuracy difference
schemes for the time-independent Schrodinger equation. A similar approach was used by Henrici
[27] to construct higher-order methods for Poisson’s equation in a hypercube.

The finite difference operator 6, defined in Chapter 1 can be written formally as

or

which implies that ([28])
4 8:\1 ,
2 -1 (% -
D; = 7 [smh (2)} . (3.5)

Let so(z) = sinh™(z) and let s1(2) = 4 [s9(2/2)]>. The Taylor series for so(z) about the origin is
given by

e 2j +1)°
so(z) =z b'z2’, with bp=1, b;4y = —b; (- ,
0() f:-_(:) 7 7+l J (2] + 2)(2] + 3)

with radius of convergence equal to 1 [17]. Equation (3.5) can now be written as A2D2 = s,(6,).
The key idea to using Padé approximations to approximate D? is to recognize that s;(z) is an
even function, i.e. its Taylor series expansion about the origin contains only even powers of z. Let
s1(2) = X2, ¢;z% be the power series expansion of s;. Let S(z) = Y52, ¢, de., S(2%) = 51(2).
Then, (3.5) can be written as

R*D? = S(82). ' (3.6)
The purpose of introducing the function S(z) is to be able to consider Padé approximation

in the usual sense. The first few terms in the Taylor series expansion for S(z) are

1 1 1, 1 1 1
S(z)=g— —p?4 =3 _ L 4 5 _ 6 7 _
(2) =2 - 132 +30% T 560° T3150° " Te60o° T gaosi”

These coefficients were given in [26] in an expansion of D2 in terms of 62.

(3.7)

Definition 3.2.1 Letp > 1andv >0 be integers and let P, , and Q,,, be polynomials of degree
and v, respectively, such that R,, s =B,,/0,, is the (v, 1) Padé approzimation to S(z), with
Quu(0) =1 and P,,(0) = 0.

18

Table 3.2:

Some Padé approzimations to S(z) in the notation of (3.8).

(v, 1) | Puy(2) Q) (2) Cs Accuracy
(0,1)* | 2 1 -1/12 O(h?)
(0,2)% |z — £2° 1 1/90 0(h%)
(0,3)% | z— fgzz + 2% 1 —1/560 O(R%)
(0,4) |z— 522+ &2° - 1 1/3150 O(h®)
(1,1)* | 2 1+ Lz 1/240 O(rY)
(1,2) |z+ 552 14+ 22 —23/75600 | O(hS)
(2,1)* | 2 14+ 52— ;}Ezz —31/60480 | O(k®)
(2,2)% | z + 222 1+ ;gz + 52552° | 19/4762800 | O(h®)

The error in this approximation can be written as

pv,u(z)
S Z)— =
(=) Qv.u(2)

- where the error constant Cs depends on p and v.
62 = D2 + O(R*), it follows that

B [Qu,u(62)] D2u(z) =

= Csz*™ 1 L O(2#*T+%), as 20, (3.8)

From (3.5) and (3.8) and the fact that

B, (82)u(z) + Csh?Wtv+1) 2Lttty gy 4 O(R2(+v42)y, (3.9)

Table 3.2 gives a number of Padé approximations to the second derivative operator of the
form (3.9). These entries were given in [26]; the entries with asterisks were given earlier in [21]
(Appendix, Table IIT).

The discretization that the (1,1) Padé approximant leads to has been used by a number of
authors to construct difference schemes for various partial or ordinary differential equations, but
with a derivation other than Padé approximation.

o Numerov, 1933 (cited in [26]): O(h*) method (the Numerov method) for two-point boundary-
value problems.

. Collatz, 1950 [21]: O(h*) Mehrstellen methods for differential equations.

e Crandall, 1955 [22] a.nd Douglas, 1956 [23]: O(%?, h*) method for the heat equation in one
space dimension.

o Fairweather and Mitchell, 1964, 1965 [25], [34]: O(%?, h*) ADI method for the heat equation
in two space dimensions.

19

e Ciment and Leventhal, 1975 [20]: An operator compact implicit (OCI) method for the
wave equation. The authors attribute the Padé (1,1) approximant to H.-O. Kreiss.

e Lynch and Rice, 1978 [33], Boisvert 1981 [18]: The Higher Order Differences and Identity
Expansions or HODIE method for elliptic partial differential equations. (Their “Identity

Expansions” correspond to the Q,,,(62) in the Padé approximants.) The relation between
the HODIE methods and the Mehrstellen methods is discussed in [33].

In [30], (diagonal) Padé approximations to (In(z))* are used to construct finite difference
approximations to the second derivative operator in terms of the shift operator E, given by
E - u(z) = u(z + k). The approximations obtained by this procedure are equivalent to the
Padé approximations to the second derivative operator in terms of the operator 62 that we have
discussed in this section.

3.3 A General Framework for Constructing Difference
Schemes Based on Padé Approximations in Time
and Space

We now introduce a framework for constructing difference schemes for time-dependent equation

of the form
Ou(z,t) Olazu(a:,t)

ot oz2 °’

for z€(0,5), (3.10)

u(0,t) = u(b,t) = 0, u(z,0) = ¢(z).

where « is a constant. Equations of this type include the Schrédinger equation with zero potential
(o = £7) and the diffusion equation (a real, positive). This framework combines the techniques
described in the preceding sections.

The idea is the following. We first use a Padé approximant R,n(z) to e* to discretize the
time variable in (3.10), replacing e*P% by [Qp m(akD2)] ™" [P, m(ckD?)] to get

Qnm (kD2 U™ = P (akD?)U™. (3.11)
We next pick a Padé approximant to D?
2 1= 2171 5 2
D % 35 [Quau(@d)]” Pu(e?)

and use this as the space discretization in (3.11), which can now be written as

Qum (075 [0:082] ™ BosdeD)) U = o (ks [Qun62)] ™ untsd) 0

20

. The final step is to multiply both sides by the highest power of Qw(ﬁ) occurring on either side
to obtain : :

] max(n,m)

[@u(5?) Qo (ar [Qunl82)] " Bunte?)) Ut

= Gt

Pam (r [Gu()] ™ Bu(8d)) U™ ‘(3.12)

Definition 3.3.1 A Padé (n,m;v, u) difference scheme for (3.10) is any member of the four
parameter: family of schemes defined by (3.12)

The Padé (n,m; v, u) scheme (3.12) can be written in the form
Ut = C(k)U", with C(k) = Rum (arR,.(62)) . (3.13)

An important property of Padé (rn,m; v, u) difference schemes for (3.10) is that the truncation
error can be read off directly from the errors in the underlying Padé approximations.

Theorem 3.3.1 Let Cr be the error constant for the Padé (n,m) approzimation to € and let
Cs be the error constant for the Padé (v, u) approzimation to S(z) (see (3.3) and (3.8)). Then
the principal terms in the local truncation error of the Padé (n,m; v, 1) difference scheme (3.12)

are
6 m+n+1 32 ptv+1
CTkm+n (55) + aCSh2(#+V) (.é_x._z) u(x, t)’ (314)

for a u(z,t) that satisfies the partial differential equation (3.10) and is m +n+1 times differen-
tiable with respect to t and 2(p + v + 1) times differentiable with respect to z.

Proof. From (3.13), we have
C(k)u(s,t) = Rnm (arRy,u(62)) u(s, 1).
Since |
Rou(82) = D2 = Cs(RD2PH+1 4 O(r44+9),
we have
C(k)u(z,t) = Rom (arh?D? — arCs(h2D2)"++! 4 O(rh*¥+449)) y(z,t).
We now use the relation

Ram(X) = X — CpX™mHt 4 O(X™+m+2)

21

and obtain

C(k)u(z,t) = [e{"wi-aCskhz("““)Di(”*““’+0(kh2‘”+“+1)')}] u(z,t)
? - :)

— COr [ahD2 = aCskh20) D2++D) 4 (204t ™y (5 4
+ O(kn+m+2)
= {eakDi — aCgkh2+s) Di(V+u+1)] u(z,t) + O(k hZ(V+u+1))

n+m-+1
— Cpkrtmit (g_) +O(Ertmtl h2(V+u))
t ,

+ O(kn+m+2),

for sufficiently differentiable u(x,t) that satisfy (3.10). We re-write the above as

n+m<+1
C(k)u(z,t) = {e“wg - aCskh?+e) p2tetl) _ op prtmet (%) } u(z,t)

+ O(kn+m-!-2 , h2(u+u-.l-1))

Since u(z,t) is assumed to satisfy the differential equation (3.1), the truncation error can be

written as
akD? _
(E__I_C_C_(’i)_) u(z, t)

and therefore the principal part of the local truncation error for the Padé (n,m; v, p) difference
scheme is (3.14). ®

In practice, it is clearly not feasible to use Pade schemes of arbitrarily high order. The use of
very high order schemes may be restricted not only by the differentiability requirements but also
by the boundary behavior of the solution. We now give some examples of Padé schemes that are
suitable for practical computations. '

Example 1. The Padé (0,1;0,1) difference scheme with:
Poa(z) =1+ 2, Qoa(z) = 1,

po,l(z) =z, QO,I(z) =1
reduces to
U™t = 1+ aré?| U, (3.15)

w. ich is the explicit Euler scheme with the standard second-order difference approximation to
D?2. The work at each time step is a (tridiagonal) matrix-vector product. The principal part of
the truncation error is

{%k (%)2 ~azsh? (5%)4} u(z,t) = O(k, A?).

22

Similarly, the Padé (1,0;0,1) scheme is the backward Eule; method for (3.10).
Example 2. The Padé (1,1;0,1) difference scheme with: .
| Pa(z)=1+ éz, A @Qi11(2)=1- %z,
Poa(z)=2, Qoi(z) =1
reduces to . |
[I - %7'53] Ut = [1 + g-nsg] Un, (3.16)

This is the Crank-Nicolson scheme. The work at each time step is a (tridiagonal) matrix-vector
product and a tridiagonal solve. The principal part of the truncation error is

{ _Ilgkz (;%)3 _ ai%hz ((%)4} u(z,t) = O(F, h?).

Example 3. The Padé (1,1;1,1) difference scheme with:

1 1
Pl,]_(Z) =1 + 52, Qm(z) =1 52,

. ~ 1
Pl,l(Z) =2z, Ql,]_(Z) =1 + —z

12
gives
a 1 2)—1 2| rrnt1 _ a (_1_2)_1 2| rrn
[1 2r(1+125z alU =14 5r (14 262) 82| v,
which, after multiplying both sides by (I + -1135;‘;) simplifies to
1 a. n+1_[1l «a 2] n
[1+(12 2r)a,]U = [1+(55+ 58| . (3.17)

This scheme was devised independently by Crandall [22] and Douglas [23] for the diffusion equa-
tion, but with a different derivation. The work at each time step is the same as that for the.
Crank-Nicolson scheme. The principal part of the truncation error is

1..,(0\, 1 ,(8)° g
{—ﬁk ('a—z) -I-a‘ﬁah (53—:> u(x,t)-O(k ,h*).

An interesting property of the Crandall-Douglas scheme for real @ > 0 (the parabolic case) is
that the choice r = k/h? = |/a/20) eliminates the k? and h* terms in the truncation error. This
does not apply for @ = +: (the Schrédinger equation).

23

Example 4. The Padé (1,1;2,2) difference scheme with:

1 1
Pl,l(z) =1 + —2-2, Qm(z) =1- 52,

132,2(2) =z + a2?, @2,2(;:) =14bz +c2?,

where the values of a, b and ¢ are given in Table 3.2, reduces to

[I + (b= S+ (e %fa)ag] Ut = [I (b4 S8+ (et g-ra)éi] Ut (3.18)

The work at each time step is a penta-diagonal matrix-vector product and the solution of a
penta-diagonal system of linear equations. The principal part of the truncation error is

a*> 79 a\" |
{—--—k2 (at) s (%) }u(x,t):O(k2,h8).

We will refer to this scheme as FD(2,8), to reflect the values of the exponents of & and h,
_ respectively.

Example 5. The Padé (2,2;1,1) difference scheme with:

1 1
P22(Z)—-1+—2-z+1-§2, Qz,g() 1—§Z+12

~ ~ 1
Pa(2) = z, Q1a(z) =1+ 127

reduces to

[I+(+——)52 (1 +-°i'1——)64] ynH

144 2
2
= [1 + (— - ——)52 + (= 114 - % - %)5:] U, (3.19)

The work at each time step is the same as for the Padé (1, 1;2, 2) scheme of the previous example.
However, the temporal and spatial errors have different orders, since the principal part of the
truncation error is

18\, 1, (a)° P
{720k (81‘) +a 240/1 (—3;) u(z,t) = O(k*, h%).

We will refer to this scheme as FD(4,4)

The stability properties of the family of schemes (3.12) for spatial semidiscretizations of the
diffusion equation (a = 1) were investigated by Varga [35]. His main stability result is that time-
differencing schemes for the diffusion equation based on Padé approximations to the exponential
function are unconditionally stable if and only if m < n. We now prove a stability theorem for
the Schrodinger equation (o =).

24

Theorem 3.3.2 Let o = 1 in (3.10). Then the Padé (n,m;v,) difference scheme (8.12) is
contractive if Ry, m is i-stable. The scheme is unitary if n = m.

Proof. If T is a Hermitian matrix, then so is R, ,(T). If R, is i-stable and H is a Hermitian
matrix, then || Rnm(iH)|| < 1. We have equality precisely for the diagonal entries (Lemma 3.1.2).
Thus ||Rpm(irR,.(T))|| < 1, where T is the matrix representmg 62 and (n,m) is an i-stable
entry in the Padé table for ¢*. ®

The Padé framework we have developed here for (3.10) can also be applied to the wave
equation, .

0%u(z,t) ,0%u(z,t)

a7 ¢ o2

We proceed by selecting two Padé approximations, Ry and R,,,, to the function S(z) and use

them to approximate the second derivatives in (3.20) with respect to ¢t and z, respectively. Thus,

oy L P ! Bl
ug(z;,tn) = = Q (62)U 52 Qu,u(52) Uy,

which yields the following Padé (n,m; v, u) scheme for (3.20):

(3.20)

Uza(Tjytn) =

Quis(82) Pan (85)UF = Qnm(87) B, (82U (B2

In conclusion to this discussion of Padé methods, we note that Padé approximations have
the important advantage that they maximize the order of accuracy of the numerical schemes.
However, this is a statement about the asymptotic behavior of the schemes as k, & — 0. Rational
approximations other than Padé may lead to schemes that achieve a given accuracy at a lower
cost (see, for example, the discussion in [35] on Chebyshev rational approximations).

25

Chapter 4

Some Methods for the Schrodinger
Equation in One Space Dimension

In this chapter, we define a number of new schemes for the Schrédinger equation in one space
dimension. We combine the split-step approach and the Padé framework that were discussed in
the preceding chapters. We also introduce a split-step variant of an explicit scheme and a family
of three-level schemes that use the Padé framework.

4.1 Split-step, Implicit Finite Difference Schemes

In this section, we will use the apparatus developed in earlier chapters to derive a family of split-
step, implicit finite difference schemes for the Schrédinger equation. All the methods developed
in this section are based on the split-step approach. The idea is to choose C4(k) in (2.23) to be
a Padé (n,m; v, u) difference scheme for

ou_ o

"ot T bar
A method of this form (the split-step Crank-Nicolson method) was applied to the nonlinear
Schrédinger equation in [53)].

(4.1)

Definition 4.1.1 A split-step Pade (n,m;v, 1) method is a split-step method (Definition 2.3.1,
page 11), where the scheme Ca(k) is chosen to be the Pade (n,m; v, 1) difference scheme (Defi-
nition 3.3.1, page 21). (The treatment of the potential is the same for all methods in this family).

To illustrate this approach, consider the sub-family of split-step Padé (1,1; v,) schemes, i.e.,
split-step schemes that use Crank-Nicolson in time and Padé (v, 1) in space for the C4(k) part.
These schemes have the form

k k
U™ = Ca(3) Calk) Cal35)0™,

26

where

k .

(eatrm) =eveiug,
7

and where C4(k) can be expressed as

|06 + 5 Po82)]| U1 = [0ul6) = iZ (D) U7 (42

Here P, ,/Q,,. is the (v,) Padé approximant to the second derivative operator. For (v,p) =
(0,1), (1,1) and (2,2), the resulting split-step, implicit finite difference schemes will be referred
to as the split-step Crank-Nicolson (SS-CN), the split-step Crandall-Douglas (SS-CD) and the
split-step FD(2,8) methods, respectively (see Examples 2, 3 and 4 in Section 3.3).

We now consider the stability of the proposed schemes. The main stability result is an
immediate consequence of Theorem 2.3.2 and Theorem 3.3.2.

Theorem 4.1.1 The split-step Padé (n,m;v, 1) difference schemes of Definition 4.1.1 are un-
conditionally contractive if and only if the (n,m) entry in the Padé table for e* is i-stable. The
scheme is unconditionally unitary if and only if n = m.

The matrix on the left-hand side of the linear system (4.2) does not depend on the potential
V and does not change with time. This simplifies the linear algebra since the matrix needs to
be factored just once and at each time step we need to perform just the forward and backward
solve. For an m x m banded matrix with semi-bandwidth b, the cost of the LU factorization
without pivoting is O(5°m) and the cost of the forward- or back-solve is O(bm), i.e., linear in the
semi-bandwidth. Thus the cost of the solve phase for a pentadiagonal system is twice that for a
tridiagonal system.

An alternative to solving a linear system of semi-bandwidth b is to express the matrix in (4.2)
as the product of b tridiagonal matrices [52]. This will be referred to as the factorization approach
and must be distinguished from the LU factorization performed in Gaussian elimination® . The
factorization approach reduces the complexity of the computing the LU decomposition from
O(b*m) to O(bmn) since we go from solving one system of semi-bandwidth b to solving b tridiagonal
systems. However, since the split-step Padé (n,m;v, 4) methods only require a back-solve at -
each time step, the cost of implementing these schemes with and without factoring is essentially
the same. For higher-order schemes, the factorization approach may be preferable due to its
simplicity (no higher derivatives need to be discretized).

The width of the stencil of the operator on the left-hand side of (4.2) is max{2x + 1,2v + 1}.
The order of the truncation error of the Padé (y,v) approximation is 2(u + v). Putting these
facts together, we have

Theorem 4.1.2 The Padé approzimations of Definition 3.2.1 that give the schemes of the form
(4.2) with the highest (local) order of accuracy for a given stencil width are the Padé (g, 1)
approzimations.

27

Table 4.1:
Some doubly-diagonal Padé methods for the Schrédinger equa-
tion. The order of accuracy of each method is given, along with
the value of b, the semi-bandwidth of the matrices.

Padé in space
CU [@2 [63 | @9
(1,1) | O(K* k%) | O(K%, h®) | O(K?, R*?) | O(K?, A16)
1 2 3 4
Padé | (2,2) | O(k*, h*) | O(k*, %) | O(K*, 2'?) | O(K*, A16)
in 2 4 6 8
time | (3,3) | O(k% A*) | O(k%, %) | O(k%, h'2) | O(k®, A16)
3 6 9 12
(4,4) | O(K®, h*) | O(K®, B®) | O(K®, h1%) | O(k8, h18)
4 8 12 16

A similar statement holds for schemes based on other Padé approximations in time.

The accuracy and work requirements for the Padé schemes can be read off directly from the
values of n, m, v and p. In Table 4.1, we have listed the accuracies of a special subset of the
Padé difference methods, namely the doubly-diagonal schemes, i.e., schemes based on diagonal
Padé approximations in both time and space (the Padé (n,n; p,) schemes). The importance
of this subset is based on Theorems 4.1.1 and 4.1.2 which imply that Padé schemes that are
diagonal in time are norm-conserving and schemes that also are diagonal in space maximize the
spatial order of accuracy for a given stencil width. Table 4.1 also gives the semi-bandwidth of
the matrices arising in each method. The table illustrates a general property of the Padé family
of schemes, namely, that, for a given amount of work per time step, there is the option of trading
off temporal accuracy for spatial accuracy. In the factorization approach of [52], each factor (a
tridiagonal matrix) contributes two additional orders of accuracy in time. With our Padé in time
and space framework, if we use the doubly-diagonal Padé schemes, the factorization approach can
be extended so that each tridiagonal factor contributes either two additional orders of accuracy
in time or four orders of accuracy in space.

We now discuss the condition numbers of the matrices in the Padé schemes for the Schrédinger
equation. Let

Av(Tyr) = Quu(T) +iZPr(T). (43)

1For the diffusion equation, the use of the factorization approach necessitates the use of complex afithmetic,
partly off-setting the gains. For the Schrédinger equation, this is not an issue, since complex arithmetic is used
anyway.

28

For each (v, p1) pair shown in Table 3.2 and a fixed r, the spectrum of the matrix Ay u(T,r) lies
outside a neighborhood of the origin that does not depend on m. This can be verified numerically
by examining the image of the interval [~4,0] under the mapping z — Ayu(z,r). As a result,
asymptotically, the condition number of these matrices depends on their order m only indirectly,
through the mesh ratio r. (We do not know if this property holds for all (4, v) pairs.)

