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Abstract: The parallelism of quantum computation is applied to the problem of descent
minimization. That parallelism provides the setting for a diffusion technique that we
introduce for improving the minimum attained, achieving the global minimum in some
cases. The algorithm’s quantum computational circuitry is given, and the associated
critical probability concentration property is discussed. The methodologies’ scope is
illustrated by application to Hopfield net dynamics, the latter known to generate a variety
of candidate descent minimization problems. As a byproduct, this shows how the
recursive neural network (a brain model) can be implemented on a quantum computer.
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1. INTRODUCTION

Quantum computation with its capacity to explore the entire computational basis in
parallel and its associated probability concentration requirement is applied to descent
minimization. We expect these features to furnish results superior to those of a standard
computation. They also provide the setting for a diffusion technique that we introduce
for improving the value of the minimum found, in some cases achieving the global
minimum (improvements central for the problem of protein folding, for example).

In Sect. 2 we formulate the descent computation algorithm and develop the quantum
circuits that implement it. We then show how that implementation produces the key
quality of probability concentration required of a quantum computation.

In Sect. 3 we introduce a diffusion process, which when coupled with the quantum
parallelism improves the value of the minimum found, in some cases reaching the global
minimum. To demonstrate the scope of the methodology, we show how it applies to the
relaxation dynamics of a Hopfield net; those dynamics known to be a generator of a wide
variety of candidate descent minimization problems. As a byproduct this also shows how
a recursive neural network (a brain model) can be implemented on a quantum computer.

The quantum algorithm generates a collection of information sharing paths on the
edges of a unit cube, those paths overlap onto one another as they approach cube vertices
that encode possible solutions. Compare this to the digital computer parallelization of a
descent optimization algorithm of Chazan and Miranker (1970), that algorithm generating
a collection of information sharing paths that converge and coalesce at the solution.




2. THE QUANTUM ALGORITHM

In Sect. 2.1 we give the circuitry for the parallel quantum implementation of a
minimization descent algorithm. The probability concentration supplied by that quantum
circuitry is discussed in Sect. 2.2.

2.1 The quantum circuits

We apply the parallelism of quantum computing to a descent minimization (local or
global) recurrence for a function denoted by H(v). As with any computer

implementation, the algorithm must first be projected’ into the quantum computer’s
computational basis, in order that it may be conducted as a quantum computation. So
representing the descent minimization algorithm as

2.1) vu=G;(v;) j=02...,

replace each function G, that produces the local descent displacement at the j-th step of
the minimization algorithm by an approximation that is itself a mapping of the set of
Boolean strings {O,I}N into itself. We shall use the same name for a function and its
approximation, since confusion will not occur. So the quantum computation may be
viewed as being conducted on vertices of the unit N-cube, that is, on the binary integers
N=1{0,1,---,2" —1}. As modified, the functions referred to are endomorphisms of N, the
latter taken as a group with addition mod 2". Correspondingly, the minima of the
(projected) function H(v) are located at the N-cube vertices. We emphasize the descent

requirement that H(v,,, )< H(v;) Vj21.

A vertex v of the N-cube (a binary integer) may be encoded as a quantum state ]b),

that state decoded into the corresponding binary integer by N spin measurements, as is
well known (Nielsen and Chuang (2000)). This is concisely written as

encoded

il
pr——
decoded via

measurement

(2.2) |5), Vbe N.

By convention all quantum states are taken as normalized, but we shall not necessarily
indicate the relevant normalizing constants.

Since 2" = 10-;-0 (in binary), the kets that occur in (2.2) are specified as tensor
‘ N

products of qubits, namely

! The term rounding is used for such a projection into a digital computer’s data space, the latter
usually referred to as the screen of floating point numbers (Kulisch and Miranker (1981)).




(2.3) |0)=]0)---|0)=[0---0), [1)=]0---01), --- , IZN"1>=|1”'1>'
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2.4) o=, [B)/2".