In Figure 4.1, we have plotted the condition number of cond(A,,,(T,r)) as a function of r,
for m = 500 and (v,4) = (0,1), (1,1) and (2,2). For small r, cond(A,,(T,r)) ~ cond(Q,,,).
As r increases, the condition number eventually becomes linear in . For a fixed m, this says
that the condition number of A, ,(T,r) grows linearly with the step-size k. Interestingly, the
higher-order method (v, x) = (2,2) is somewhat better conditioned than Crank-Nicolson and
Crandall-Douglas for » > 1. The truncation error for Crank-Nicolson time-differencing grows
quadratically with k. Both these effects combine to limit the time step that can be used in
practice, even though there is no stability limit on r.

The Padé (1,1;v, u) schemes discussed above have the same order of accuracy in time (second)
as the underlying splitting and it may appear that there is nothing to be gained by using a higher-
order in time method for C4(k). However, if the potential is smooth; the constant in front of
the k? term in the splitting error may be much smaller than the constant for Crank-Nicolson. If
this is the case, it makes sense to use a higher-order in time method for (4.1), so that the overall
error in time is determined by the splitting error. One possibility is to choose a member of the
Padé (2,2; v, u) family of difference schemes:

2P + OB~ T et U7
= [l 506 - P (49
The Padé (2,2; v, 1) schemes can be written in fac;‘.ored form as follows.
(0@ + 5P (@D] 0 = [Bun(6) —inBuu())] U,
[0a8) + 5P U™ = (a8 — Tt Bu(eD)] 074, (4

where z; = 3+1+/3. These schemes are O(k*, h2(*+#)) accurate for (4.1) and the semi-bandwidth
of the matrices is 2 max{v, u}. For (v,) = (1, 1), the resulting split-step, implicit finite difference
scheme will be referred to as SS-FD(4,4) (see Example 5 in Section 3.3).

4.2 A Split-step Explicit Finite Difference Scheme

In this section, we describe a split-step implementation of an explicit finite difference scheme for
the Schrédinger equation. The basic idea is to stabilize the (unconditionally unstable) explicit
Euler method by applying a small (O(A2)) complex artificial viscosity.

29

102 LR AL T TTTTTT | LR R LI LR RERLL P T TATITT

e 10V F]

] -]

oM -]

= — _

> - _

=z L _

z - _

o

t - -

e

=z

O

O 1Q0 - -

10—1 1 Lr 1 Lt ittt 1 L Ll 1 L i riitn] [N EREL]! 1 Lttt

10—4 10-3 102 10-1 100 101 102

MESH RATIO, R
Figure 4.1: The condition number of the matriz (4.3) of the Padé (1,1;v,4) difference scheme

vs. the mesh ratio r. The order of the matrices, m, is 500. (v,1) = (0,1) (solid line), (1,1)
(dashed line) and (2,2) (dotted line).

30

In [41], a family of such schemes was introduced and the scheme in this family with the least
restrictive stability condition was identified. We will use this scheme to approximate the operator

e~*D% and refer to it as the 5P scheme. This scheme is

Ut = 1 - s 4 %(1 - z'))ag] U : (4.6)

With this choice of C4(k), the resulting split-step scheme of the form (2.23) will be referred to as
the split-step five-point scheme (SS-5P). The accuracy of this scheme is O(k, h?) and the stability
limit is r = h—kz < %— The work at each time step is a (penta-diagonal) matrix-vector product.

An a.dvantage of our split-step implementation of this explicit method over the original unsplit
version is that the stability analysis can be done by Fourier techniques and is thus considerably
simpler. Instead of a complicated application of the energy method to prove the stability of the
scheme for the full Schrodinger equation [42], we can combine the stability result for the scheme
for tu; = uy, from [41] with Theorem 2.3.2 to get the following result:

Theorem 4.2.1 The S5-5P scheme is contractive for r < 3

On conventional (serial) computers, a first-order accurate method is generally not competitive
with the higher-order methods that we will discuss below. On a parallel computer and in a
situation where the accuracy requirements are modest, the SS-5P method may prove to be
competitive. However, the use of this method is essentially ruled out on parallel computers for
which the communication start-up cost is high relative to the arithmetic speed (e.g. the Intel
iPSC/1).

4.3 Three-level, Implicit Finite Difference Schemes

We now propose a family of three-level schemes for the Schrédinger equation, all of which treat
the z-derivative term implicitly and the Vu term explicitly. The motivation is to devise schemes
that have the high accuracy of the Crandall-Douglas and the FD(2,8) schemes, without using
the split-step approach. Unfortunately, these schemes are only conditionally stable as opposed
to the unconditional stability of the split-step versions.

Let P and Q be polynomials of degree y, v, respectively, that define the (v, u) Padé approxi-
mation to D7 of the form (3.9). Then the three-level scheme that we propose based on this Padé
approximation is

Q&2 +irP(63)] U™ = [G(82) - irP(62)] U™ - 2ikQ(82)(VU™). (4.7)

As in Section 4.1, we are interested in the Padé (1,0), Padé (1,1) and Padé (2,2) meth-
ods, which we will refer to as 3L-CN (three-level Crank-Nicolson), 3L-CD (three-level Crandall-
Douglas) and 3L-FD(2,8) (three-level FD(2,8)). Using the definition of order of accuracy for
multi-level schemes proposed in [4], it is straightforward to show that the three-level schemes
described above are second-order in time and have the same order of accuracy in space as the

31

underlying Padé approximant. Thus, the local truncation errors for 3L-CN, 3L-CD, 3L-FD(2,8)
are O(k?, k%), O(k?, h*) and O(k?, h®), respectively.

One difference between (4.2) and (4.7) is that the factor 7/2 in (4.2) becomes r in (4.7). This
reflects the fact that the “effective” time step for the three-level scheme is doubled since the
implicit part involves the time levels n — 1 and n + 1. This results in a fourfold increase in the
temporal component of the truncation error as compared to the corresponding split-step, finite
difference schemes with the same time step .

The characteristic polynomial of a difference scheme is defined in [46]. Assuming that V is a
constant, the characteristic equation for a scheme of the form (4.7) is

(OO +irP()E + 26V ENE — (G(N) —irB()) =0, (45)

for A € [—4,0]. If all roots of the characteristic polynomial of a difference scheme of the form
(4.7) have modulus one and are distinct, for all A in the spectrum of the matrix that represents
62, the scheme is unitary. The roots of the characteristic polynomial (4.8) are

= -—ikV@(,\) + \/@()\)2(1 — k2V2) 4 r2P()\)2
Q(\) +irB(N)

If |kV| < 1, then the square root is real and

§

FV2QM)? + Q)X(L — k2V?) + r2P())?

e i :
GO + B0

= 1

Since the expression under the square sign is non-zero, it follows that the two roots are distinct.
This proves the following theorem.

Theorem 4.3.1 If V is a constant and |kV| < 1, then the characteristic polynomial of the
scheme (4.7) has distinct roots of modulus one. Hence, with this restriction on k, the scheme is
unitary.

Thus, the split-step approach can be dispensed with, at the cost of doubling the effective
time step, and introducing a limit on the time step that depends on the potential V.

4.4 Higher Order in Time Schemes

In this section, we discuss three different approaches to constructing numerical schemes for the
Schrodinger equation that have a higher order of accuracy (than two) in time. Richardson
extrapolation and deferred corrections are two other devices for obtaining higher-order methods
but we will not discuss them here.

We recall that the operator H was defined to be: Hu = ugy + Vu.

32

4.4.1 Schemes based on a Taylor series approximation

A simple way to approximate the operator exponential exp(—tkH) is by the truncated Taylor
series. A typical member of this family is the third order scheme

Calk) =1 —ikH — %kZ’Hz + ék3H3.

In the Padé terminology, these schemes are are Padé (0,n) in time. In the context of ordinary
differential equations, Henrici [45] distinguishes between a direct and an indirect (Runge-Kutta)
implementation of these methods.

If we divide the stability limit by the order of the method (which is equal to the number
of applications of the operator H (1.1)) we have a criterion for comparing efficiency. For the
conditionally stable third- and fourth-order schemes, this works out to —\g——?'- and 3?, respectively,
implying that the fourth-order Taylor series method is more efficient than the third-order method.
From Theorem 3.1.3 we know that the Taylor series methods of orders 1, 2, 5 and 6 are uncondi-
tionally unstable for the Schrédinger equation. Thus, if we were choosing a Taylor series method
for the Schrédinger equation of order six or less, the fourth-order method would be best.

Taylor series methods lose efficiency due to the necessity of applying the the operator H
several times at each time step. As pointed out in [45], these methods can be useful in computing
the additional initial values required by multi-step methods which we will discuss below.

A spectral implementation involves applying the differential operator in H in Fourier space.
For the numerical results to be presented in the next chapter, a spectral fourth-order Taylor
series method was used to compute the additional initial values for some spectral multi-level
methods.

4.4.2 Multi-level schemes

Linear multistep methods are used extensively in the numerical solution of ordinary differential
equations [45], [44]. For the Schrédinger equation, these methods have the form

¢ ¢
Ut =3 o U 4 kHY B U™, (4.9)
r=1 s=0

The leap-frog method is a widely used method of this form and will be discussed separately.

The Adams-Bashforth family of schemes has the property that a; = 1, @, = 0, for r > 1 and
Bo = 0 (see [45]).

A spectral implementation of the Adams-Bashforth methods is mentioned in [9] for the heat
equation, u; = uz,. We will refer to the spectral Adams-Bashforth methods as SAB(¢). The
stability limits have the form kX < ¢;, where) is the largest eigenvalue of the of the matrix that
approximates the Hamiltonian. This can be written as k||H |l2 < ¢;. The constants ¢, for the
Schrodinger equation are different from those for the heat equation. The stability limits for the
Adams-Bashforth methods are quite severe and limit the efficiency of the SAB(£) family. We

33

will present numerical results for the SAB(£) methods with £ = 2, 3, 4 and 5. These methods
may be of interest when the accuracy requirements are high.

The Adams-Moulton schemes have a number of advantages over the Adams-Bashforth schemes
but their implicit nature makes them less suitable for a spectral implementation.

In this context, it should be mentioned that a result of Jeltsch [32] states that a linear
multistep method whose stability region includes the entire imaginary axis is A-stable. A classical
result of Dahlquist [43] implies that such a method must be implicit and cannot have order greater
than two. In particular, for the Schrédinger equation, the order of an unconditionally contractive
linear multistep method cannot exceed two.

4.5 Other schemes

For completeness, we give a brief review of several other numerical methods for the Schrédinger
equation. Some of these methods will be included in the comparison of methods that will be
presented in the next chapter.

4.5.1 Leap-frog schemes

The simplest variants of the leap-frog scheme for the Schrédinger equation is the LF scheme of
[38]:

U™t = gn=t — 2ir62U™ — 2%EVU™. (4.10)

It is O(k?, h?) accurate, and conditionally stable?. The stability analysis (for constant V') reduces
to examining the roots of the characteristic polynomial

m? + 2%am — 1, (4.11)
where a = k(A + V) and A € (—4/A%,0) . In particular, « is real. The roots are given by
my = —tat+V1-—al

If |o] < 1, the roots are simple and have modulus one. Thus, a sufficient condition for the
leap-frog scheme to be unitary is k|| H|| < 1.

In the Schrédinger equation the time derivative of the real part of the solution depends only
on the imaginary part and vice versa. Thus, following [51], we can compute only the real or the
imaginary part of the solution at each time level. If we write

Ut = X" +:Y",
where X™ and Y™ are real m-vectors, then this scheme, LF(R/I), can be written as

X" = X1 9ir62Y" — 2kVY™
Y™ = Y™ 2ir62X™ - 2RV X, (4.12)

2The corresponding scheme for the diffusion equation is unconditionally unstable.

34

The memory usage and computational requirements are about half those of the standard leap-frog
implementation, while the accuracy and stability properties are unchanged.

Another possibility is to use Fourier transforms to evaluate the derivative term at the inter-
mediate time level ([47]). This SLF or spectral leap-frog scheme, can be written as

Urt = Ut - 2ik [FTIDFU + VU (4.13)
where F, 7! are defined in (2.26) and D is the diagonal matrix with entries
D,, = —s26%. (4.14)

Although for band limited solutions U™, the spatial error is almost negligible, the temporal
error is still O(k?), as for the other leap-frog schemes. More importantly, the conditional stability
requires that smaller time steps be taken to improve the spatial resolution, even though this may
not be necessary for the overall accuracy. This is likely to limit the efficiency of the leap-frog
schemes (and of any other conditionally stable scheme).

A combination of the LF(R/I) scheme with the spectral in space treatment of SLF would be
more efficient than either one on its own. This is denoted by SLF(R/I).

4.5.2 An explicit scheme

In this section, we briefly state the explicit scheme of [41] for the Schrédinger equation. We have
used this scheme in a split-step framework (4.6). Here we merely state the scheme in its original
form where the treatment of the potential is incorporated into the basic scheme. The scheme for
the full Schrodinger equation can be written as

U™ = (T —irg2(1+ %(1 —i))62 — ikv] U, (4.15)

This scheme is the one with the least restrictive stability condition of all schemes in a family of
explicit methods introduced in [41].

4.5.3 The Chan-Kerkhoven scheme

Chan and Kerkhoven in [40] proposed a scheme for the Korteweg-de Vries equation and suggested
that their analysis could be extended with minor modifications to the Schrédinger equation. The
idea is to use a three-level scheme, march the solution out in Fourier space, and use the FFT
at each time step to move to physical space to evaluate the potential and then transform back.
This scheme for the Schrédinger equation can be written as

[I + kD) U™ = [I —ikD) U™ — 2%k FVF1T, (4.16)

where Z?]" is the j-th coefficient of the sine series at time level n (see (2.24)) and F and D are
defined by (2.26) and (4.14), respectively.

The cost of each time step is dominated by the cost of the two FFTs. The fact that the
scheme is implicit turns out not affect the cost appreciably, since the matrix is diagonal and
independent of time, and solving the system reduces to m complex multiplications.

35

4.5.4 Ordinary differential equation approaches
Perturbation methods

If the potential V can be written as the sum of two parts, V = Vo +W,, with Vp time-independent,
and if the Hermitian operator Hy defined by Hou = u,. + Vou has eigenfunctions ¢, with Hod, =
E, ¢, then we can write

u(z,t) = icr(t)ér(x). (4.17)

Substituting into the Schrédinger equation, we get an infinite system of ordinary differential equa-
tions. Viewing c(t)= (c1(t),ca2(t),...)T as an infinite vector, this system of ordinary differential
equations can be written as

¢(t) = Ec+Ce,

where E is a diagonal matrix, with the eigenvalues of Hy on the diagonal, and C is matrix whose
entries are

Cro = [3:(z)Viss(2)d.

The effectiveness of this technique depends on how “close” V; is to V, which is reflected in the
structure of C. In practice, one would use a finite number, IV, of eigenfunctions, and solve the
system of equations using an ODE package.

Method of lines

A different approach that also reduces the solution of the Schrodinger equation to the integration
of a system of ordinary differential equations is the method of lines. In this method, one defines
a spatial grid and uses some finite difference approximation to the derivatives. After this semi-
discretization, the vector of approximate solutions at the grid points is viewed as a function of
time and the partial differential equation is transformed into a system of ordinary differential
equations. This approach has been applied to the parabolic wave equation in [48] and [49].

4.5.5 Overview of the methods

In Figure 4.2, we use a tree diagram to depict the connections between a number of methods for
solving the Schrodinger equation in one space dimension. In the next chapter, we will present
numerical results for a number of these methods.

36

Split-step (2 Level Unsplit

N N

Spectral Spectral (3 Level)
SSF Explicit Implicit Spectral C-K 2 Level 3 Level
SS-5PT SS-CN Explicit Implicit Explicit Implicit
SS-CD
SS-FD(2,8)
SS-FD(4,4)
5-PT CN Leap-frog 3L-CN
3L-5PT 3L-CD
3L-FD(2,8)
3L-FD(4,4)

Figure 4.2: Methods for the Schrodinger equation in one space dimension. (FD = finite differ-
ence).

37

Chapter 5

Numerical Results for the
One-dimensional Schrédinger Equation

In this chapter, we present the results of some experiments with the methods proposed in earlier
chapters and compare these methods with some of the other methods we have discussed.

5.1 The Test Problem

We recall the form of the one-dimensional Schrédinger equation:

2
i = O

ot 3z TV(@:t)y, z€(ab), t>0, (5.1)

u(a,t) = u(b,t) =0, t>0,
u(z') 0) = ¢((L‘),

The test problem was adapted from the one-dimensional linear harmonic oscillator of quantum
mechanics (see, for example, [57]). For (5.1), this means choosing V(z) = —z?. For this potential,
the solution is

2 X :
u(z,t)=e"7 Y cue” P H,(z), E,=—(2n+1), (5.2)
n=0
where H,(z) denotes the n-th Hermite polynomial. The largest n for which ¢, # 0 will be referred
to as the mode number. Thus, Li~her mode numbers’correspond to more oscillatory solutions.
The computational domain was chosen to be the interval [—10, 10] with zero boundary conditions.
This is justified for the modes we deal with, because the true solution goes to zero rapidly as |z|

1 The mode numbers 7 in (5.2) should not be confused with the number of (Fourier) modes, m, used in spectral
methods to construct the approximate solution.

38

increases. This casts the problem into the form (5.1). For the splitting we will use in our tests,
SP,, the expression for the splitting error given in (2.19) simplifies to

2

i [224(z) + 2uss(2)] | (5.3)

for the potential in our test problem.

The computations were carried out in double precision (53 bit mantissa) arithmetic. All
computations were performed using FORTRAN complex arithmetic, except for the the F FTs,
which were performed in real arithmetic, using FFTPACK [5].

In discussing the accuracy of the various methods, we will use the quantity

DIGITS = max {—logm (M) ,O} , (5.4)
1U:ll2
which is a measure of the (average) number of correct digits in the computed solution, U.. The
true solution on the grid is denoted by U; and ||.||; is the discrete 2-norm.
For ease of reference, we have listed the methods that were included in the numerical tests
in Table 5.1. The table also summarizes some properties of the methods.

5.2 Selection of the Mesh Parameters

The computational efficiency of a method depends, among other things, on the choice of the time
and space mesh sizes. In this section, we discuss an approach to selecting the mesh parameters in
an optimal manner, based on solving a minimization problem. This is important for a meaningful
comparison of different methods.

Let W(k, h) be the cost of computing an approximate solution at time T by a given method
using a time step £ and grid spacing h. Let E(k, k) be the norm of the error in this approximate
solution. For a given error tolerence ¢, the optimal (k, k) pair is the solution of the following
constrained minimization problem.

(MP): Minimize W (k, k), subject to E(k,k) < e and (k,k) € S,

where S is the set of non-negative pairs (k,A) that satisfy the stability conditions (if any)

associated with the method. We have included the stability limit in (MP) only to stress the fact

~ that, for conditionally stable methods, we are constrained to remain in S. In fact, the condition

E(k,k) < € will ensure that (k,h) € S. (A violation of the stability limit leads to unbounded

growth in the computed solution.) This approach of selecting the mesh parameters based on the
solution of an optimization problem was used in [54]. Related ideas are found in [55], [58].

The optimization problem (MP) is solvable for an important special case, namely when

W (k,h) = C(kh?)™?, where d is the number of space dimensions, and Ak* + BA® is a good

approximation to E(k,%). Here, A, B and C are generic constants.

39

IR Table 5.1:

Methods used in the numerical tests. In the Stability Limit column, V refers
to the operator that corresponds to multiplication by the potential function and
H refers to the operator DX + V. The operation counts are for one-time step
and m is the number of grid points (or modes for the spectral methods).

Method Accuracy | Stability Operation
Limit Count

5S-Crank-Nicolson (SS-CN) | O(k?, h?) none 38m
(4.2), [53]
S3S-Crandall-Douglas (SS-CD) | O(k2, A*) none 38m
(4.2)
SS-FD(2,8) O(k?, h®) none 80m
(4.2)
SS-FD(4,4) O(k2, r%) none 80m
(4.4)
SS-5P O(k, h?) r<; 32m
(4.6)
SS-Fourier (SSF) O(%?) none (10logam + 12)m
[10] |
Chan-Kerkhoven (C-K) O(k%) | K||V]|<1 | (10logam + 20)m
(4.16), [40]
Spectral leap-frog (SLF) O(k*) | k||H|| <1 | (10logzm + 16)m
(4.13), [47]
Spectral Adams-Bashforth
SAB3 O(k®) | k||H|| < ¢35 | (10logam + 26)m
SAB4 : O(k*) | k||H|| < c4 | (10logem + 30)m

40

This case includes many of the finite difference schemes we have discussed, for d = 1, and the
ADI schemes for higher dimensions. The spectral methods do not fall into this group.
Even without knowing the error constants A and B, we can deduce that, with the optimal %

and A,

+

Rlmr

W*=0(e), as €—0, where o= (5.5)

w e

If a=2and d =1, then, W* = O(¢%) with 6 = &B) =1+ %, for all B > 0. Thus all finite
difference methods that are second order accurate in time will have a value of o > %, no matter
how accurate they are in space. In particular, for SS-CN, SS-CD and SS-F D(2,8), the values of
o are 1, % and g, respectively. '

The ratio of the temporal to spatial error (Ak*:BR) is B:ad. This expresses the intuitively
obvious fact that the temporal and spatial errors must be balanced at the optimal choice of k
and h. The correct balance is seen to depend on the orders of accuracy and the dimensionality.
For example, for a scheme with accuracy O(k?, h®), the optimal k and A result in a temporal
error that is four times larger than the spatial error (with d = 1).

The ratio (k/h”) remains constant as the accuracy requirement is increased, for vy = g For
Crank-Nicolson, v = 1, which means that k& /h should be kept constant for maximum efficiency?.
The special mesh ratio, r = k/h?, decreases for SS-CN, remains constant for SS-CD and increases
for SS-FD(2,8) as the accuracy requirement is increased, with the optimal choice of k and h.

The minimization problem (MP) does not have such a simple solution for the spectral methods
since the cost is W(k, h) = C(kh?)™ log(}).

5.3 Numerical Results

In Figures 5.1 through 5.4, we have plotted (the logarithm of) the cost of marching from ¢ = 0 to
t =1 as a function of number of correct digits in the final solution. This essentially corresponds to
a plot of W* versus e~! with logarithmic scaling. Thus, a smaller slope means greater efficiency.
For completeness, we have tabulated the data that was used in the plots in Tables 5.2 through
5.5.

For all the finite difference methods except SS-5P, we first estimated the error constants
A and B by solving the problem with a number of (k,h) pairs. The minimization problem
(MP) was then solved for a number of values of the accuracy parameter €. The results of the
computations with these (near-) optimal parameters are displayed. For SS-5P, k and » were
chosen to satisfy the stability limit. For the Split-step Fourier method, m = 63 was used for all
the data displayed in Figure 5.1. (Using more Fourier modes did not make the solution more
accurate in our examples.)

*Isaacson and Keller [56] reach the same conclusion for the Crank-Nicolson method applied to the heat equation
by examining an upper bound for the global error.

41

In Figure 5.1, the solution consisted of the lowest mode only (n=0, in (5.2)). Figure 5.2 is the
same as Figure 5.1, except that the solution consisted of the modes corresponding ton = 3 and 4
in (5.2). The results in Figures 5.1 and 5.2 demonstrate the effect of increasing the mode number
(energy eigenvalue) of the solution. The splitting error grows approximately like k?|E,| (due to
the uz, term in (5.3)), whereas the Crank-Nicolson time-differencing (Padé (1,1) in time) error
grows like k?|E,|* (see (2.3))%. For higher-order time-differencing schemes the temporal error
behaves like k*|E,|**!. For example, the temporal error of a scheme based on Padé (2,2) in
time behaves like k*|E,|°.

In both figures, the S5-5P, SS-CN, SS-CD and SS-FD(2,8) schemes have the same relative
performance and the slopes agree well with the theoretical values of o. The advantage of higher-
order finite difference schemes over SS-5P and SS-CN is seen to increase with the accuracy
requirement and mode number. For example, SS-CD is about 62 times more efficient than SS-
CN for 3 digits of accuracy with the lowest mode (n = 0 in (5.2)). The factor increases to 10 for
4 digits of accuracy with the same mode number. This factor is also 10 for 3 digits of accuracy
with higher modes (n = 3,4). The improvement of the SS-Crandall-Douglas scheme over SS-
Crank-Nicolson does not require additional smoothness of the solution. The other higher-order
finite difference schemes do require the existence of higher derivatives.

The relative ranking of these two methods is reversed as we go from Figure 5.1 to Figure 5.2.
S5S-CD and S5-FD(4,4) are both O(k?,h*) accurate, but the local truncation error of SS-FD(4,4)
does not have an O(k?) Crank-Nicolson time-differencing error. This is because in the first case,
the Crank-Nicolson error is comparable to the splitting error and the extra work done by SS-
FD(4,4) to eliminate the Crank-Nicolson error results in a loss of efficiency. However, with the
higher mode numbers, the Crank-Nicolson error is larger (by a factor of roughly 100) than the
splitting error and SS-FD(4,4) is superior to SS-CD.

For the Split-step Fourier method, the overall error is essentially due to the splitting error. In
Figure 5.1, we see that SS-FD(2,8) is more efficient than SSF up to an accuracy requirement of
over 6 digits. In the case of higher modes, SS-FD(2,8) is less efficient than SSF due to the large
Crank-Nicolson error. However, for low accuracy requirements, SS-FD(4,4) is more efficient than
SSF. |

For other potentials, we would expect to see the same qualitative behavior, with the higher-
order finite difference methods being computationally more efficient for lower modes and mod-
erate accuracy requirements and the SSF method becoming more efficient for higher modes.
However, the cross-over point (in terms of mode number and/or accuracy requirements) depends
on the splitting error which in turn depends on the potential. For potentials that have steep
gradients, the splitting error will be larger and the cross-over point will be shifted in favor of the
higher-order finite difference schemes.

In Figures 5.3 and 5.4 we compare the performance of several spectral methods, including
the SSF method. The results for SS-CN and the best finite difference method are also included.

3This behavior has been pointed out in [12] in the context of the parabolic wave equation.

42

The spectral Adams-Bashforth, C-K and spectral leap-frog methods are conditionally stable; for
these methods the left end of the curve corresponds very nearly to the smallest step size allowed
by the stability limit. (Any reduction in the time step, k, results in an unbounded growth in the
computed solution.) The number of modes, m, for all spectral methods was fixed at 63.

The efficiencies of the C-K and SLF schemes are very close. The C-K scheme has the ad-
vantage of an extended interval of stability (see the Stability Limit column in Table 5.1). The
consequence is that the left end-point of the C-K curves hes further left than that of SLF). This
difference grows with the number of modes m.

The SAB schemes have more restrictive stability limits but do offer a simple mechanism for
computing accurate (7 digits or more) solutions at a lower cost than the second-order schemes.

The stability limits of SAB2 and SAB3 are very close, which implies that SAB3 is always
preferable to SAB2, provided the additional storage required by SAB3 is available.

However, Figures 5.3 and 5.4 indicate that the SAB family is inferior to the other spectral
schemes for modest accuracy requirements.

The combined effect of these comparisons is the following. The high-order finite difference
schemes are the most efficient methods for solving the Schrodinger equation with low to modest
accuracy requirements. There is an intermediate accuracy range for which SSF is most efficient.
Finally, the higher-order spectral Adams-Bashforth methods are more efficient than SSF for high
accuracy requirements. The SSF method is least affected by an increase in the mode number
and the domain of superiority of SSF will expand as the mode number is increased.

43

105 I | T T T T

- SS—FD(4,4) |
1041 =
= SSF3
h'd
E 103k 3
= - .
102} 3
101 '
0 1 7

DIGITS

Figure 5.1: Work vs. Accuracy. One unit of WORK is 1000 real floating point operations and
DIGITS measures the number of correct digits in the computed solution at t=1. The solution
contained only the lowest mode of the linear harmonic oscillator (n = 0 in (5.2)). The SS-5P
data is based on taking the largest step allowed by the stability limit. The mesh sizes for the other
finite difference methods were chosen by approzimately solving the minimization problem (MP).
For the split-ste; Fourier method, m was chosen to be 63 for all the data points.

44

105 ¥ T i T J

= SS—CD 3
- SS#FD(2,8) -
10k -
[SS-5 i
=
o 10°F -
= - .
102 =
101 ! ! 1 1 | 1
0 1 2 3 4 5 6 7

DIGITS

Figure 5.2: Work vs. Accuracy. Same as Figure 5.1, except that the solution contained only the
third and fourth modes. (n =3 and 4 in (5.2)).

45

105: i . I T =
- SS—CN |
- " SAB(2) ~ SAB(3) SAB(4)
- SAB(5F
C x]
X
S 103: =
= - .
102 =
[ssF/i |
; ; /SS—FD(2,8) -
101 A L | 1
0 5 10 15

DIGITS

Figure 5.3: Work vs. Accuracy. Spectral methods. Lowest mode only. For the spectral methods,
m was chosen to be 63 for all the data points.

103 T

- SAB(3) SAB(4) SAB(S) 3
1044 3
X
% 103k -
= -]
1021 :
[5S-FD(4,4) :
101 . 1] 1
0 5 10 15

DIGITS

Figure 5.4: Work vs. Accuracy. Same as Figure 5.8, ezcept that the solution contained only the
third and fourth modes. (n =3 and 4 in (5.2)).

47

Table 5.2:

Data for Figure 5.1, lowest mode of the linear harmonic os-
cillator.

Method m N WORK DIGITS
SS-5P 198 | 200 1,267 2.38
613 | 2003 39,290 3.38
998 | 5000 | 159,680 3.78
SS-CN 90 6 205 2.24
208 | 18 203.8 3.19
1325 | 55 2,769 4.26
2855 | 172 18,660 5.14
SS-CD 31 | 5 5.9 2.32
54 15 30.8 3.11
97 48 176.9 4.11
172 | 150 980 5.10
SS-FD(2,8) | 19 5 7.6 2.09
2 13 25 2.92
33 44 116 3.97
4 | 136 478 4.96
60 | 430 2,064 5.99
SS-FD(4,4) | 31 8 19.8 2.51
54 23 99.4 3.40
97 74 574 441
172 | 233 3,206 5.41
SSF 63 10 454 2.44
63 | 100 453 4.44
63 | 500 2,268 5.84

48

Table 5.3:

Data for Figure 5.2, third and fourth modes of the linear har-
monic oscillator.

Method m N WORK DIGITS
SS-5P 198 200 1,267 0.99
315 | 500 5,040 1.34
455 1000 14,240 - 1.56
SS-CN 138 19 99 1.01
435 59 975 2.00
1,376 186 9,725 3.00
SS-CD 84 51 162 2.02
149 161 911 3.02
24 | 511 5,126 4.01
470 1,615 28,843 5.01
SS-FD(2,8) 45 83 611 2.51
61 262 1,278 3.53
81 829 5,371 4.53
108 | 2,621 22,645 5.53
SSFD(44) | 83 | 61 106 2.37
148 53 627 3.40
263 169 3,555 4.41
496 534 21,189 5.53
SSF 63 10 45 1.72
63 100 453 3.72
63 1000 4536 5.72

49

Table 5.4:

Data for Figure 5.3, lowest mode of the linear
harmonic oscillator. '

Method | N WORK DIGITS
CK 100 504 474
200 1,008 5.34
500 2,520 6.14
1,000 5,040 6.74
SLF 200 | 957 5.38
500 2,394 6.18
1,000 4,788 6.78
2,000 9,576 7.38
SAB(2) | 200 1,033 0.00
250 1,291 5.12
500 2,583 5.78
1,000 5,166 6.38
10,000 | 51,660 6.98
SAB(3) | 200 1,083 1.66
250 1,354 7.62
500 2,709 8.52
1,000 5,418 9.43
SAB(4) | 500 2,835 11.26
1,000 5,670 12.62
2,000 11,340 13.52
SAB(5) | 1,000 5,922 14.54
5,000 | 29,610 14.46

50

Table 5.5:
Data for Figure 5.4, third and fourth modes of
the linear harmonic oscillator. .

Method N WORK DIGITS
C-K 80 403 0.00
100 504 2.18
200 1,008 2.78
1,000 5,040 4.18
SLF 200 957 2.62
500 2,394 3.42
1,000 4,788 4.02
2,000 9,576 4.62
SAB(2) | 200 1,033 . 0.00
250 1,291 2.42
500 2,583 3.02
1,000 5,166 3.62
10,000 51,660 4.23
SAB(3) | 200 1,083 1.12
250 1,354 3.93
500 2,709 4.83
1,000 5,418 5.73
SAB(4) | 200 1,134 0.00
500 2,835 6.62
1,000 5,670 7.82
2,000 11,340 9.02
SAB(5) | 500 | = 2,961 0.00
1,000 5,922 9.90
5,000 29,610 13.38

51

Chapter 6

Methods for the Schrodinger Equatlon
in Two Space Dimensions

In this chapter, we present two-dimensional analogues of some of the methods introduced ear-
lier for the numerical solution of the Schrédinger equation. The two-dimensional form of the
Schrédinger equation (SE-2d) is

Ou %u Ou

25‘{ = @ + a—yg + V(w,y,t)u, - z€R= (a, b) X (C,d), t> 0, (61)

u(z,y,t) =0, for (z,y)€ OR, t>0,

u(z,y,0) = ¢(z,y), for (z,y)€R.

We will omit a discussion of methods for which the extension to two space dimensions is straight-
forward, such as the split-step explicit scheme of Section 4.2, the leap-frog schemes and the
spectral Adams-Bashforth methods.

We will assume for simplicity that the number of points and the mesh width are the same in
the z and y directions. Thus, the grid points (z;,y;) are given by z; = a 4+ jh and y; = ¢ + [A,
where A = (b—a)/(n+1) =(d—c¢)/(n+1) and j,I = 1,...,m. Unless otherwise stated, the
grid points will be numbered in the “natural” order (by rows).

Let U7, be the approximate solution of (SE-2d) at (z;, yi,t,). With the subscripts omitted,
u" denotes the complex m2-vector with components ™, with the natural ordering. We will use
the following finite difference operators:

2 n — n n n n n
5x Uj,l: j-l,l"QU:‘,I"‘ 41,0 5 il =Yji-1 "2Uj,z U1+1

Differentiation with respect to z and y is denoted by D2 = 8—1:2- and D2 = 8‘2;
Analogous to the one-dimensional case, V/} denotes the value of the potential function V at
(%7, Y1, ta). The m? x m? diagonal matrix with diagonal entries Vi will be denoted by V", with

the natural ordering.

52

6.1 The Crank-Nicolson Method

The Crank-Nicolson scheme for the two-dimensional Schrodinger equation (SE-2d) has the form
[1 + = (824 67) + ﬂg-vnﬂ} Ut = [1 ~-S (82 +8) - ivn} ur. (6.2)
2 2 2 \F ,
Although the structure of (6.2) is a simple generalization of the one-dimensional Crank-Nicolson
scheme(2.2), the matrix on the left-hand side now has the non-zero structure of the discrete
Laplacian, with non-constant main diagonal. This precludes the use of a fast solver for the
implicit equations and makes the solution of this linear system more costly. Possible choices for
solving the implicit equations are preconditioned iterative methods, or a sparse direct solver. In
both cases, the work per grid point grows as the space mesh width is reduced. The truncation
error of the Crank-Nicolson scheme in two dimensions is still O(k2,A2). If V is independent of
t, sparse Gaussian elimination is very attractive (provided sufficient memory is available), since
we compute the LU factorization only once. By the same token, any pre-processing required for
the preconditioner need only be performed once. For the time-dependent Schrédinger equation,
where a sparse linear system has to be solved at each time step, iterative methods are better
suited to exploiting a good initial guess, which can be generated by a predictor step. Closely
related issues concerning the use of iterative methods for stiff systems of ordinary differential
equations are discussed in [65] and [60].

6.2 The Split-step Fourier Method

The split-step approach discussed in Chapter 2 (Section 2) can be applied to the Schrodinger

equation with more than one space dimension. In the case of two-space dimensions, the operators
A and B are

A=—z’(82 +22—)=—i(D2—LD2) (6.3)
- Or? 8y2 z ! Ty :
and .

B = —iV(z,y). (6.4)

As before, a split-step scheme based on SP, has the form

U = Cp () Ca(k)Cs (k> U, (6.5)

where C’A(2) and Cp(k) are schemes for u; = Au and u; = Bu, respectively (i.e., approximations
to e*4 and e*P respectively). The O(k?) accuracy ~f SP, is not altered as we go to higher
dimensions. : '

If we write grid-valued functions, X, ¥ as two-dimensional arrays, then ¥ = Cp(k)X can be
written componentwise as

Y= e"ikv(xf‘y’)Xj,l, for j,l=1,....m. (6.6)

33

All split-step methods we will consider for the two-dimensional case will treat the potential V
this way.

For the split-step Fourier method in two dimensions, the spectral approximation C4(k) is a
direct analogue of the one dimensional case. We state it for completeness. Given a grid-valued,
double-indexed vector X, we compute Y = C4(k)X as follows. First, we compute the coefficients
,er of the truncated sine series for X:

ls7
]I—ZZX,ssm(+1> in(s_:l),‘for Hl=1,...,m

r=1s=1 m

Next, the Fourier coeflicients f"m of Y are given by

oy ik 2+2 2/12 35
}/r,s—e () er,

k]

where L = (b— a) = (d — ¢). Finally we evaluate the double sine series for Y

ZZ jrm) Ism .
_ZZ s (m+1> (+1>, for j,l=1,...,m

r=1s=1 m

The first and third steps each require a two-dimensional discrete sine transform, which can
be implemented in terms of 2m one-dimensional fast sine transforms (m in each coordinate
direction). This defines the split-step Fourier method in two space dimensions (SSF-2d). *

The stability results for SSF-2d are the same as those for the SSF method. In particular,
SSF-2d is unconditionally unitary (and hence stable).

This scheme has been implemented in the context of ocean acoustics [68].

6.3 Split-step Padé Schemes

The split-step finite difference methods we propose are based on the splitting SP, i.e., are of the
form (6.5), and treat the potential V in the same way as the split-step Fourier (SSF-2d) method.
We use Padé approximations to the second derivative operators with respect to z and y (D2 and
D3, respectively) to-construct schemes C4(k) for

us = —i(D? + D?)u. (6.7)
In the following, we will always apprbximate D? and Dz with the same Padé approximation, i.e.,
D2~1P(62)(113> D2~_1_1:3(52)(_1P)
: Q) \ A Q. ORQ(E) T R Q,

whereby the dependence of P and on (v, 1) in the Padé approximation is not explicitly denoted.
One could use approximations of different orders for D? and D2, if this would result in greater
efficiency.

54

Consider the following family of schemes C4(k) (parameterized by (v, 1)) for use in the split-
step approach (6.5),

000+ 520+ RO U = [0.0, - TR0, + RO U (e3)

As in the one-dimensional case, all the schemes in this family are unconditionally stable for real P
and Q. The corresponding matrix is unitary and the split-step finite difference method obtained
from such a scheme is thus unconditionally unitary.

For (v,u) = (0,1), (1,1) and (2,2), we get the Crank-Nicolson (CN-2d), Crandall-Douglas
(CD-2d) and FD(2,8)-2d schemes for (6.8), respectively. Each of these schemes is second order in
time and has the same accuracy in space as the underlying Padé approximant. The corresponding
split-step schemes, SS-CN-2d, SS-CD-2d and SS-F D(2,8)-2d, have the same order of accuracy
(since the splitting error is also second order in time).

The matrices in the C4(k) part of SS-CN-2d, SS-CD-2d and 5S5-FD(2,8)-2d, (i.e., the matrices
in (6.8)) have a special structure that can be exploited to reduce the cost of solving the implicit
equations. This is an important advantage of the split-step approach which allows a separate
treatment of the operators A and B defined in the previous section. For (, p) = (0,1), the ma-
trix has the non-zero structure of the standard five-point discretization of the Laplacian, namely
block tridiagonal, with tridiagonal matrices on the main (block) diagonal, and diagonal matrices
on the off-diagonal blocks. The matrix for the Cs(k) in the split-step Crandall-Douglas (SS-CD-
2d) method ((v,) = (1,1)) has the non-zero structure of the discrete Laplacian corresponding
to a fourth-order nine-point stencil, namely, block tridiagonal, with tridiagonal matrices in all
the blocks. The matrix for the split-step FD(2,8) scheme ((v,) = (2,2)) is block pentadiago-
nal, with pentadiagonal matrices in each block, which corresponds to an eighth-order, 25-point
discretization of the Laplacian.

The implicit equations for all three schemes can be solved using a straightforward extension
of a “fast Poisson solver” based on FFTs in one direction and tridiagonal or pentadiagonal solves
in the other (referred to as the matrix decomposition method in [59]). This is possible because
the domain is a rectangle and the equation has constant coefficients. The key idea is that, for
all three methods, the sub-matrices in each of the blocks are all diagonalizable by an FFT (more
precisely, a fast sine transform). This is related to the fact that, on a rectangular grid, forming
discrete sine transforms along the rows commutes with the operation of applying 53 along the
columns. After performing FFTs in the z direction and re-ordering the unknowns by columns,
we arrive at a set of tridiagonal systems, one for each grid column, for CN-2d and CD-2d and a
set of pentadiagonal systems for FD(2,8). The principal difference with a standard fast Poisson
solver is that a constant must be added to the main diagonal and that complex arithmetic is
used. The operation count for a fast solver on an m x m grid is O(m?log, m) for the FFT part
and O(m?) for the tri- (penta-) diagonal systems.

6.4 Split-step ADI Methods

To reduce the operation count, from O(m*logom) for SS-CN-2d and SS-CD-2d, we now consider
alternating direction implicit (ADI) variants of these methods which have operation counts that

55

are O(m?). ADI methods for the diffusion equation have been studied extensively since the mid-
1950s ([67], [64]). A closely related approach are the locally one-dimensional (LOD) schemes (see
[16]). A review of ADI and LOD methods can be found in [1].

6.4.1 ADI schemes for iu; = u,, + Uyy

Using the notation of (6.8), we can write a family of ADI schemes for (6.7) as

G-+32]0 = [o,- 3R]0

[Qy + %Py] Uttt = [Q, - —2~Px] U, | (6:9)

where the pair (P, Q) corresponds to a choice of (v,). The matrices in (6.8), have the following
approximate factorization:

X x0T e s o N L rt. o
QaQy + o (FPoQy + P,Qs) = (@ = EPm)(Qy + EPy) - prpy,
Thus, we can see that (6.9) differs from (6.8) in only the following term.
r2 -
R PP, (U™ - U™).

This shows that each such ADI scheme is an O(k?) perturbation of the scheme in the class (6.8)
with the same P and Q. The point of introducing this perturbation is that it allows us to factor
each of the matrices in (6.8) into two simpler ones. For Padé (1,0), this corresponds to the well-
known fact that the standard Peaceman-Rachford ADI method for the diffusion equation can be
viewed as a second-order perturbation of the Crank-Nicolson method [1]. We will refer to this
scheme as the PR scheme, for Peaceman-Rachford, although the name ADI-CN would be more
consistent with our naming convention. The ADI scheme based on the Padé (1,1) approximant
is a second-order perturbation of the Crandall-Douglas scheme, CD-2d, and will be referred to
as ADI-CD. Finally, ADI-FD(2,8) is the ADI scheme based on the Padé (2,2) approximation to
the second derivative operator.

For the schemes PR (= ADI-CN) and ADI-CD, the first half-step involves forming m tridi-
agonal matrix vector products along the columns and then solving m tridiagonal linear systems
along the rows. The second half step has the same operations, with the roles of z and y reversed.
The ADI-FD(2,8) scheme requires solving pentadiagonal systems along the rows and the columns
of the grid on successive half steps. For all three ADI schemes, the work per time step is O(m?).

If we write (6.9) as

U™ = C4(k)U™,

then C4(k) is unitary. This means that the schemes (6.9) are unconditionally stable and fur-
thermore, the split-step ADI methods for (SE-2d) based on these approximations to exp(kA) are

56

also unconditionally stable. We shall refer to these as SS-PR, SS-ADI-CD and SS-ADI-FD(2,8).
These methods are second order in time and have the same accuracy in space as the underlying
Padé approximant.

An improved implementation of ADI schemes that exploits a relationship between the ma-
trices in (6.9) to reduce the operation count for each step is described in [66]. The extension of

this idea to the Schrdédinger equation can be described as follows. Suppose that, for a given U,
U is defined by

SEU.

~ O IT ~ ~
[Q.’L‘+ EPx]Ul = (Qz - 2

Then U' can be obtained more efficiently as follows:
Q. + Z%R}U* =Q.U,
and
Ut =2U* - U.

Thus, a matrix-vector product involving a complex tridiagonal matrix is replaced by one involving
a real tridiagonal matrix.

In [62], an ADI method was stated for a generalization of the the standard diffusion equation
in three space dimensions that includes the Schrédinger equation with V = 0 as a special case.
In [61], an ADI scheme is analysed for the two-dimensional Schrédinger equation with V = 0
and a remark is made on how one might incorporate a non-zero potential, namely by going to a
three level scheme, using Crank-Nicolson between the first and last time level, and treating the
potential at the intermediate level. In [34], a higher order accurate ADI scheme was introduced
for the diffusion equation.

6.4.2 Alternating sweep ordering in ADI methods

We now describe variants of the SS-ADI methods that are potentially better suited for imple-
mentation on parallel computers. The following idea is also applicable to the LOD variants.

We will refer to the half step in the ADI scheme that involves tridiagonal solves in the z-
direction as the “X” half step and the other half step as the “Y” half step. Two successive ADI
steps in the standard form can be denoted symbolically as (X,Y), (X,Y).

The idea of alternating sweep ordering is simply to interchange the order of the X and Y
half steps on successive steps. In the notation introduced above, two successive steps of ADI
with alternating sweep ordering (ASO) can be denoted symbolically as (X,Y), (Y,X). The
point of this modification is that, in some approaches to implementing ADI methods on parallel
computers, the ASO variant can lead to a reduction in the communication overhead.

Since 62 and 62 commute, the alternating sweep ordering does not alter the accuracy or
stability of the underlying split-step ADI schemes.

[V}
-1

Chapter 7

Solving Tridiagonal Linear Systems on
a Hypercube Multiprocessor

In this chapter, we study the solution of tridiagonal systems of equations on hypercube multi-
processors. A number of methods for the Schrddinger equation require this operation (including
the Alternating Direction Implicit methods) and this chapter prepares the ground for Chapter
8, where we will study hypercube algorithms for ADI methods.

We give a brief description of the hypercube architecture and the Intel iPSC/1 and iPSC/2,
describe a performance model and review Gray codes, mesh embeddings and transposes on
hypercubes. We then discuss hypercube methods for single and multiple tridiagonal systems.

7.1 Hypercube Multiprocessors

7.1.1 The hypercube architecture and the Intel hypercubes

A hypercube multiprocessor is a parallel computer with P = 2¢ processors, for some non-negative
integer d, called the dimension of the hypercube. The processors P; are numbered 0 through
P —1 and each processor is connected to precisely d other processors. Let j € {0,...,P—1} and
let j = (bg-1-..b1bo)2 be the binary representation of j. Then the i-th neighbor of P; is processor
Pi jy where n(z, 7) is the number whose binary representation differs from that of j in the i-th
lowest bit only. For example, if P = 64 (d = 6), and we choose j = 23, i.e., j = (10111),, then
the zero-th neighbor of Pp3 is (10110), = 22, the first neighbor is (10101), = 21, and the fourth
neighbor is (00111); = 7. Clearly, if P is the i-th neighbor of P; then P; is the i-th neighbor of
Pk. v

Some basic properties of hypercubes are discussed in [101], [98], and in some of the papers in
[76] and [77.

We have conducted experiments on both the iPSC/1 and the iPSC/2. Both are MIMD
(multiple instruction, multiple data) machines with distributed memories (four Megabytes per
node). Communication between processors is achieved by message-passing. In practice, one often
has the same program running on all the nodes but the MIMD property allows an overlapping

58

of different types of activity on different nodes through conditional statements that can be data-
dependent or depend on the processor number. Both machines were programmed in FORTRAN.

Each iPSC/1 node consists of a processor board with a 80286/80287 CPU and floating point
unit and four Megabytes of memory. Each node is capable of 30-40 Kflops (thousand floating
point operations per second) in FORTRAN. Each communication activity has a start-up cost and
a transfer time associated with it. For all practical purposes, communication and computation
cannot be performed concurrently and the iPSC/1 cannot use multiple communication ports
simultaneously.

The iPSC/2 nodes have a 80386 processor and the iPSC/2 on which our experiments were
performed had a Weitek 1167 floating point chip on each node. Each node can achieve close to
0.5 Megaflops (million floating point operations per seconds) in FORTRAN.

7.1.2 The .performance model

In this section, we describe the model we will use to predict the performance of parallel programs
running on a hypercube.

Modeling the behavior of parallel programs is in general not an easy task. The total parallel
time is determined by the dependencies in the algorithm which can extend across many processors
in an arbitrarily complex, possibly data-dependent manner. For example, a program that passes
a message around a ring embedded in the cube will take longer than one in which each processor
simply exchanges data with its zero-th neighbor, even though each processor does one send and
one receive to/from a nearest neighbor in both cases.

However, the problem becomes simpler when we restrict ourselves to reasonably structured
algorithms. If, in addition, it is possible to map the computations onto the cube in a balanced
manner, then a simple model will give a good estimate of the time required. In such cases,
inter-node communication has a synchronizing effect and the parallel program can be analysed
in terms of separate phases defined by the communication activities.

We now introduce some notation that will be used in our model and in the subsequent
discussion.

The time to send n bytes of data to a nearest neighbor is
Teomm(n) = o + nT, (7.1)

assuming that messages are not packetized by the communication software. The iPSC/1 does
in fact break messages down into B = 1024 byte packets, each of which has a start-up cost &
associated with it. Thus a m-~e accurate model for the iPSC/1 is

Teomm(n) = o+ mod(n,B)r + 5] (6+Br)=0+ %] +nr. (7.2)

On the iPSC/1, ¢ ~ 1.5 milliseconds, ¢ ~ 0.75 milliseconds, and 7 &~ 1 microsecond = 0.001
milliseconds.

59

Table 7.1:

Notaiion.

w
o

teopy

P

Py
P,=P/P,
d =log, P
d; =log, P,
d, = log, P,
Nz, N,

N =N; N,

time for one floating point operation

start-up time for inter-node communication

time to transfer each byte in inter-node communication
time (per byte) to transpose a rectangular array

number of processors in hypercube

number of processors in processor mesh in x direction
number of processors in processor mesh in y direction
dimension of hypercube

number of dimensions in x direction in the processor mesh
number of dimensions in y direction in the processor mesh
number of grid points in x, y directions, respectively.

total number of grid points

60

This model makes no attempt to account for the variability in the communication times on the
iPSC/1 for repeated runs with the same input parameters. This is caused by the non-repeatable
pattern of failures in the sends or receives which cause the sending processor to timeout (on
the order of 10 milliseconds!) and try again. Such a “failure” effects performance but not
the correctness of the program, since the communication software guarantees that the message
will eventually get through, provided sufficient system buffer space is available. The variability
makes it necessary to use average times over a series of runs as the measure of performance. The
minimum time over many runs is fairly repeatable and is closer to the model times than the
average, probably because it corresponds to runs with few or no failures. The timings for the
arithmetic phases do not exhibit the variability encountered in the communication phases.

On the iPSC/2, messages are not packetized and the variability in the timings is considerably
lower. Thus, (7.1) is a reasonable model for the cost of communication with o ~ 0.5 milliseconds.
The cost of multi-hop communication is lower for the iPSC /2 than for the iPSC/1, but we have
not exploited this feature.

Overlapping head-to-head communication: In virtually all the algorithms we present,
communication occurs in the form of exchanges between nearest neighbors. On the iPSC/1,
head-to-head communication cannot be overlapped. This is reflected in the estimates we give
for various algorithms. On the iPSC/2, head-to-head communication can be overlapped, and
the communication costs for exchanges are halved. Thus, for the model times given below, the
factors in front of the Th.om,m, terms should be halved for the iPSC /2.

Global data dependencies: Since the diameter of the hypercube is d, any hypercube
implementation of an algorithm with global data dependencies must have a term that grows like
log, P. Typically, the log, P term involves the start-up parameter o while the actual transfer
time (the 7 term) falls with P (for a fixed size problem, the message lengths decrease as we go
to a higher dimensional cube). The arithmetic cost typically falls like 1/P. For algorithms that
fall into this class, the model gives an expression for the total cost that has the form

T(P)= % + Blog, P, (7.3)

where A and B are positive and independent of P. Such a T'(P) has a minimum as a function of
P.T'(P")=0= P"=(A/B)In2, so that using more than P* processors will actually increase
the running time. Furthermore, since T"(P*) = B3/(A%(In2)3), the minimum will be flat, if
B < A3,

7.1.3 Gray codes

A key element in designing parallel algorithms is keeping the amount of data movement between
processors to a minimum which means that the mapping of grid points to processors must
preserve locality. Methods for partial differential equations that employ finite differences usually
have some local data dependency which means that neighboring grid points should be mapped

61

on to neighboring processors (if not the same processor). The most popular way of achieving
this is the binary-reflected Gray code (BRGC) mapping which not only preserves the nearest
neighbor property but has additional structure that makes it possible to exploit the hvpercube
interconnect in other phases of the algorithm.

Let II(P) denote the set of permutations of the set {0,..., P — 1} and let v(7) € TI(P) denote
the binary-reflected Gray code. If we write this permutation for P as

ﬁ'(P) = (7(()}3), .. .,7}(:F_,_)1))

where y(F) takes j € {0,...,P -1} to 71(-}3), then the pefmutation for 2P can be written as

7(913) = (75)7771(3_)17P+7}’-)17’P+7é))

For P =1,2,4,8, we have
¥ =(0), +P=(0,1), 4¥=(0,1,3,2) 7®=(0,1,3,2,6,7,5,4).

There are a number of permutations that are in some sense generalizations of the BRGC. In
particular, there are (log, P)! permutations in II(P) that preserve the hypercube property and
leave zero unchanged. (There are P(log, P)!such permutations if we do not require them to leave
0 invariant [98].) If (") is such a permutation, then

5P) = 4(P) 1 (P)

might be called a generalized BRGC. For example, if p(P) is the permutation defined by bit-
reversal, then v(F) o p(P) the bit-reversed binary-reflected Gray code can be used whenever the
use of the BRGC would be appropriate.

7.1.4 Embedding a two-dimensional processor mesh in a hypercube

The hypercube topology has a rich interconnect that allows a number of different topologies to
be embedded in a hypercube. We review some details of a mesh embedding, that is discussed in
[112]. Suppose that we have an N, x N, computational grid. We subdivide the grid into blocks,
with P, and P, blocks in the z and y directions, respectively, where P, and P, are powers of
two and PP, = P. If N; and N, are both powers of two, then all the blocks can be chosen to
be the same size, with (:V,/P,) x (N;/P,) grid points. (If N, and N, are not powers of two,
then some blocks will have an extra row or column or both.) We label each block by (2,7), with
i€{0,...,P, —1} and j € {0, ..., P, — 1}, where the indices : and j correspond to the = and Yy
directions, respectively, analogous to the natural labeling of the grid points by pairs of indices.
For such ¢ and j, we define

=P +1,

62

which is the concatenation of the binary representations of 7 and j. The simplest embedding of
a two-dlmensmna.l array into a hypercube is to assign block (z, 7) to processor k, where k = Il
(or equivalently, k = 4||5). However, with this mapping grid points that are adjacent on the grid
are not always mapped to processors which are nearest neighbors in the hypercube.

A second embedding is to pick % to be

k=) G),

where v(P) is the binary-reflected Gray code. This embedding is illustrated in Fi igure 7.1 for
P =64, P, = v = 8. All log, P neighbors of a processor lie in the same row or column in the
processor mesh. The ordering that was defined for the set of neighbors of each processor induces
an ordering on the sets of neighbors that lie in the same processor row or column, namely, the
i-th row-neighbor is the i-th neighbor, for i € {0,...,logy P, — 1} and the j-th column-neighbor
is the (j + dz)-th neighbor, for j € {0,...,log, P, — 1}.

7.1.5 Transposes on the hypercube

We will now describe an algorithm for matrix transposition on a hypercube. We will discuss the
behavior of this algorithm as predicted by our model and propose an improvement.

A number of authors ([102], [72], [100], [107], [93], [81], [113], [89]) have considered the
problem of matrix transposition. '

We will give an informal description of the algorithm in a simple case (see [81], [113]). Assume
that we have a P x P matrix that i is stored by rows on a P processor hypercube, using the binary-
reflected Gray code, i.e. the p-th processor has the r-th row, where p = y(P)(r). The object is to
redistribute the data so that each processor ends up with one column of the matrix. This can be
achieved in log, P steps. At the i-th step (¢ =0,...,log, P — 1), each processor exchanges half
of its data with its i-th neighbor. After the e*(change each processor reorders the unsent part of
its data and the received data so as to make the data corresponding to a column of the matrix
contiguous and ordered. We will refer to this local data permutation as a shuffle (cf. [102]). The
exact form of the shuffle depends on the index i and the processor number. A typical case is
illustrated in Figure 7.2.

One consequence of the shuffle is that all the data to be sent out at the next step lies entirely
in the first or second half of the local array. The number of different columns that are represented
In a processor is halved at each step and the number of elements per column is doubled at each
step, keeping the amount of local data constant. The recursive structure of the hypercube makes
this process particularly efficient. At the beginning, the data is distributed across the processors
by rows, which implies that each column is spread across the entire cube. At the end of the
first step, the data corresponding to the first P/2 columns lies in one sub-cube of dimension
(logy P) — 1 and the other P/2 columns lie in the other sub-cube of dimension (log, P) — 1. At
the end of the second step, each of the four sub-cubes of dimension (log, P) — 2 contains P/4
complete columns. This process of “separation” is continued until the (log, P)-th step, at the

63

32 | 33 | 35 | 34 | 383 | 39 | 37 | 36

40 | 41 | 43 | 42 | 46 | 4T | 45 | 44

5 | 57 | 39 | 58 | 62 | 63 | 61 | 60

48 | 49 | 51 | 50 | 34 | 55 | 53 | 52

16 | 17 | 19 | 18 | 22 | 23 | 21 | 20

24 |25 | 27 | 26 | 30 | 31 | 29 | 28

o
—
W
[\
(@)
-
ot
=

Figure 7.1: An 8 x 8 processor mesh embedded in a 64 processor cube, using the binary-reflected
Gray code. The links show the hypercube connectivity in the rows and columns. For example,
processor 23 is connected to processors 22, 21, 19 (row neighbors) and 31, 55, 7 (column neigh-
bors).

R

I \I \l \] l A: unsent local data L |/ ’/ 1/ | I

\

UL DL L] Acafter shfle [N[ANZW L[]

[_lééé BUF': Received data

Figure 7.2: Structure of the shuffle operation in a typical step in the hypercube transpose. Each
processor tests the i-th bit in its number to determine which form of the shuffle to perform.

64

end of which each processor has one entire column. The procedure described above can be stated
in algorithmic form as follows.

A Transpose Algorithm for hypercubes.
bit(7) is the i-th lowest bit in the binary representation of the “block number” blk which is related

to the processor number p, by p = 4(P)(blk). The local data consists of P numbers stored in an
array A, indexed from 0 to P — 1.

fori=d—1 step —1 to 0
“1. Exchange with ¢-th neighbor.
la. dest = nbr(s)
1b. if (bit(z) = 0) then j, = 0 else j, = P/2
le. SEND A(jo) through A(jo + P/2 — 1) to Pyey
1d. RECEIVE P/2 numbers from Pyes: in BUF

2. Shuffle unsent part of local data in A with received data in BUF
end for

If we stop the process after fewer than d steps, then we have an “incomplete transpose”, with
each column distributed across a subcube instead of on a single processor.

This method generalizes to an N x M matrix by imposing a P x P block structure on the
matrix and transposing the individual blocks in an initial pass. In place of the matrix elements
one has to deal with sub-matrices.

The model times for the hypercube transpose of a total of B bytes of data is

)

T(B, P;0,7, teopy) = [2eomm (B/(2 * P)) + (B/P)tsopy] log, P. (7.4)

This expression has one part that grows like log, P and another that falls like (log, P)/P. For
large problems or low start-up times, the cost of the transpose falls as we go to larger cubes but
is bounded below by 2¢ log, P.

The similarities between hypercube algorithms for the transpose and the fast Fourier trans-
form (FFT) suggest a new transpose algorithm, the Radiz-{ hypercube transpose. The idea is
simply to combine two consecutive steps of the hypercube transpose (the “Radix:2 hypercube
transpose”) into a single step. At each step, each processor exchanges one quarter of its local
data with each of the three processors that lie in a two-dimensional sub-cube, and then does a

shuffle-like operation. For an even-dimensional cube, the model time for the Radix-4 hypercube
transpose is

log, P [

T(B, P; 0,7 tepy) =~ (612, (B/(4 « P)) + (B/ Plteopy| , (7.5)

where T(") (n) = o + h - n7 models the cost of “h-hop” communication. The total cost of the
shuffles is halved while the number of start-ups increases by 50%.

65

Table 7.2:
A comparison of the costs of three different vari-
ants of the hypercube transpose.

olog, P Bbg};PT Bl°g};Ptcopy
Radix-2 (7.4) 2 1 1
Radix-4 (7.5) 3 3/2 1/2
Radix-8 14/3 7/4 1/3

One can visualize a Radix-8 or Radix-16 transpose along the lines of the Radix-4 version.
Table 7.2 compares the costs of the Radix-2, 4 and 8 transposes.

This should be compared to a different improvement of the basic hypercube transpose algo-
rithm proposed in [81], which also reduces the shuffle time at the cost of more communication.
Their variant doubles the number of start-ups at each successive step while not performing the
shuffle. When the increased communication cost exceeds the cost of the shuffle, one reverts to the
basic algorithm for the remaining steps. The shuffle operation in the basic hypercube transpose
algorithm essentially creates a single message buffer. The variant in [81] skips the buffering step
when it is cheaper to communicate the separate “chunks” of data individually.

The Radix-4 transpose will lead to a greater saving for large P. Of course, one can combine

the two approaches, using the variant of [81] for the initial steps and the Radix-4 transpose as
the “basic” algorithm to revert to.

7.2 Hypercube Methods for a Single Tridiagonal System

In this section, we review methods for solving a single tridiagonal system of linear equations on
a hypercube. We consider substructuring, together with a number of approaches to solving a

single tridiagonal system, with one row per processor (the reduced system). We then describe
cyclic reduction for hypercubes.

7.2.1 Substructuring

The idea of using substructuring to solve tridiagonal systems in parallel is a natural one and was
used in [99], and subsequently in [108], where it is called the “partition” method. It is a form
of block Gaussian elimination and is closely related to (one-dimensional) domain decomposition,
and the Schur complement approach [74].

Consider the problem of solving a tridiagonal system of order NV on a hypercube with P
processors, where P divides N. We impose a block structure on the matrix, each diagonal block
being tridiagonal of order N/ P. At the internal block boundaries, there will be elements outside
the blocks on either side of the diagonal which represent the coupling between the blocks. We
assign the r-th block row to processor p = v(F)(r), using the binary-reflected Gray code, v(P).

66

XX X X|X X :\\D\—:—
X X X +10 x x X x 0 +
X X X + 0 x x X X X
X X|Xx + 0 x|x X X|x
x| x X X|x X
X X X X X X
X X X , X X X
X X|x j ® ®10 @D
X|x X XX X
(D) (E)

Figure 7.3: The substructuring algorithm for tridiagonal matrices. ‘z’ indicates a non-zero ele-
ment, ‘+’indicates a new non-zero and ‘0’ stands for entries that are zeroed out in the elimination
process. (A): The initial state of the j-th block row. (B): The forward elimination sweep. (C):
The backward elimination sweep. (D): A multiple of the first row of the (j + 1)-th block is added
to the last row of the j-th block. (E): The state of the j-th block at the end of the first phase of

substructuring. The circled entries are part of the reduced system.

Figure 7.3 illustrates the steps in the substructuring algorithm [108]. First, each processor
operates locally on its block, using Gaussian elimination to zero out the sub-diagonal elements
in a forward elimination sweep and then zeroing the super-diagonal elements in a backward
elimination sweep. These forward and backward sweeps each require six floating point operations
per row and cause fill-in in the column to the left of the diagonal block and in the last column of
the block. Now each processor sends its first row (four numbers) to the processor assigned to the
previous block. The Gray code ensures that this is a send/receive between adjacent nodes. Each
receiving processor adds a multiple of the received row to its last row, zeroing out the element
to the right of the diagonal element.

The reduced system consists of the last row of each block (i.e., it has order P) and is dis-
tributed across the cube, with one row per processor. An important property of this procedure
is that the reduced system is itself tridiagonal and may be solved by any applicable method.

After the reduced system has been solved, we perform a back-solve within each local block at
a cost of 5 floating point operations per row and two nearest neighbor communications involving
a single number.

The total cost of the substructuring phase is

N
Tss(N,P;w,o,7) = 17—15w + 2[Teomm (16) + Teomm (4)] (7.6)

67

When solving diagonally dominant matrices with constants along the diagonals, the reduced
system is more diagonally dominant than the original system ([108]). In the most favorable case,
it is essentially diagonal, and can be solved with no additional communication!

Substructuring requires about twice as many arithmetic operations per row as standard Gaus-
sian elimination. This causes a significant drop in the speed-up when the substructuring phase
dominates the total cost (farge N and small P).

We now consider the problem of solving a tridiagonal system of order P spread across a hyper-

cube with P processors. This is precisely the problem that arises when we use the substructuring
approach, namely the reduced system.

7.2.2 Cyclic reduction

The cyclic reduction method for tridiagonal matrices is due to Golub and Hockney (see [33]).
A number of authors have discussed its implementation on vector and parallel computers (see
the references in [95]). We state the sequential (point) cyclic reduction algorithm to set up the
notation for describing the parallel versions (see also [78]).

Sequential Cyclic Reduction for tridiagonal systems, Az =d

We assume that the matrix is stored by diagonals and denote the k-th row of A by Row(k) =
(a(k),b(k),c(k)), for £ = 0,1,...,N — 1. For simplicity, we suppose that N = 2¢ (a(0) =
(N —-1)=0).

The Reduction Phase:
for j=1 stepl tod
for k=0 step 2’ to N —1
REDUCE (Row(k),j)
end for

end for
Solve for z(0):
2(0) = d(0)/b(0)
The Back-substitution Phase:
for j =d step —1 tol
for k=21 step? to N—-1
BACK-SUB (Row(k), j)
end for
end for

The following are the REDUCE and BACK-SUB operations for a generic (k,j) pair. It as
assumed that arithmetic operations involving array indices outside the range 0,1,..., N —1 are
not performed. The required conditionals are omitted for notational simplicity.

REDUCE (Row(k),j) :

63

my = a(k)/b(k —27)

s = c(k)/b(k + %)

b(k) = b(k) —mq * c(k — 29) —my * a(k + 27)
d(k) = d(k) my x d(k —27) — my + d(k + 27)
(k) = —my * a(k — 27)

c(k) = —mag x c(k + 29)

Q

BACK-SUB (Row(k),7) :

z(k) = (d(k) — a(k) * 2(k — 29) — (k) * 2(k + 27)) /b(k)

The key idea of the hypercube implementation of cyclic reduction is to note that for each j in
the sequential algorithm, the iterations of the inner loop are independent, and can be performed in
parallel. This reduces the arithmetic cost roughly from P to log, P Reduce/Back-sub operations.
We now discuss the communication structure of the parallel algorithm that achieves this.

The structure of the hypercube algorithm is more complicated because we have to view the
algorithm from each processor’s point of view, rather than from a global point of view. It
would clearly be desirable to have a parallelizing compiler that would allow the algorithm to be
expressed in a manner similar to the statement of the sequential algorithm.

We assume that the rows of the matrix are numbered 0 through P — 1 and are assigned
to processors using the binary-reflected Gray code. Since we are solving P equations on P
processors, we require log, P steps in the reduction and substitution phases. Twelve and five
floating point operations per row are required for each Reduce and Back-sub step. respectively.
The Gray code allocation scheme ensures that processors that need to communicate are never
more than distance two apart.

However, we implement cyclic reduction with exchanges [85]. Rows are exchanged in the
reduction phase, so that all processors that are to be active in the next step lie in a lower
dimensional sub-cube and need to communicate only with nearest neighbors. The exchanges are
reversed in the substitution phase. At the end of the reduction phase, Processor 0 solves for the
zero-th unknown of the reduced system.

Cyclic Reduction on a Hypercube: The Reduction Phase

We suppose that we are given a tridiagonal matrix of order P, distributed across a P processor
hypercube. The k-th row is assigned to processor p, where p = 7¥)(k). Before performing a
Reduce operation, a processor must receive rows numbered £ —27 and k£ +27. “Lef*” and “right”
refer to the neighboring processors that have rows k — 27 and k + 27, respectively. The Receives
corresponding to row numbers outside the range 0,1,..., P — 1 (and the associated Sends) are
not performed. The required conditionals are omitted for notational simplicity.

k= (y®)"}(p)

69

for j=0 stepl tod—-1
if p(mod2?) = 0 then
if p/27 is odd then
SEND Row(k) “left”
SEND Row(k) “right”
else if p/27 is even then
RECEIVE Row(k — 27) “from left”
RECEIVE Row(k + 27) “from right”
REDUCE (Row(k), 5)
end if
if p/27 and k/27 have opposite parities then
Exchange row with nbr(j):
SEND row to nbr(z)
RECEIVE row from nbr(z)
Reset k to be row number of the received row.
end if
end if
end for

The outermost conditional “turns off” all but P/Qj processors. This reflects the decreas-
ing processor utilization in the reduction phase. Half of the active processors are involved in
exchanges.

- The back-substitution phase has a very similar structure, with the order of the steps reversed
(and a Back-Sub rather than a Reduce operation).

In Figure 7.4, we illustrate the pattern of processor activity and communication in the re-
duction phase, when solving an 8x8 system on a 3-cube. The numbers of the active processors
are given in brackets, along with the row they are handling. Links involved in communication
are indicated.

As stated above, the parallel algorithm requires four start-ups for the communication in each
reduction and substitution step (a send and a receive for the exchange and two sends or two
receives for the cyclic reduction process). However, one of the two sends or two receives is
redundant for processors that are involved in an exchange, since a row is sent twice to the same
neighbor. If the redundant send/receive pairs are not performed, cyclic reduction with exchanges
can be implemented with three start-ups for each reduction and substitution step. This saving
is non-negligible on a hypercube like the iPSC/1 where the start-up cost is high relative to the
arithmetic speed. The parallel cost of cyclic reduction on a hypercube is given by

Ter(Piw,0,7) = [1Tw + 3Teomm(16) + 3Teomm(4)] logy P — 5w — 4Tppmm (12)
~ (tarith + teomm)logy P = t., log, P, (7.7)

where

ta,rith = l7£d, tcomm = 6o + 6077 and ter = tarith + tcomm- (78)

70

/, . // !
// // !
// // |
e R 2] 2,
| i
! |
7] 5 1 S R ¥
: /'// I ///
v, g
e 33

| | e 0

| i ,/ 1 // 1

: | e
! | 1 i ! 1 ! 1
! 1 ! 1 ! l ! |
1 .] \] : 1 |
. e
| /, f // i ‘,/ 1 //
1 ’ | Vi ! ’ ! ’
A 2 A 3

Step 1 Exchange in Step 1

Y

|

|

|

|

|

!

|

|
'

Step 2

Figure 7.4: Pattern of processor activity and communication in the reduction phase of cyclic
reduction with exchanges on a hypercube, for an 8 x 8 tridiagonal system. The processor numbers
are given in brackets. The accompanying number is the index of the row being handled by the
processor at that step. Communication occurs along links that are drawn as solid lines. The
back-substitution phase has a very similar communication pattern, with the order of the steps
reversed.

If N is a power of 2, one could perform log,(N/P) steps of cyclic reduction to the entire
system and also arrive at a reduced systern of order P on P processors. The arithmetic cost
of this approach would be about the same as that for substructuring. However, this “global”
cyclic reduction would require log,(N/P) nearest neighbor communications as opposed to one
for substructuring, and hence substructuring is pi‘efel'able. Substructuring has the additional
advantage of being more flexible in terms of the choice of NV.

For sufficiently diagonally dominant matrices, the system obtained after a few steps of cyclic
reduction is essentially diagonal ([78]) which can be exploited to reduce both arithmetic and
communication. The potential gain is greater for hypercubes than for serial computers because
of the savings in communication. »

A disadvantage of cyclic reduction on a hypercube is that many processors are idle in the
course of the computations. The processor-time product for the hypercube algorithm is asymp-
totically O(P log, P) as opposed to O(P) for the sequential algorithm, which indicates that the
fraction of processors that are active on average is O(1/log(P)).

We denote by SS/CR the method obtained by combining substructuring and cyclic reduction.
This method is described in [87] where it is called GECR. The cost of the SS/CR method is

TSS/CR(N7 P>wa g, T) = T55(1V7 P;w, ag, T) + TCR(P;W, g, T)
~ 178w + [17w + 60 + 607] log, P
= tarith% + [tarith + tcomm] log P ' (79)

The expression in (7.9) has a minimum as a function of the number of processors, and the
optimal number of processors, P~, for SS/CR satisfies
N [60+607 4+ 17w] teomm

]. 2—' = = 1 y
" P~ 17w * ta'rith

(7.10)
This information can be stated in a number of different ways.

e For a given set of hypercube parameters (w, o, 7), there is an optimal number of rows that
should be assigned per processor (N/P*). For the iPSC/1 parameters, we get a value
of about 20 rows per processor. When communication time dominates arithmetic time,
there is a penalty associated with using more processors and the optimal block size is
correspondingly larger. In particular, if the arithmetic speed is increased by a certain
factor (e.g., by installing new hardware) and the communication costs are kept fixed or
improved by a smaller factor, the number of processors that can be usefully employed for
a given N will be smaller.

e When tomm is small compared to t4rith, P* = N In2.
e The optimal number of processors is asymptotically O(N).

e As o is reduced (or N increased), the function (7.9) becomes flatter in a neighborhood of
the optimal P (cf. (7.3)). In this situation, the time required on P*/2 processors will be
only slightly more than that on P* processors.

72

e For a system of order N = 2", the total time is minimized on a cube of dimension n —r,
where 7 = log,(ter/tarien) + log, log, e.

The minimum time for SS/CR is bounded by t. (log, P* + 1) Thus, t., is a measure of the
cost of solving a tridiagonal system on a hypercube. With the implementation we have outlined,
and for the iPSC/1 parameters, t., ~ 9 milliseconds.

7.2.3 The CR({) hybrid scheme

Since the processor utilization for cyclic reduction falls as the reduction process progresses, it is
natural to consider switching to a different method after a few steps of cyclic reduction (see [83],
[104]). In this section, we describe a scheme, CR(£), in which we solve a tridiagonal system of
order P on a P processor cube by performing £ steps of cyclic reduction, £ € {0,...,log, P}, as-
sembling the (tridiagonal) reduced system to a single processor, solving it by standard Gaussian
elimination, distributing the solution back, and then performing the £ steps of the substitu-
tion phase of cyclic reduction. This scheme can be used for the reduced system obtained after
substructuring. .
For arbitrary £ between 0 and log, P — 1, the time for CR(¢) is given by

Ter (P bw,0,7) = Ly + 20(log, P — £) + '20(—21; -1+ 9(5 — Dw. (7.11)
Tor(sy 1s minimized with respect to £ when
2f = PMInQ,
(ter — 20)
giving
lopt = maz{0, log, P — v(w,0,7)},
where

40 + 607 + 17w)
207 + Yw

Thus the optimal number of cyclic reduction steps in SS/CR(¥) is the cube dimension minus a
constant (up to rounding effects). Lowering the start-up time relative to the arithmetic time will
reduce v, and thereby increase the optimal number of cyclic reduction steps.

In Figure 7.5, we show the running time of SS/CR(£) on the iPSC/1 using the simpler (8 start-
ups per step) version of cyclic reduction with exchanges. The times are for a tridiagonal system
of order 4096 on a 32 processor cube, with the number of CR steps ranging form 0 through log, P.
For each value of ¢, we have given the times of 30 independent runs to demonstrate the variability
in the iPSC/1 times. The solid line in Figure 7.5 represents the average times and the dashed
line links the minimum times. The average times include the effects of message collisions/failures
and the minimum times probably represent runs on which few collisions occurred. For £ = 0,
the difference between the largest and smallest times is about 125 milliseconds. The minimum
times indicate a value of v around 3 or 4, whereas the average times suggest that v is at least 5.
Remark. The CR({) method can be extended to take advantage of the BABE algorithm [88].

v(w,o0,7) = log, log, e + log, (

73

SS/CR(L)

300 T 1 T i T T
250 — § -]
¥
; < : X
% %
200+ % x 2 : B
A A
S "—”’“;r § g ¥
g 150t X § x X g i
%2
= AR -
= % ¥
100 F —
50+ -
O ! 1 1] 1 1
-1 0 1 2 3 4 5 6

NUMBER OF CR STEPS, L

Figure 7.5: {PSC/1 times for the SS/CR(£) method, with N = 4096 and P = 32. The times for
30 independent runs are plotted for each value of {. The solid line corresponds to the average
times and the dashed line to the minimum times.

7.2.4 Cyclic elimination

Cyeclic elimination (CE) is a modified form of cyclic reduction in which all the rows are involved in
all log, P steps [78] . The characteristic property of cyclic elimination is that the super and sub-
diagonals of the original tridiagonal matrix “move away” from the main diagonal in the course of
the algorithm and a tridiagonal matrix of order P is transformed into a diagonal matrix in log, P
steps. Cyclic elimination has a higher sequential arithmetic complexity (O(P log, P)) than cyclic
reduction (O(P)) [78], i.e. it is not consistent in the sense of Lambiotte and Voigt ([91]) and is
therefore not competitive with cyclic reduction on sequential (or vector) computers. However, on
hypercubes, cyclic elimination has the same complexity as cyclic reduction. The main advantage
of cyclic elimination is the fact that it requires just 12log, P floating point operations per row
as opposed to 17 log, P for CR. Thus, one would prefer CE on cubes on which arithmetic is
slow compared to communication. CR is always superior to CE on the iPSC/1, the reason being
the high cost for communication [88]. Cyclic elimination has been used by a number of authors
for parallel computers, such as the ICL DAP ([111]), the Goodyear MPP ([110]), the TRAC
computer ([90]).

The PARACR method of Hockney and Jesshope [84] is essentially the cyclic elimination
method. ’

Some other approaches to the paraliel solution of tridiagonal systems are discussed in [103],
[80], [105], [75], [112], and [96].

7.3 Hypercube Algorithms for Multiple Tridiagonal Sys-
tems

In this section, we will consider the problem of solving M independent tridiagonal systems each
of order IV on a hypercube with P processors. Multiple tridiagonal systems arise, for example,
in fast Poisson solvers based on matrix decomposition that use FFTs in one direction, and solve
tridiagonal systems in the other direction. Also, in ADI methods, which we will discuss in greater
detail in the next section, one solves a number of independent tridiagonal systems along rows
and columns of a rectangular grid. _

Substructuring for multiple tridiagonal systems. We will restrict ourselves in this section
to cubes with a moderate degree of parallelism (P < N). In this situation, substructuring is an
obvious choice. We will assume that all systems are identically distributed across the cube and
that substructuring for each system is done in the manner described earlier for a single system.
We arrive at M reduced systems, each of order P, and each distributed across all P processors.
We will describe several approaches to solving this set of r~duced systems. As in the single
system case, there is a penalty associated with substructuring in terms of the operation count
and any method using substructuring will operate at 50% efficiency on a two processor cube.
Since the efficiency typically falls with increasing cube size, one would not expect to achieve more
than 50% efficiency when substructuring is used. We will also describe a method that does not
perform substructuring.

=1
(1]

7.3.1 Unbalanced cyclic reduction

First we describe S5/UnBalCR, a simplistic extension of cyclic reduction to solve the reduced
systems in which all M systems are treated identically. Thus, the computational load on each
processor is increased by a factor of A/, as is the volume of data moved in each coramunication
activity. The number of start-ups and the pattern of processor activity is the same as that for
SS/CR. The cost of solving M systems each of order IV, on a cube with P processors is

MN
Tssunpaicr(M, N, Piw,a,7) = 17’—]3/——4.0 + 60 log, P + [607 + 17w]M log, P.

+ [607 + 17w]M log, P. (7.12)

The log, P factor in final term is a source of inefficiency which is why we will now discuss balanced
cyclic reduction.

7.3.2 Balanced cyclic reduction

We now describe SS/BalCR, in which the reduced systems obtained from substructuring are
solved by a balanced form of cyclic reduction.

For convenience, let M = P. For M > P, one simply replaces each equation by an equation
group. Our implementation is designed to handle M = 2", and a generalization to arbitraiy M
could be done at the expense of introducing some load imbalance. In the following, we assume
that like the processor numbers, the system and row indices lie in the range 0,..., P—1. Assume
that the p-th processor has the r-th row of each system, where p = v(F)(r). The reduction phase
consists of d = log, P steps.

In cyclic reduction for a single system, at the ¢-th step (i = 0,1,...,d—1), the odd numbered
rows are used to perform the Reduce operation on the even numbered rows, where the definition
of odd/even depends on i. At the end of the d-th step, we are left with one equation with one
unknown (the 0-th row). We will refer to this row as the “target” row and say that the cyclic
reduction process “converges” to it.

If we alter the algorithm (for a single system) so that the even numbered rows modify the
odd numbered rows at each step, the cyclic reduction process would “converge” to the last row
(the (P — 1)-th row).

If the decision as to whether the odd rows or the even rows are to be modified is varied from
step to step, then we can “steer” the cyclic reduction process and make it “converge” to an
arbitrary target row.

In the context of solving multiple tridiagonal systems, this strategy can be used to implement
cyclic reduction in a load-balanced manner. Each of the P tridiagonal systems {(or groups of
systems) is made to converge to a different target row. Since all the systems are identically
distributed, the cyclic reduction process will converge to different processors for different systems
(or groups of systems). To make this idea work on a hypercube involves a certain amount of
“messy” index computations, involving processor numbers, the indices of certain groups of the
tridiagonal systems and row indices within each tridiagonal system.

76

One natural way to “steer” the cyclic reduction process is to take the binary representation
of the system number s = by_;...bbg, and at the :-th step modify the even rows, if b; is 0, and
the odd rows, if b; is 1. It is easy to see this rule results in the cyclic reduction process converging
to the s-th row.

Alternatively, if we traverse the bits in the binary representation of s in the opposite order
(i.e., high to low), and modify the even rows at the i-th step if b4_;—; = 0 (and the odd rows
otherwise), then the process would converge to the r-th row, where r is obtained from s by
bit-reversal.

We introduce a notation for denoting certain groups of the systems. For 0 < < d -1
and 0 < j <20 —1, let Gy) be the subset of {0,1,..., P — 1} consisting of an even number of
consecutive integers. The first and second halves of Gg‘) are denoted by G% and Gg'i respectively.
We set G3) = {0,1,..., P —1}. Thus G§s = {0,1,...,2 =1} and G} = {&,...,P —1}. The
subsequent groups are defined by

(+1) _ A0 (i+1) _ ~(9)
Gj - GJ',O’ 'GJ'+2" - Ml
Ggi) consists of P/2' consecutive integers, beginning with bit-reversed(j). For P = 8, the G;i)
are the following.

G ={0,1,2,3,4,5,6,7},
G ={0,1,2,3}, W = (4,5,6,7},
6P =101}, GP={45 GP={23}, GP={61)

We introduce an auxiliary variable ‘label’ with values between 0 and P — 1 that is used
in deciding what a processor does at each step. The label for processor p is initially set to
(vF))=(p), where (v("))~! denotes the inverse of the binary-reflected Gray code. At the i-th
step, (0 < ¢ < d—1), the cube is divided into 2! sub-cubes of dimension d—1 each. Each sub-cube
consists of processors whose labels are equal modulo 2°. Each sub-cube operates on P/2! systems,
namely those in G’g-i), where j = label mod 2. Within each sub-cube, the processors for which
label/2 is even modify the first half of the systems assigned to that sub-cube (G%), while the

processors for which label/2' is odd modify the second half (Gg'{) For each sub-cube,

P __(p label _ _
5 =7 (5) (7.13)

where division by 2' is integer division. To maintain the relationship between p and label ex-
o o

pressed in (7.13), each time a processor is involved in an exchange, its label is reset to that of
its exchange partner, as in the single system case. The groups that are to be operated on in
a sub-cube have their rows distributed according to the Gray code, whereby a linear array is
embedded in each sub-cube. This defines a left and right neighbor for each processor, except
for the zero-th and last which have only one neighbor (right and left, respectively). Note that

T

the left and right neighbors of a processor change with 7. The following code is executed by all
processors during the reduction phase.

BalCR on a Hypercube: The Reduction Phase

p is the processor number. Edge processors in the linear arrays that are embedded in each sub-
cube have only one (left or right) neighbor, and hence do only one SEND and one RECEIVE.
The required conditionals are omitted for notational simplicity.

label = (v\P)~(p)
for:=0 stepl tod-1
7 = label(mod?’) ,
if (label/2' even) then [=0; m =1 else [=1; m = 0 endif
id of left neighbor = (F)(label/2' — 1) % 2 + j
id of right neighbor = yP)(label/2* + 1) x 2" +j
SEND G left and right
RECEIVE G/ from left and right
REDUCE Gg',) using received rows
if (label/2*! odd) then
Exchange with nbr(7)
SEND GV}
RECEIVE the corresponding group
Reset label to that of nbr(z):
label = 2 % (yP))=Y(nbr(:))/2' + j
endif
end for

At the end of the reduction phase, the label of each processor is equal to p. Processor p solves
for the p-th unknown of the s-th system, where p = bit-reversed(s).

In Figure 7.6, we show which rows are modified at each reduction step when solving 8 tridi-
agonal systems each of order 8, on a 3-cube. We show only systems 3 and 6. For system 3,
in successive éteps, the odd, even and even rows, respectively are modified, and the reduction
process converges to row 6, processor 6. For system 6, the order is odd, even, even, and the
reduction process converges to row 3, processor 3. System 1, which is not depicted in Figure 7.6
would converge to its 4-th row on processor 4, since 4 = bit-reversed(1). Furthermore, from the
binary encoding of 4 (100), we can tell that in the 3 reduction steps, the even, even and odd
rows, respectively will be modified. '

In Figure 7.7, we illustrate the steps in the reduction phase of BalCR when solving 8 tridi-
agonal systems each of order 8, on a 3-cube. In particular, we show the values of the labels for
each processor, the sub-cubes that are active at each stage, the communication paths and the
system groups Gg-f()), Gg'i that are modified at each step.

78

PO P1 P2 P3 P4 -P5 P6 pP7

Figure 7.6: The relationship between processors, systems and rows in balanced cyclic reduction
on an 8 processor hypercube with 8 systems of order 8 each. Only systems 3 (dashed line) and
6 (solid line) are shown. Each column in the diagram corresponds to a row of the matriz. Pn
denotes Processor n. Vertical lines indicate active rows. Ezchanges at the end of steps 0 and 1
are indicated by a change in the processor number for a given row. This figure shows that for

System 6, BalCR converges to Row 8 on Processor 3. For System 8, BalCR converges to Row 6
on Processor 6. :

(4757677) ? ————— —--/ 4 (0,1,2,3) 6/ ——.-. ------ ’
(0,1,2.3) 0 e 3 . 0}

e - = A

- 1 f—————_——
‘4,3,6,() !
. 1
6 5 (4,5,6,7 A e J
1,%3) L () L ,"
s 7 s I s Vi
// 7 l// /,
(4,5,6,7) 1 2(0,1,2,3) D — 3
Step 0 Exchanges in Step 0
(2,3) 64 4 (0,1) 4 —=<—">=6
o i O A
7 ! ! 7 I e i
(01) 0~ f (23] o
! | | | i 1] '
! 1 ! | | \ 1 '
! 1 ! | | 1 ! y
[6,7) 74 : /5 (4,5) A i e I
L ! L "
vl ! vl (e
(4,5) 1% (6,7) o P
Step 1 Exchanges in Step 1

Step 2
Figure 7.7: Pattern of processor activity in the reduction phase of SS/BalCR when solving 8
systems on a 3-cube. The rows of each system are initially distributed according to the binary-
reflected Gray code. The number at each vertex is the “label” of that processor, the numbers
in parentheses are the indices of the systems whose rows are to be modified at the current step.
Commaunication occurs along links that are drawn as solid lines. In Step 2, the labels coincide
with the processor numbers.

At each step except the last, there are processors that perform two sends, two receives and are
involved in an exchange, which requires one send and one receive, giving a total of six start-ups
per step. In the final step, there are no exchanges and each processor does one send and one
receive only. At the i-th step, each communication activity, including the exchanges, involves
M /2% systems. Thus the total data shipped over d sends is the data associated with

d-1
s = M(1-)
systems, namely 16M(1 — &) bytes, since we send four floating point numbers per row. This is
the reason why the log, P factor in front of the r and w (7.12) drops out for SS/BalCR. The
exchanges in the substitution phase are the same as those in the reduction phase in reverse order,
so that at the end of the two phases, all the data is back to its initial distribution.

We state the steps that have to be performed in the back-substitution phase.

BalCR on a Hypercube: The Back-substitution Phase
Edge processors in the linear arrays that are embedded in each sub-cube have only one (left or

right) neighbor, and hence do only one SEND and one RECEIVE. The required conditionals are
omitted for notational simplicity.

label =p
fori=d—1 step -1 to 0
J = MOD(label, 2}
if label /2! 0dd) then
Exchange with nbr(7)
SEND GY)
RECEIVE the corresponding group
Reset value of label to that of nbr(i):
label = 2' x (yPN)=1(3d) /2 + j
endif
if (label/2" even) then I =1; m =0 else [= 0; m = 1 endif
id of left neighbor = (P)(label/2 — D*2t+5 '
id of right neighbor = v(")(label/2! + 1) % 2 + j
SEND G, left and right
RECEIVE GY) from left and right
Perform BACK-SUB in GY)
(Solve for label-th unk:~wn using received rows.)
end for

At the end of the substitution phase, all the data is back to its initial distribution, and the
back-substitution part of the substructuring is performed for each system in exactly the same
manner as for a single system.

81

The algorithm as described requires 12 log, P start-ups . It is possible to reduce this to
8log, P, since there is some redundancy in the data movement. This involves splitting the
arithmetic for CR into two stages — one involving data from the row above and the other involving
data from the row below. For the rows involved in exchanges, these two stages are performed on
different processors.

The parallel complexity of S5/BalCR for solving M tridiagonal systems, each of order N , on
a hypercube with P processors is

‘ ' MN
. Tss/BQICR(A/_[, N,P;w, g, T) = 17]‘i w + 80 10g2 P + 80]\/1(1 - —;5)7'
1
+1TM(1 - B - (7.14)

The optimal number of processors P* satisfies

MN (80) 1

P+ T \17w/ In2’

For the iPSC/1, this indicates that the optimal number of rows per processor is under 30.
Balanced cyclic reduction is discussed in [112] and [88], and its performance on the iPSC/1

is discussed in [113].

7.3.3 Transpose with Gaussian elimination

We now describe an alternative approach to solving multiple tridiagonal systems of equations.

The idea is to move M/ P entire systems to each processor and solve them by standard Gaus-
sian elimination. The data movement can be implemented as the transposition of a rectangular
matrix. In each of d steps, the amount of data in each processor remains fixed and one half of
the data is exchanged with one of the nearest neighbors. This is in contrast to balanced cyclic
reduction, where the message lengths are halved at each step. This has an important effect on
the relative performance of the two methods.

The performance of the methods that use the transpose depends on the t.,,, parameter which
measures the time for the shuffle operation in the transpose. In a straightforward FORTRAN
implementation of the transpose on the iPSC/1, the shuffle time can account for a large fraction
of the cost, depending on the problem size and the number of processors. This can be reduced-
by using the Radix-4 transpose, or the buffering strategy of [81], or by going to an assembly
language version of the shuffle (or some combination of the three).

At the end of the transpose, we have M/P entire tridiagonal systems on each processor

that are solved by standard Gaussian elimination. This is followed by what may be termed a
“back-transpose”, to move the solution back to the initial data distribution.
SS/TGET: When these steps are performed on the reduced system produced by substructuring,‘
the resulting method is called SS/TGET (for Substructuring/Transpose + Gaussian elimination).
Note that the matrix entries of the reduced system are involved in the first transpose but only
the solution is moved in the second transpose.

32

The cost of SS/TGET is

_ MN
Tssyreer(M, N, Piw,0,7) & 17250 + 2Tomm(16M) + 2Toomm(4M) (7.15)

P
M M
5)+ 16Mteopy, + ‘2Tcomm(4~9—) + 4Mtcopy] +IMw.

+(log, P — 1) [QTmm(w

TGET: When the transpose is used without substructuring, the method is called TGET.
This method is particularly efficient for small cube dimensions, because it does not incur the
substructuring penalty. For TGET, we assume the same distribution of the right-hand sides
and the solution vectors across the hypercube as we did for SS/BalCr and SS/TGET. However,
since TGET never requires a matrix entry in more than one processor, we can assume that
all matrix entries are stored where they are needed, and do not need to be moved. (Such an
assumption would not be justified for SS/BalCR or SS/TGET, because these algorithms need the
entries of each reduced system on one or more processors different from the processor on which
substructuring was performed. Furthermore, the reduced system depends on the dimension of
the cube.) The cost of solving M tridiagonal systems of order N each on a P processor hypercube
by TGET using the BABE variant of Gaussian elimination is

Trger(M, N, P;w,0,7) = Transpose time - G.E. time (7.16)
MN N
= 2(log, P — 1) [2Twmm(2 V_ij)+ 4]\2]\[teopy| + QKP—w + 2T omm (4 M/ P)),

Note that there are only log, P — 1 steps in each of the two transposes because of the BABE vari-
ant. This saving is partially offset by the communication required for the Gaussian elimination
phase which is given by the last term.

7.3.4 A comparison of hypercube methods for multiple tridiagonal
systems

In this section, we compare SS/BalCR, SS/TGET and TGET on the basis of their performance
in experiments conducted on the iPSC/1, and also on the the basis of model times, in parameter
regimes different from the iPSC/1. We recall some properties of these methods that account for
the differences in performance.

An advantage of SS/BalCR is that the amount of data involved in the exchanges is halved at
each step (in the reduction phase) whereas it remains constant in the transpose.

TGET has the following advantages.

e It has a smaller number of start-ups per step.

e It enables one to use standard Gaussian elimination, which requires roughly half as much
arithmetic as substructuring or cyclic reduction.

e It does not require moving the matrix entries.

83

These properties put TGET at an advantage for moderate sized cubes and problems. However,
they reduce the cost by a constant factor. The total complexities of the data movement are
O(M) for SS/BalCR and O(M log, P) for SS/TGET.

Figure 7.8 shows the time needed to solve 128 real independent tridiagonal systems, each of
order 128 on the iPSC/1, on cubes of dimension up to 6, using SS/BalCR, SS/TGET and TGET.
The times are average times and include the effect of delays caused by message failures. The
substructuring penalty is apparent for SS/BalCR and SS/TGET. SS/TGET approaches TGET
as P approaches N, while SS/BalCR. performs more start-ups per step than SS/TGET.

Out of the methods we have investigated, TGET is the fastest and the simplest to pro-
gram. However, we will now demonstrate that there exist regions in the parameter space where
SS/BalCR is superior to TGET. This further comparison will be based on model times.

Figure 7.9 compares the three methods using model times under the following assumptions:
N =M, P<N,o =1500, and 7 = 1. The model also accounts for the “internal star:-
ups” associated with each packet of a message. The model times are based on using the BABE
algorithm in SS/TGET and TGET. Each (P, N) pair is represented by a box, which is shaded
to indicate which method is fastest for that pair. The four boxes represent different choices of
the parameters w and ... SS/BalCR is the fastest for sufficiently large P and N. Reducing
the copying time shifts the crossover boundary in favor of TGET (or SS;TGET). Reducing the
arithmetic cost favors methods based on substructuring. Note that the top right box corresponds
approximately to the parameters for the iPSC/1.

128 REAL TRID. SYSTEMS OF ORDER 128 EACH.
5000 T T i T T]

© 4500 : -

T

4000

3500

3000

2500

2000

MILLISECONDS

1500

1000

500

CUBE DIMENSION
Figure 7.8: Times on the Intel iPSC/1 to solve 128 tridiagonal systems of order 128. Solid

line: TGET, dotted line: SS/TGET, dashed line: SS/BalCR. The time spent by SS/BalCR and
SS/TGET in substructuring is marked by ‘X'’s.

85

18 - (R}

SS/8ALLR

CUBE DINENSIBN (LBGINI)
T
CUBE DIMENSION (LBGINIY

TeeT
N \\.\\ A) ,
3 s i * 3 10
PRSBLEM SIZE (LBG(PYI) PREBLEN SIZE (LACIPY)

10 = [{=)]

CUBE OIHENSIUN ILBGINY)
CUBE OIMENSION (LBGINY)

TCET

N
PRQBLEM SIZE (L2G(P))

N

3

3
PREBLEM SIZE (LXC: 1!

Figure 7.9: Comparison of TGET, SS/TGET and 5S/BalCR based on model times for solving N
tridiagonal systems of order N, on a P processor hypercube. The cube parameters were o = 1500,
G =1000, 7 = 1. The (w, teopy) pairs used in each box are given in parentheses.

Chapter 8

ADI Methods on a Hypercube
Multiprocessor

In this chapter, we consider algorithms for Alternating Direction Implicit methods for the hy-
percube. Split-step ADI schemes for the Schrodinger equation in two space dimensions were
discussed in Chapter 6. On the basis of the results of the previous chapter, we will focus on
methods that use the transpose. We state the basic algorithm, CUBE-ADI, and. discuss some of
its properties. We give an expression for the cost of one step of the CUBE-ADI method based
on our model. We present results of experiments on the iPSC/1 and the iPSC/2 and their re-
lation to the predicted model times. We describe some communication-reducing variants of the
basic algorithm. We study the sensitivity of the CUBE-ADI method to variations in the aspect
ratio. In conclusion, we discuss extensions of our parallel algorithms to hypercubes with higher
parallelism (e.g. a few thousand processors).
We recall the structure of the ADI scheme (see Chapter 6).

[1 + %53;} Ut = [1 - 3;—‘53] uUn, (8.1)
[1 + ’-2’15;] U = {1 - %52] U, (8.2)

The operations required to implement (8.1), (8.2) can be stated as follows.
Algorithm SERTAL-ADI

Step 1a. Form matrix-vector products in the y-direction.
(Right-hand side of (8.1), N, columns, each of length ,.)

Step 1b. Solve tridiagonal systems in z-direction (8.1).

Step 1lc. Transpose data so that it is ordered by (grid) columns

Step 2a. Form matrix-vector products in the z-direction.
(Right-hand side of (8.2), N, columns, each of length A,).

Step 2b. Solve tridiagonal systems in y-direction (8.2).

Step 2c. Transpose data so that it is ordered by (grid) rows

(o2}
-~

There are certain improvements one can make to SERIAL-ADI (see. for example, [66]), which
we have omitted for simplicity. These 1mprovements are applicable to the parallel implementation
as well.

8.1 The CUBE-ADI Method

We now give a detailed description of our basic method for the ADI method on a rectangular
domain. The starting point is to embed a two-dimensional processor mesh in the hypercube,
using the binary-reflected Gray code, as proposed in [112] (see Figure 7.1). However, our CUBE-
ADI method does not use any of the methods discussed in [112]. Performance results for the
iPSC/1 for a similar hypercube ADI method that used one-dimensional domain decomposition
and the BABE variant in one direction are given in [113].

Algorithm CUBE-ADI

Steps 1.1 to 1.5 comprise the first half step of the ADI method. Steps 2.1 to 2.5 comprise the
second half step of the ADI method. This algorithm uses the transpose algorithm described in
Chapter 7, and the BABE variant of G.E. that is described in Appendix A (in particular the
2 x 2 system that arises in the BABE variant).

Step 1.1 (MVP) Matrix-vector product along columns.
EXCHANGE data with North and South neighbors.
Perform matrix-vector product for local grid block.
Step 1.2 Global transpose along processor rows.
for: =10 stepl tolog, P, —2
(1) EXCHANGE data with s-th row-neighbor.
(2) Shuffle unsent local data and received data.
end for
Step 1.3 (TRID) Solve tridiagonal systems along rows by the BABE variant
of Gaussian elimination. Each system is split across two processors that are
neighbors in the hypercube.
for j=1 step1 to 2%’}
Factor and forward solve in the local half of the j-th system.
end for
EXCHANGE data corresponding to the 2 x 2 system in the center for
each system with i-th row-neighbor (i = log, P, — 1.)
Each 2 x 2 system is solved on both processors that share the full system.
for j =1 step1l to ?Hi
Back-solve for the local half of the j-th system.
end for
Step 1.4 Global transpose along processor rows. (Step 1.2 “in reverse”.)

38

for : =log, P, —2 step —1 to 0
(1) “Unshuffle”. Prepare message buffer.
(2) EXCHANGE data with i-th row-neighbor.
end for
Step 1.5 Local transpose.
Reorder the local data so that it is stored by columns.
Step 2.1 (MVP) Matrix-vector product along rows.
EXCHANGE data with East and West neighbors.
Perform matrix-vector product for local grid block.
Step 2.2 Global transpose along processor columns.
for : =0 step1l tolog, P, —2
(1) EXCHANGE data with i-th column-neighbor.
(2) Shuffle unsent local data and received data.
endfor
Step 2.3 (TRID) Solve tridiagonal systems along columns by the BABE variant
of Gaussian elimination. Each system is split across two processors that are
neighbors in the hypercube.
for j =1 step 1 to 21—\'};1
Factor and forward solve in the local half of the j-th system.
end for
EXCHANGE data corresponding to the 2 x 2 system in the center for
each system with i-th column-neighbor (i = log, P, — 1.)
Each 2 x 2 system is solved on both processors that share the full system.
for j =1 step 1 to 2%’}
Back-solve for the local half of the j-th system.
end for
Step 2.4 Global transpose along processor columns. (Step 2.2 “in reverse”.)
for : =log, P, —2 step —1 to 0
(1) “Unshuffle”. Prepare message buffer.
(2) EXCHANGE data with i-th column-neighbor.
end for
Step 2.5 Local transpose.
Reorder the local data so that it is stored by rows.

“Edge” processors have only one exchange in Step 1.1 or 2.1 (or both). If P, = 1, Steps 1.2 and
1.4 are not performed and the standard Gaussian elimination is used to solve the tridiagonal
systems instead of Step 1.3. Similarly, if P, = 1, then Steps 2.2 and 2.4 are skipped and Step

2.3 is replaced by standard Gaussian elimination.
The cost of the shuffle in the global transposes (the effective value of t.,,,) was reduced by

unrolling the inner loops in the shuffles. Local data is stored as a one dimensional array. The local
transposes (Steps 1.5, 2.5) ensure that the memory accesses have stride one in the tridiagonal

solves. The local transposes account for less than three percent of the total time.

We now list a number of features of the CUBE-ADI method.

89

e The transposes along rows and columns in the processor mesh are efficient because each
processor row and column is itself a sub-cube.

e The BABE variant of Gaussian elimination results in saving one step in each of the four
transposes.

o All inter-node communication is in the form of exchanges between adjacent processors.
e The matrix elements are not moved between nodes.

The BABE algorithm was used in the ADI implementation in [113] where it led to the most
efficient method reported in that paper. However, in [113] the BABE algorithm was used in
only one direction only. It was pointed out in [88] that the BABE algorithm can be used in both

the z and y directions, thereby reducing the number of transpose steps from 2log g.(P) — 2 to
2log,(P) — 4.

The CUBE-ADI algorithm can be used, with a few, simple modifications, as the basis for
parallelizing several methods for the Schrodinger equation other than the SS-PR and SS-ADI-
CD methods for which the CUBE-ADI algorithm is directly applicable (the treatment of the
potential operator parallelizes trivially in the split-step approach).

1. With very simple modifications, CUBE-ADI can handle penta-diagonal matrices instead of
tridiagonal. These modifications would only affect the arithmetic loops and not alter the
communication structure. Thus, the SS/ADI/FD(2,8) method for the Schradinger equation
In two space dimensions can be implemented on a hypercube with a speed-up at least as
great as that of CUBE-ADI.

2. The communication structure of the CUBE-ADI algorithm can be used as the basis of a
hypercube implementation of a two-dimensional FFT. One would replace Step 1.1 by a
number of local FFTs (in the z direction), merge Steps 1.2 and 1.4, omitting Step 1.3. At
this point, we would have to perform a number of local FFTs (in the y direction), completing
the forward transform. The form of the inverse transform would be very similar, except that
the steps would be performed in the reverse order (using inverse FF Ts). This could serve
as the basis of parallelizing the split-step Fourier method, the spectral leap-frog and the
spectral Adams-Bashforth methods for the Schrédinger equation in two space dimensions.

3. A different modification of CUBE-ADI leads naturally to a hypercube implementation of
a “conventional” fast Poisson solver, based on FFTs and tridiagonal solves ([59]). The
main changes would be to omit the matrix-vector products in Steps 1.1 and 2.1 and replace
the tridiagonal solves in the Step 1.3 by the appropriate (local) FFTs. As in the previous
remark, Steps 1.2 and 2.2 would be merged with Steps 1.4 and 2.4, respectively. We
have discussed in Chapter 6 how fast Poisson solver techniques can be used in conjunction
with the split-step approach to efficiently solve the implicit equations in schemes such as

SS/CN-2d, SS/CD-2d and SS/FD(2,8)-2d.

90

8.2 The Parallel Cost of CUBE-ADI

We state the cost of each step in the CUBE-ADI algorithm and sum it to get the total cost.
In the results we will report, we have assumed that the matrices occurring have ones on the
off-diagonals and complex entries on the main diagonal. Although complex arithmetic is used in
the program, the constants Cpvp and Cgg are the number of real floating point operations per
unknown required in the matrix-vector products and the tridiagonal solves, respectively. With
the assumptions we are making about the structure of the matrices, these constants are 10 and

28, respectively. In the following cost estimates, we have omitted some lower order terms.

Step 1.1: CMVP%LU + 4T orm (%)

Step 1.2: (loga Pe = 1) [2Teomm (32) + 8% teopy |
Step 1.3: CGE%LU + 2T comm (%Vl)

Step 1.4: same as Step 1.2

Step 1.5: S%tcopy

Step 2.1: CMVP%W + 4=T.cc>mm (‘8731%1)

Step 2.2: (10g2 Py - 1) [2Tcomm (:}pﬂ) + 8%tcopy]
Step 2.3: CGE%w + 2T comm (%}5\7_1)

Step 2.4: same as Step 2.2

Step 2.5: same as Step 1.5

We first state the cost of SERIAL-ADI. This is simply the cost of Steps 1.1, 1.3, 1.5, 2.1, 2.3
and 2.5, without the T.,mm, terms:

TseRIAL-ADI(N; W, teopy) = 2[(Crvp + Cor)w + Steopy] N (8.3)

We can now state the parallel cost of one full step of CUBE-ADI as follows.

) .
TouBe-apI(N, P, Nz, Pryw, 0, T, teopy) = R Tsgrrar-apr(N;w,teopy)

+4Tcomm (vaz/Px) + 4::Z—'comm (8«/Vy/Py)
+2Tcomm (24Ng [P) + 2T comm (24N, / P)
N

+4 (logy P — 2) Teomm (4N/P) + 16 (log, P — 2) —p-tcopy (8.4)

The last three rows of (8.4) represent the overhead of parallelizing the algorithm. The cost of

communication in the matrix-vector product and tridiagonal solve phases is given by the second

91

and third rows, respectively. The fourth row gives the cost of the global transposes (to simplify
the expression, we have assumed that P, P, > 2).

Note that the dependence on N,, Ny, P,, P, appears only in the communication costs in the
matrix-vector products and tridiagonal solves, and not in the dominant terms, namely the arith-

metic and global communication terms. We will examine the effect of varying these parameters,
for fixed N and P.

8.3 Performance of CUBE-ADI

We now present performance results for the CUBE-ADI algorithm for a set of experiments that

were conducted on both the iPSC/1 and the iPSC/2. The results for both hypercubes are
summarized in Table 8.3.

8.3.1 Results for the iPSC/1

Table 8.1 gives a breakdown of times on the iPSC/1 for one step of the CUBE-ADI method. The
times are in milliseconds. The times for a number of different grids sizes and cube dimensions
are presented. The processor meshes were chosen to be square (or nearly square). The times
for the matrix-vector products, the tridiagonal solves and the local transposes have a very small
variance. The global transposes have the largest variability of all the phases. The first value in
the global transpose column in Table 8.1 is an estimate for the communication time based on
the model (7.2). The second value in that column is the total time spent in the shuffles over all
global transposes. This value is based on a separate timing of the appropriate code segments.
The Tyreq column has the predicted times for a full ADI step and is the sum of the times in the
same row for the individual phases. The T,,, column has the measured times, averaged over 10
ADI steps. The last (A) column shows the discrepancy between the predicted and the model
times.

The rows corresponding to P = 1 are the single processor times. For the larger grids, we
have included an extrapolation to a 128 processor cube. The extrapolated values for the global
transpose phase were chosen to be about the same as the measured times for the 64 processor
case. This represents a slight over-estimation, since the model predicts a decrease in the transpose
time on a larger cube, provided that the effect of the start-up cost is not appreciable, which is
the case for the larger grids.

The table shows that the times for the arithmetic phases are approximately halved as the
number of processors is doubled. The global transposes account for the bulk of the parallel
overhead and the percentage of the (model) time spent in them grows slowly with P. The times
spent in the shuffles are comparable to the model time for the communication in the transposes.
It should be noted that the percentage of the total time spent in the global transpose is smallest
when N is large and P small.

On the iPSC/1, a communication activity can fail due to certain bottlenecks and there is a
long wait before a re-try (5 to 10 milliseconds). The most plausible explanation is that when

92

more than one of the 82586 (LAN) chips on a node is trying to access the system buffer part
of the memory, they are competing for the memory bus, which is not able to service more than
one 82586 chip at a time. For the user, the effect is a large variability in the times for a given
program with the same input parameters. The delay due to a collision n any processor will
propagate to all other processors due to the tightly coupled nature of our algorithm (unless there
are independent, simultaneous collisions, which will be “overlapped”). In this context, we point
out that the minimum times over many iterations, which are not displayed, are fairly repeatable
and are closer to the predicted times than the average times. This phenomenon was discussed
in the context of the CR(¢) times in Figure 7.5, in the previous chapter.

In Figure 8.1, The efficiency of the CUBE-ADI algorithm on the iPSC/1 is plotted as a
function of the hypercube dimension for various problem sizes.

93.

Table 8.1:

Breakdown of the time (in milliseconds) needed for one full step of CUBE-ADI on
the iPSC/1. MVP: matriz-vector products, TRID: tridiagonal solves. The global
transpose times are broken down in the form [T1] + T2, where T1 is the communi-
cation time based on the model and T2 is the shuffle time in the transposes obtained
from a separate timing of the appropriate code segments. Toreq is the predicted time,
based on the measured times for the MVP, TRID, Local transpose and T2 together
with the model times for T1. T,,, is the measured time, averaged over 10 ADI
steps. A is the discrepancy between T,yy and Tprea. The times in parentheses are
extrapolated values. ’

N, P MVP | TRID Global Local Tpred Taug A
(=Ny) | (P x Py) Tr'pose | Tr'pose
64 1 (7,525)
2(1x2) | 960 | 2,855 0 110 3025 [3.9% | 1
4(2x2)| 490 1,430 0 35 1,975 1,978 | 3
8(2x4) | 250 | 720 | Q0] <27 | 30 1,037 | 1,061 | 24
16 (4x4)| 130 | 360 |[18]+23| 20 556 612 | 56
32 (4x8) | 70 185 | (24 +24 | 10 313 387 | 74
64 (8x38)| 40 100 | (28] +20 | 5 193 312 | 119
128 1 (31,300)
2(1x2)| 3,850 | 11,360 0 430 15,640 | 15,650 | 10
4(2x2)| 1,930 | 5,630 0 210 7,820 7,330 | 10
8(2x4) | 970 2,830 | [SO] + 90 110 4,080 4,070 | -10
16 (4x4) | 500 | 1,420 | [S0] + 9L | 60 3151 | 2,160 | O
32(4x8)| 250 | 720 | [60] +71] 30 131 | 1,180 | 49
64 (8x8)| 130 360 [40] + 51 15 596 706 | 110
128 (65) | (180) | (100 (10) (353)
256 1 (125,200)
16 (4x4)] 1,930 | 5,660 | [320]+344 210 8,364 8,360 | -4
32(4x8)| 970 2,850 | [240]+260 110 4,430 4,370 | -60
64 (8x8)| 490 1,450 | [160]+176 60 2,336 2,410 | T4
128 (250) | (750) | (300 GO | (1.330)
512 1 (500,500)
64 (8x8) | 1,940 | 5,760 | [640]+673 240 9,253 9,343 | 90
I2C__ | (1000) [(2,830) | (1400) | (120) | (5,400)

94

EFFICIENCY OF CUBE—ADI (iPSC/1)
100 T T T I

80

512x512
256x256

70

60

50 | 128x128

EFFICIENCY

40

30

\| 64x64
20 N

10+ -

CUBE DIMENSION

Figure 8.1: Efficiency vs. cube dimension for the CUBE-ADI algorithm on the tPSC/1. The
efficiencies are base on the timings displayed in Table 8.1. The grid sizes are shown on the right.
The dashed lines denote extrapolated values.

8.3.2 Results for the iPSC/2

In this section, we discuss the performance of the CUBE-ADI algorithm on the iPSC/2. The
experiments performed were essentially the same as those for the iPSC/1 that were discussed
above. The iPSC/1 code was ported to the iPSC/2 with a few straightforward changes. In addi-
tion to the improved performance on the iPSC/2, the variability in the timings is substantially
lower than on the iPSC/1.

Table 8.2 gives a breakdown of the times (in milliseconds) on the iPSC/2 for one step of the
CUBE-ADI algorithm. The form of Table 8.2 is similar to that of Table 8.1, except that the times
for the global transpose in Table 8.2 are the differences between the average total times and the
sum of the times for the MVP, TRID and local transpose phases. For the iPSC/2, the difference
between the predicted and average times was not significant enough to warrant a discussion of
the discrepancy between the two.

In particular, the iPSC/2 achieves over 22 Megaflops on a 256 x 256 grid for CUBE-ADI with
64 processors. The estimated performance for a 1024 x 1024 grid on a 128 processor iPSC/2
(which we did not have access to) is over 40 Megaflops.

The efficiency of CUBE-ADI on the iPSC/2 is plotted in Figure 8.2 as a function of the
hypercube dimension.

Table 8.3 contains a summary of the performance of CUBE-ADI on the iPSC/1 and the
iPSC/2.

96

Table 8.2:
Breakdown of the time (in milliseconds) needed for one full step of CUBE-
ADI on the iPSC/2. The column headings have the same meaning as in
Table 8.1, except that the global transpose times were obtained from the other
times in the same row. The times in parentheses are extrapolated values.

N, P MVP | TRID | Global | Local | T,
(=Ny) | (P:x P,) Tr’pose | Tr’pose
64 1 123 | 462 | 0 44 634
2(1x2)| 62 | 240 0 22 327
1(2x2) | 35 | 124 0 11 | 171
8(2x4)| 22 64 11 5 100
16 (4x4)| 14 33 15 3 62
32(4x8)| 6 16 17 1 40
64 (8x8) | 4 10 14 2 29
128 1 (2,536)
2 (1x2) | 245 | 941 0 87 1,274
4(2x2)| 125 | 480 | . 0 43 648
8(2x4) | 70 | 245 31 22 368
16 (4x4)| 33 124 31 12 200
24x8) | 13 65 27 6 116
64 (8x8) | 10 31 24 3 68
128 6 | (16) | @20 2) (45)
256 1 (10,144)
4(2x2) | 303 | 1,909 0 181 2,594
8(2x4) | 291 | 963 103 88 1,450
16 (4 x4) | 136 | 473 112 44 770
32 (4x8) | 64 | 243 88 22 417
64 (8x8) | 33 121 63 11 230
128 (18) | (62) | (50) | (%) (135) -
512 1 ' (40,576)
16 (4 x4) | 549 | 1,906 | 463 180 3,098
32 (4x8) | 263 | 959 329 88 1,634
64 (8x8) | 129 | 476 225 44 874
128 (63) | (242) | (160) | (22) (492)
1024 1 . (162,30)
64 (8x8) | 555 | 1,927 | 873 181 3,550 |
128 (285) 1 (970) | (512) | (91) | (1858)

EFFICIENCY OF CUBE-ADI (iPSC/2)
100 . T , T .

S0

80

70k 1024x1024

~.] 912x512

60 ~d 256x256

50

I

| 128x128
40 -

EFFICIENCY

30 -

20 ' -

10 -

CUBE DIMENSION

Figure 8.2: Efficiency vs. cube dimension for the CUBE-ADI algorithm on the iPSC/2. The
efficiencies are base on the timings displayed in Table 8.2. The grid sizes are shown on the right.
The dashed lines denote extrapolated values.

98

Table 8.3:

A summary of the performance of CUBE-ADI on the iPSC/1
and the iPSC/2. The times on a single processor and on 64
processors are given in milliseconds. The speed-up values given
in [...] are the single processor times divided by the 64 processor
times. RATIO is the iPSC/1 time divided by the iPSC/2 time.
Estimated Megaflop rates for the 64 processor times are also
shown. :

iPSC/1 iPSC/2 RATIO
128 x 128 grid:
1 processor 31,300 2,536 12.34
64 processors 706 68 10.38
Speed-up [44.3] [37.3]
Megaflops 1.72 17.9
256 x 256 grid:
1 processor 125,200 10,144 12.34
64 processors 2,410 230 10.47
Speed-up [52.0] - [44.1]
Megaflops 2.02 21.17
512 x 512 grid:
1 processor 500,800 40,576 12.34
64 processors 9,343 874 10.69
Speed-up [53.6] [46.4]
Megaflops 2.08 22.27

99

Table 8.4:

An exdmple of the communication pattern in the CUBE-ADI al-
gorithm. Each communication activity is an exchange of data
with the indicated processor. This table shows the exchange part-
ners at each step for processors 0, 5, 16 and 21 on a 128 x 128
grid with 64 processors and an 8 X 8 processor mesh. The size of

the messages in bytes is given. The first column gives the step
number in the CUBE-ADI algorithm.

Step | Message | Py | Ps Pys Py
length
1.1 128 Py | Pz | Py, Pss | Prg, Ps3
1.2 1024 P, P, Pir Py
P, P Pig Po3
1.3 384 P, P Py Py7
14 1024 Pg P7 P18 P23
P, Py Py7 Py
1.5
2.1 128 P | PP, Pi7 Py, Py
22 | 1024 | P | P P4 Py
P | Pn Py Ps
23 384 .P32 P37 P48 P53
24 1024 Plg Pz]_ PO PS
Py Py3 Py Phg
2.5

8.4 Communication-reducing Variants of CUBE-ADI

The CUBE-ADI algorithm has a moderately complex pattern of communication activity. This
is displayed in Table 8.4.

Each processor exchanges data with each of its log, P neighbors in the course of a full ADI
step. The manner in which this is done results in information flowing from each processor to
every other. Table 8.4 indicates some redundancy in the communication, for example, the last
exchange partner in Step 1.4 is an exchange partner in Step 2.1. One can consider variants
of the CUBE-ADI algorithm that reduce the communication requirements by eliminating the
“redundant” exchanges.

The use of the BABE variant of Gaussian elimination is a communication-reducing strategy
that is already implemented in CUBE-ADI.

The communication in the matrix-vector product phases can be reduced either by going from
an ADI scheme to a locally one-dimensional (LOD) scheme or by modifying the CUBE-ADI
algorithm so that the matrix-vector product from a given half step is moved to the tridiagonal
solves of the previous half step.

100

The alternating sweep ordering variant of ADI is primarily a communication-reducing device.
In CUBE-ADI/ASO, the number of global transpose steps is halved (when we average over two
full ADI steps). Thus, instead of the 2log,(P) — 4 transpose steps required by CUBE-ADI, each
full step of CUBE-ADI/ASO would perform log,(P) —2 transpose steps. For large P, this saving
will have a greater impact than each of the two strategies discussed above. A combination of all
three devices will clearly be the most effective approach. |

8.5 Effect of Aspect Ratio of Processor Mesh

In Figure 8.3, we have plotted the time taken by the CUBE-ADI algorithm on a 5-cube as a
function of P; to investigate the effect of variations in the aspect ratio of the processor mesh. The
times for three different computational grids with the same total number of points are plotted
(128 x 128, 256 x 64, 512 x 32). The parts of the expression for the model time (8.4) that depend
on the aspect ratios of the grid and processor mesh (as opposed to the total number of grid
points and processors) is a lower order term. The dépendence is essentially of the form '

Tcomm(N:c/Px) + Tcomm(Na:/Px)-

The standard area/perimeter argument (applied to rectangles) shows that the minimum, for a
fixed N/p, occurs when N,/P, = N,/P,. It should be kept in mind that the cases P, = 1
and P, = P are penalized by the fact that the BABE algorithm can only be employed in one
direction only and therefore the total number of transpose steps is 2(log, P — 1) rather than
2(log, P —2). Also, in the more skewed cases (for example, a 1 x 32 processor mesh for a 512 x 32
grid), the exchanges with the NORTH and SOUTH neighbors involve long messages. However,
if one ignores these edge effects and picks P, =~ v/P (P, = 4 or 8 for a 5-cube), the time is within
2% of the time with the “optimal” P,. Figure 8.3 shows that the minimum is very flat, reflecting
the fact that we are minimizing a lower order term.

8.6 Extensions to Large Hypercubes

The algorithms that we have considered for the Intel hypercubes assume that we have a moderate
number of processors. In fact, the algorithms we have described assume that P < min{N,, N,}.
We will now describe two different approaches to extending our methods to the case when we
have more the v/N processors. We will use the following values for illustrative purposes in our
description: Ny = N, =128, P, = P, = 32, i.e. N = 16384 and P = 1024. We assume the usual
two-dimensional comain decomposition with a P, x P, processor mesh. We consider in detail
the solution of tridiagonal systems along rows and outline two different methods that use the
“building blocks” that have been developed earlier.

T/SS/CR({): Our first algorithm combines a few steps of the transpose with the SS/CR(¢)
method. Each processor row has N,/P, = 128/32 = 4 systems, each spread across the P, = 32

101

EFFECT OF ASPECT RATIO OF PROCESSOR MESH
2 T T T i I

1.8} | .
1.6 |

1.4

/1
|

~ . —==
1.2F — T T T e e - e e e T -

SECONDS
I
|

0.6 F -
128 x 128 GRID

0.4k 256 x 64 GRID

512 x 32 GRID

0.2r =

DX

Figure 8.3: Sensitivity of the CUBE-ADI algorithm to variations in the aspect ratio of the pro-
cessor mesh. DX is the number of dimensions in the z direction, i.e. P, = 20X,

102

processors. In the first stage, we perform log,(N,/P,) (= 2) steps of the transpose. (We cannot
perform the full transpose because we have “too many” processors.) We now have the 4 systems
separated, each spread across a separate sub-cube consisting of P/N, (= 8) processors. Since the
order of each system is V; = 128, we have N/P = 16 unknowns per processor. We are now in a
position to apply any algorithm for solving a single tridiagonal system. If we use the SS /CR(¥)
method, the whole method can be called the T/SS/CR(#) method.

SS/BalCR/CR({): Our second algorithm uses a few steps of balanced cyclic reduction rather
than the transpose and employs substructuring and CR(£) somewhat differently from the first
algorithm. In this method, we first perform substructuring on each of the AV v/ P, = 4 systems in
each processor row. We now have 4 reduced systems, each of order P, = 32, spread across a sub-
cube consisting of P, processors (the processor row). The second stage is to perform log,(N,/P,)
= 2 steps of balanced cyclic reduction (BalCR) on each sub-cube. (Again, we cannot perform
all the steps of BalCR because we have more processors than systems.) At the end of the second
stage, each of the reduced systems has been further reduced by the cyclic reduction process to a
smaller system of order P/N, = 8 and each of these is spread across a distinct sub-cube having
P/N, = 8 processors. In the third and final stage, each of these systems is solved by some method
for solving single tridiagonal systems that have one row per processor, such as CR(¢). We will
refer to this scheme as SS/BalCR/CR(¥).

Both these methods do the same amount of work in their substructuring and CR({) stages
and both perform log,(N,/P,) steps of the transpose and BalCR, respectively. When P is large,
the number of transpose/BalCR steps will be small and in this situation, the transpose has
an advantage. Hence, we expect T/SS/CR({) to be the better of the two methods for ADI
on hypercubes with a large (but not massive) number of processors. This statement must be
qualified by the reminder that the hardware (and software) parameters of any real machine may
make it preferable to use something other than CR(£) for solving a single system of order k£ on a k
processor sub-cube, for example, the cyclic elimination method. Note that as P grows, both the
number of transpose steps and the amount of substructuring required in T/SS/CR({) decrease

and the importance of the solver for single systems (with one unknown per processor) increases.

ADI methods for massively parallel machines have been studied in (111] and [110].

103

Appendix A

Sequential Tridiagonal Solvers

In this section, we describe some variants of Gaussian elimination for the solution of tridiagonal
systems of linear equations.

The BABE (“burn at both ends”) variant of Gaussian elimination is a well-known algorithm
for solving tridiagonal systems (see [69], [71], [106]). The BABE algorithm is often more efficient
than standard Gaussian elimination on sequential computers?.

BABE variant of Gaussian elimination for Ax = d

We will state this algorithm for a tridiagonal system whose sub- and superdiagonal entries all
have the value one and whose main diagonal is stored in an array b. The reciprocals of the pivots
are computed and stored in b. For simplicity, we assume that NN, the order of the system, is even.

1. Factor and forward solve.
b(1) =1/b(1)
b(N) = 1/b(N)
for j =2 step 1 to 1—;’-
k=N-j+1
b(7) = 1/(b(3) - b(j — 1))
d(j) = d(j) — b(G — 1) + d(j — 1)
(k) = 1/(b(k) — b(k + 1))
d(k) = d(k) — b(k + 1) x d(k + 1)
end for :
2. Solve a 2x2 system in the center for (%), z(& + 1).
A= (1= b(¥) «b(¥ 4 1)
2(5) = (d(F) *b(5 +1) —d(X + 1) x (¥
2(F+1) = (dF +1) b5 +1) —d(¥)
3. Back solve.
forj:%—l step —1 tol
k=N-j+1
2(7) = (d(j) —2(j - 1)) *b(j 1)
z(k) = (d(k) — z(k + 1)) x b(k + 1)
end for

) * (5 + 1)/A
b(3) *b(5 +1))/A

In particular, the tridiagonal solver in LINPACK [71] uses the BABE variant of Gaussian elimination

104

Remark. If A is a constant on the main diagonal and all off-diagonal entries are one, then the
pivots computed by the BABE algorithm have a symmetry: b(s) = b(N 4+ 1 — j) and one need
not compute the pivots for the lower half of the matrix.

Remark. Standard Gaussian elimination, when applied to a matrix of this form, with |A| > 2,
has the property that the pivots converge ([92], [94]). If r(j) is the j-th pivot computed by
Gaussian elimination and r* is the limit of the r(j)’s, then

ﬂﬂiﬂ<gfmj>K:K@m

ﬂ]
where K is defined as follows. Let z, = (/\ ==RVOXI 4) /2 and set p = max{|z4|,|2_|}. Then
K(e,X) = [log ™'/ log p*]. (A.1)

If |A] is very close to 2, then K can be large. However, for € = 107'¢ and || equal to 3, 4, 5,
6, K has the values 19, 13, 11, 10 ([94]). Their analysis is carried out for real A but their proof
goes through for complex A, which is what is needed in applying this technique to Schrédinger’s
equation.

Based on these two remarks, we now combine the BABE algorithm with pivot convergence
to get a variant of Gaussian elimination that should be efficient for tridiagonal systems that
have ones on the off-diagonals and a constant A on the main diagonal (with |A| > 2, so that no
pivoting is required).

BABE GE with pivot convergence for Ax = d

A'is a tridiagonal matrix, with a constant A (]| > 2) on the main diagonal and ones on the sub-
and superdiagonals. For a given tolerence ¢, K is defined in (A.1). The reciprocals of the pivots
are stored in the array 8(5), j = 1,..., K, and b is the reciprocal of the limit of pivots. We state
the algorithm for the case where IV is even and K < N.

1. Factor and forward solve.
b(1) =1/A
for j =2 step1 to K
k=N-j5+1
d(5) = d(j) = b(5 — 1) *d(j — 1)

d(k) = d(k) = b(j — 1) + d(k + 1)
b(j) = 1/(A = b(j — 1))

end for

b= b(K)

for j=K+1 step1 toI—;’-
k=N-j+1

d(j) = d(j) = bxd(j — 1)
d(k) = d(k) — b* d(k + 1)

end for
2. Solve a 2x2 system in the center for 'c(—}), :L(’;—' +1).
2(3) = (@5« b—d(F +1)«52)/1 - B
2§ +1)=(dF+1)*b—d(§)«)/(1-)
3. Back solve.
forj=2—1 step—1 to K +1
k=N-—-j+1
2(j) = (d(7) = z(+ 1)) x b
z(k) = (d(k) —z(k—1))* b
end for
for j = K step —1 tol
k=N-j+1
2(j) = (d(j) - a(j + 1)) = b(j)
2(k) = (d(k) - =(k — 1)) « b(j)

end for

106

Bibliography

Chapters 1-2

[1] A.R. Gourlay. Splitting methods for time dependent partial differential equations. In The
State of the Art in Numerical Analysis, D. Jacobs, ed., Academic Press, London, 1977.

[2] G. G. O’Brien, M. A. Hyman and S. Kaplan. A study of the numerical solution of partial
differential equations. J. Math. and Phys., 29:223-251, 1950

[3] E. M. Reingold, J. Nievergelt and N. Deo. Combinatorial Algorithms: Theory and Practice.
Prentice Hall, New Jersey, 1977.

[4] R. D. Richtmyer and K. W. Morton. Difference Methods for Initial-value Problems. Inter-
science Publishers, New York, 1967.

5] Paul N. Swarztrauber. Vectorizing the FFTs. In Parallel Computations, G. Rodrigue
g g
(Ed.), Academic Press, New YOI‘k, 1982.

[6] F.D. Tappert. The parabolic approximation method. In Wave Propagation and Underwa-
ter Acoustics, J. B. Keller and J. S. Papadakis (Eds.), Lecture Notes in Physics, Vol. 70,
Springer-Verlag, New York, 1977.

Chapter 3

[7] W. F. Ames. Numerical Methods for Partial Differential FEquations. Academic Press, New
York, 1977.

(8] J. W. Cooley, P. A. W. Lewis and P. D. Welch. The fast Fourier transform: programming

considerations in the calculations of the sine, cosine and Laplace transforms. J. Sound

Vib., 12:315-337, 1970.

107

[9] D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods: Theory and Appli-
cations. STAM, Philadelphia, 1977.

[10] R. H. Hardin and F. D. Tappert. Application of the split-step Fourier method to the
numerical solution of nonlinear and variable coefficient wave equations. (Abstract) SIAM

Rev., 15:423, 1973.

[11] D. Lee, G. Botseas and J. S. Papadakis. Finite difference solution to.the parabolic wave
equation. J. Acoust. Soc. Am., 70:795-800, 1981.

[12] D. Lee and S. T. McDaniel. Ocean acoustic propagation by finite difference methods. Perg-
amon Press, New York, 1988.

[13] R. J. Leveque and J. Oliger. Numerical methods based on additive splittings for hyperbolic
partial differential equations. Math. Comp., 40:469-497, 1983.

[14] S.T. McDaniel. Applications of energy methods to finite-difference solutions of the parabolic
wave equation. In Computational Ocean Acoustics, M. H. Schultz and D. Lee (Eds.), Perg-
amon Press, New York, 1985.

[15] W. G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer.
Anal., 6:506-517, 1968.

(16] N. N. Yanenko. The Method of Fractional Steps. Springer-Verlag, New York, 1971.

Chapter 4

[17] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. National Bureau
of Standards, New York, 1972.

(18] R. F. Boisvert. Families of high order discretizations of some elliptic problems. SIAM J.
Sci. and Stat. Comput., 2:268-284, 1981.

(19] E. A. burke. Extended Numerov method for the numerical solution of the Hartree-Fock
equations. J. Math. Phys., 21:1366-1369, 1980.

[20] M. Ciment and S. H. Leventhal. Higher order compact implicit schemes for the wave
equation. Math Comp., 29:985-994, 1975.

108

[21] L. Collatz. Numerical Treatment of Differential Equations. Springer-Verlag, New York.
1960.

[22] S. H. Crandall. An optimum implicit recurrence formula for the heat conduction equation,

Q. Appl. Math., 13:318-320, 1955.

[23] J. Douglas, Jr. The solution of the diffusion equation by a higher order correct difference

equation. J. Math. Phys., 35:145-151, 1956.

[24] B. L. Ehle. A-stable methods and Padé approximations to the exponential. STAM J. Math.
Anal., 4:671-680, 1973.

[25] G. Fairweather and A. R. Mitchell. A high accuracy alternating direction method for the
wave equation. J. Inst. Math. Appl., 1:309-316, 1965.

[26] R. Guardiola and J. Ros. On the numerical integration of the Schrddinger equation in the
finite-difference schemes. J. Comp. Phys., 45:374-389, 1982.

[27] P. Henrici. Poisson’s equation in a hypercube: discrete Fourier methods, eigenfunction ex-
pansions, Padé approximation to eigenvalues. In Studies in Numerical Analysis, G. H. Golub

(Ed.), Math. Association of America, 1984.
(28] F. B. Hildebrand. Introduction to Numerical Analysis. McGraw-Hill, New York, 1956.

[29] A. Iserles. On the A-acceptability of Padé approximations. SIAM J. Numer. Anal.,
10:1002-1007, 1979.

[30] A. Iserles. Order stars, approximations and finite differences III. Finite differences for

Ut = WUge. SIAM J. Math. Anal., 16:1020-1033, 1985.

[31] M. K. Jain. Numerical Solution of Differential Equations. Halsted Press, John Wiley &
Sons, New York, 1979.

[32] R. Jeltsch. Stability on the imaginary axis and A-stability of linear multistep methods.
BIT, 18:170-174, 1978.

[33] R. E. Lynch and J. R. Rice. The HODIE method and its performance for solving elliptic
partial differential equations. In Recent Advances in Numerical Analysis, C. de Boor and

G. H. Golub (Eds.), pages 143-175, Academic Press, New York, 1978.

109

[34] A. R. Mitchell and G. Fairweather. Improved forms of the alternating direction methods

of Douglas, Peaceman and Rachford for solving parabolic and elliptic equations. Numer.

Math., 6:285-292, 1964.

[35] R. S. Varga. On higher order stable implicit methods for solving parabolic partial differ-
ential equations. J. Math. Phys., 40:220-231, 1961.

[36] G. Wanner, E. Hairer and S. P. Ngrsett. Order stars and stability theorems. BIT, 18:475—
489, 1978. '

[37] G. Wanner, E. Hairer and S. P. Ngrsett. When I-stability implies A-stability. BIT, 18:503-
503, 1978.

Chapter 5

[38] A.Askar and A.S. Cakmak. Explicit integration method for the time-dependent Schrodinger
equation for collision problems. J. Chem. Phys., 68:2794-2798, 1978.

[39] T. F. Chan. Stability analysis of finite difference schemes for the advection-diffusion equa-
tion. SIAM J. Numer. Anal., 21:272-284, 1984.

[40] T. F. Chan and T. Kerkhoven. Fourier methods with extended stability intervals for the
Korteweg-de Vries equation. SIAM J. Numer. Anal., 22:441-454, 1985.

[41] T. F. Chan, D. Lee and L. Shen. Stable explicit schemes for equations of the Schrddinger
type. SIAM J. Numer. Anal., 23:274-281, 1986.

[42] T. F. Chan and L. Shen. Stability analysis of difference schemes for variable coefficient
Schrédinger type equations. SIAM J. Numer. Anal., 24:336-349, 1987.

[43] G. Dahlquist. A special stability problem for linear multistep methods. BI T, 3:27-43,
1963.

[44] C W. Gear. Numerical Initial Value Problems .. Ordinary Differential Equations. Prentice- .
Hall, New York, 1971.

[45] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations. John Wiley &
Sons, New York, 1962.

110

[46] H.-O. Kreiss and J. Oliger. Methods for the Approzimate Solution of Time Dependent
Problems. GARP Publication Series, 1973.

[47] D. Kosloff and R. Kosloff. A Fourier method solution for the time dependent Schrédinger
equation as a tool in molecular dynamics. J. Comp. Phys., 52:35-53, 1983.

[48] D. Lee and J. S. Papadakis. Numerical solutions to the parabolic wave equation: an

ordinary differential equation approach. J. Acoust. Soc. Am., 68:1482-1488, 1980.

[49] D. Lee and S. Prieser. Generalized Adams methods for solving underwater wave propaga-

tion problems. Comp. and Maths. with Appls., 2:195-202, 1981.

[50] J. J. H. Miller. On the location of zeros of certain classes of polyhomials with applications

to numerical analysis. J. Inst. Math. Applics., 8:397-406, 1971.

[51] G. Peggion and J. J. O’Brien. An explicit finite-difference scheme for solving the ocean

acoustic parabolic wave equation. Comp. and Maths. with Appls., 11:937-942, 1985.

[52] M. F. Reusch, L. Ratzan, N. Pomphrey and W. Park. Diagonal Padé approximations for
initial value problems. SIAM J. Sci. Stat. Comput., 9:829-838, 1988. ‘

(53] J. A. C. Weideman and B. M. Herbst. Split-step methods for the solution of the nonlinear
Schrodinger equation. SIAM J. Numer. Anal., 23:485-507, 1986.

Chapter 6

[54] T. F. Chan. Comparison of Numerical Methods for Initial Value Methods. Ph.D. Thesis,
Stanford University, 1978.

[55] J. Gary. On the optimal time step and computational efficiency of difference schemes for

PDE. J. Comp. Phys., 16:298-303, 1983.

[56] E. Isaacson and H. B. Keller. Analysis of Numerical Methods. John Wiley & Sons, New
York, 1966.

[57] L. L. Schiff. Quantum Mechanics. McGraw-Hill, New York, 1968.

[58] R.T. Walsh. Optimization and comparison of partial difference methods. SIAM J. Numer.
Anal., 10:785-797, 1973.

111

Chapter 7
[59] B. L. Buzbee, G. H. Golub and C. W. Nielson. On direct methods for solving Poisson’s

equation. SIAM J. Numer. Anal., 7:627-656, 1970.

[60] T. F. Chan and K. R. Jackson. The use of iterative linear-equation solvers in codes for

large systems of stiff IVPs for ODEs. SIAM J. Sci. and Stat. Comput., 7:378-417, 1986.

[61] J. E. Dendy, Jr. An alternating direction method for Schrédinger’s equation. SIAM J.
Numer. Anal., 14:1028-1032, 1977.

[62] J. Douglas, Jr. Alternating direction methods for three space directions. Numer. Math.,
4:41-63, 1962.

[63] J. Douglas, Jr. and J. E. Gunn. A general formulation of alternating direction methods.

Part I. Parabolic and hyperbolic problems. Numer. Math., 6:428-453, 1964.

[64] J. Douglas, Jr. and H. H. Rachford, Jr. On the numerical solution of heat conduction
problems in two and three space variables. Trans. Am. Math. Soc., 82:421-439, 1956.

[65] C. W. Gear and Y. Saad. Iterative solution of linear equations in ODE codes. SIAM J.
Sci. and Stat. Comput., 4:583-601, 1983.

[66] J. D. Lawson and J. L1. Morris. A note on the efficient implementation of splitting methods
in two space variables. BIT, 17:492-493, 1977.

[67] D. W. Peaceman and H. H. Rachford, Jr. The numerical solution of parabolic and elliptic
differential equations. J. Soc. Indust. Appl. Math., 3:28-41, 1955.

[68] J. S. Perkins and R. N. Baer. An approximation to the three-dimensional parabolic equa-

tion for acoustic propagation. .J. Acoust. Soc. Am., 72:515-522, 1982.

Chapter 8

[69] I. Babuska. Numerical stability in problems of linear algebra. SIAM J. Numer. Anal.,
9:53-77, 1972.

[70] R. F. Boisvert. Algorithms for special tridiagonal systems. Center for Comput. and Appl.
Math., Nat. Bur. of Stand., 1988.

[71] J. J. Dongarra, C. B. Moler, J. R. Bunch and G. W. Stewart. LINPACK User’s Guide.
SIAM, Philadelphia, 1979.

[72] J. O. Eklund. A fast computer algorithm for matrix transposing. IEEL Trans. Computers,
C-21(7):801-803, 1972.

[73] D.J. Evans. An algorithm for the solution of certain tridiagonal systems of linear equations.

Computer J., 15:356-359, 1972.

[74] G. H. Golub and C. F. Van Loan. Matriz Computations The Johns Hopkins University
Press, Baltimore, Maryland, 1983.

[75] M. Hatzopoulos. Parallel linear system solvers for tridiagonal systems. In Parallel Process-

ing Systems, D. J. Evans (Ed.), Cambrigde University Press, Cambridge, 1982.
[76] M. T. Heath. Hypercube Multiprocessors 1986. SIAM, Philadelphia, 1986.
[77) M. T. Heath. Hypercube Multiprocessors 1987 SIAM, Philadelphia, 1987.

(78] D. Heller. Some aspects of the cyclic reduction algorithm applied to block tridiagonal linear
systems. STAM J. Numer. Anal., 13:484-496, 1976.

[79] D. Heller. A survey of parallel algorithms in numerical linear algebra. SIAM Rev., 20:740-
77, 1978.

[80] D. Heller, D. Stevenson and J. Traub. Accelerated iterative methods for the solution of
tridiagonal linear systems on parallel computers. J. ACM, 23:636-654, 1976.

[81] C. T. Ho and S. L. Johnsson. Matrix transposition on Boolean n-cube configured ensemble

architectures. Department of Computer Science, Yale University, YALU/CSD/RR-494,
1986.

[82] R. Hockney. A fast direct solution of Poisson’s equation using Fourier analysis. JACM,
12:95-113, 1965.

[83] R. W. Hockney and C. R. Jesshope. Parallel Computers. Adam Hilger Ltd., Bristol, U. K.,
1981.

113

[84] S. L. Johnsson. Odd-even cyclic reduction on ensemble architectures. Department of

Computer Science, Yale University, 339, 1984.

[85] S. L. Johnsson. Data permutation and basic linear algebra computations on ensemble

architectures. Department of Computer Science, Yale University, 367, 1984.

[86] S. L. Johnsson. Solving tridiagonal systems on ensemble architectures. SIAM J. Sci. and
Stat. Comput., 8:354-392, 1987.

[87] S. L. Johnsson and C.-T. Ho. Multiple tridiagonal systems, the alternating direction
method and boolean configured multiprocessors. Department of Computer Science, Yale

University, YALEU/DCS/RR-532, 1987.

(88] S. L. Johnsson and C.-T. Ho. Algorithms for matrix transposition on Boolean n-cube

configured ensemble architectures. SIAM J. Matriz Anal. Appl., 9:419-454, 1988.

[89] R. Kapur and J. Browne. Techniques for solving block tridiagonal linear systems on recon-

figurable array computers. SIAM J. Sci. and Stat. Comput., 5:701-719, 1984.

[90] J. J. Lambiotte and R. G. Voigt. The solution of tridiagonal linear systems on the CDC
STAR-100 computer. ACM Trans. Math. Softw., 1:308-329, 1975.

[91] M. A. Malcolm and J. Palmer. A fast method for solving a class of tridiagonal systems of

linear equations. Comm. ACM., 17:14-17, 1974.

[92] O. McBryan and E. van der Velde. Hypercube programs for computational fluid dynamics.

In Hypercube Multiprocessors 1986, M. T. Heath (Ed.), STAM, Philadelphia, 1986

(93] S. T. O’Donnell, P. Geiger and M. H. Schultz. Solving the Poisson equation on the FPS-
164. Department of Computer Science, Yale University. YALEU/DCS/RR-293, NOV,
1983.

(94] J. M. Ortega. Introduction to Parallel and Vector Solution of Linear Systems. Plenum
Press, New York, 1988. '

[95] J. M. Ortega and R. G. Voigt. Solution of partial differential equations on vector and

parallel computers. SIAM Rev., 27:149-240, 1985.

114

[96] D. J. Rose. An algorithm for solving a special class of tridiagonal systems.of linear equa-

tions. Comm. ACM, 12:234-236, 1969.

[97] Y. Saad and M. H. Schultz. Topological properties of hypercubes. Department of Computer
Science, Yale University, YALEU/DCS/RR-389, 1985.

(98] A. Sameh and D. Kuck. On stable parallel linear system solvers. JACM, 25:81-91, 1978S.

[99] U. Sthumann. Comments on “A fast computer algorithm for matrix transposing” and

application to the solution of Poisson’s equation. IEEE Trans. Computers, C-22(5):542-
543, 1973.

[100] C. L. Seitz. The Cosmic Cube. Comm. ACM, 28:22-33, 1985.

(101] H. S. Stone. Parallel processing with the perfect shuffle. IEEE Trans. Computers, C-
20(7):153-161, 1971.

[102] H. S. Stone. An efficient parallel algorithm for the solution of a tridiagonal linear system
of equations. JACM, 20:27-38, 1973.

[103] Paul N. Swarztrauber. The method of cyclic reduction, Fourier analysis and the FACR,

algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Review,

19:490-501, 1977.

[104] Paul N. Swarztrauber. A parallel algorithm for solving general tridiagonal equations. Math.

Comp., 33:185-189, 1979.

[105] H. A. van der Vorst. Large tridiagonal and block tridiagonal linear systems on vector and

parallel computers. Parallel Computing, 5:45-54, 1987.

[106] H. H. Wang. Transposing matrices on a vector computer. Report G320-3389, IBM Palo
Alto Scientific Center, 1979.

(107] H. H Wang. A parallel method for tridiagonal equations. ACM Trans. Math. Softw.,
7:170-182, 1981.

Chapter 9

(108] D. J. Evans. Fast A.D.I. methods for the solution of linear parabolic parabolic partial
differential equations involving 2 space dimensions. BIT, 17:486-491, 1977.

[109] R. A. Fatoohi and C. E. Grosch. Implementation of an ADI method on parallel computers.
ICASE, Report No. 87-43, 1987.

[110] D. J. Hunt, S. J. Webb and A. Wilson. Application of a parallel processor to the solution

of finite difference problems, In Elliptic Problem Solvers, M. H. Schultz (Ed.), Academic
Press, New York, 1981.

[111] S. L. Johnsson, Y. Saad and M. H. Schultz. Alternating direction methods on multxpro-
cessors. SIAM J. Sci. and Stat. Comput.; 8:686-700, 1937.

[112] F. Saied, C.-T. Ho, S. L. Johnsson and M. H. Schultz. Solving Schrodinger’s equation on
tae Intel iPSC by the Alternating Direction Method. In Hypercube Multiprocessors 1987,
M. T. Heath (Ed.), SIAM, Philadelphia, 1987.

[113] P. Vu and C. Yang. Comparing tridiagonal solvers on the CRAY X-MP /416 system. Cray
Channels, Vol. 9, No. 4, 22-25, 1988.

116