This quantum state corresponds to the superposition of all of the vertices of the N-cube
(i.e., |¢,) is a superposition of all of the kets in (2.3)). Let H ®V denote the N-fold tensor

1 1
product of the unitary Hadamard matrix H = —I—L lJ with itself. Then

2

(2.5) |¢,)=H®"|0---0),

N

(2.5) shows that this superposition of 2" states (an exponentially increasing number) can
be generated by N applications of H, as is well known in quantum computing. Note that
the ket label used for the summation variable b in (2.4) is also a unit cube vertex label.
Moreover it also stands for an appropriate binary integer. The intended meaning will be
clear from the context.

We shall now introduce a sequence of quantum circuits that taken together will
implement the algorithm in question. Standard conventions in drawing quantum circuits
are used (see Nielsen and Chuang (2000)). The first shown in Fig. 2.1 illustrates the '
operation in (2.5).
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Fig. 2.1: Quantum circuit for the production of the ket |¢,)

The circuit in Fig. 2.2a performs the parallel quantum evaluation of the function G y
on the state |¢ j> = Z;; a; blb) say (the @, , being appropriate amplitudes) , producing
the state |¢ jﬂ), where ’

N-1

(2.6) : l¢j+1>=lGj¢j>:ZZ=0aj,bGjlb>°
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Fig. 2.2a: Parallel evaluation of G,  Fig. 2.2b: Defining G;l by running G, backwards




So the circuit in Fig. 2.2a shows the implementation of (2.6), while the circuit in Fig. 2.2b
that implicitly defines the symbol G;I consists of running the circuit in Fig. 2.2a

backwards?.

In Fig. 2.3 and Fig. 2.4, we show the circuits that compute (2.1) for j=0 and j =1,
respectively.
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Fig. 2.3: The quantum circuit for implementing the computation
of (2.1) for j =0, that is, for computing the state |O)Zb|G0b> starting with |0)[0).
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Fig. 2.4§ The quantum circuit for implementing the computation
of (2.1) for j =1, that is, for computing |0)[0)|¢,) starting with |0)|0)|0).

In Fig. 2.5, we illustrate the circuit that performs the computation of (2.1) for an
arbitrary value called p of j >0. The circuit has a “V-shape”, and the computational
protocol is to descend the left arm of the V and then to ascend the right arm (this being
suggested by the looping arrows in the figure). This protocol is more easily seen in the
special cases p =1 and 2 in Figs. 2.3 and 2.4, respectively. For convenience and clarity
we do not discuss nor do we display the circuitry for making the spin measurements that
are required to read out the result of a computation. Assuming each operation H®" or of
a G, (forwards or backwards) uses one time unit, we see from Fig. 2.5 that starting with

|0)=10)-+-|0) the computation of the final state |0---0) 4, ) requires 2(p+1) time units.
— |

N p-1

2 The author is grateful to Steve Girvin for discussions, and, in particular, for the suggestion
concerning running a quantum circuit backwards as in Fig. 2.4. Of course, this is also done in
Fig. 2.3, since H, being unitary, is its own inverse.
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Fig. 2.5: The quantum circuit for implementing the computation
of (2.1) for j=p—1. The looping arrows display the flow

of computation that yields |0---0)|¢, )starting with |0)---]0).
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2.3 Concentration of probability

We now argue that the quantum computation concentrates probabilities. There are 2"
possible states in the computational basis the quantum computer. These correspond to
the 2" vertices of the N-cube and are encoded superposed into the state |¢0> (consisting

of N successive qubits per vertex) by the first application of H®" in Fig. 2.1. As the
recursion commences, a path along N-cube edges emanates from each such vertex. Each
path grows, one edge per recursion of the computation shown in Fig. 2.5. The output of
the j-th recursion of the circuit in Fig. 2.5 delivers the state |¢j>, which represents the

superposition of all the leading vertices of these paths. Since the function H being
minimized decreases as each path is augmented by an edge, N-cube vertices are being
discarded from |g,) for each increase j — j+1. This means that the coefficient of a

corresponding discarded state (an appropriate vertex of the N-cube), that is, its probability
amplitude, must become zero. Indeed that particular state will never reappear with non-
zero amplitude, during the course of the computation. Of course, ¢j> always contains

2" vertices, so there are an increasing number of vertex repetitions. That is, paths begin
to overlap; equivalently, probabilities begin to concentrate. Each path will approach a
minimum of the function H. A terminating quantum measurement will produce an output
of the descent algorithm (2.1) being executed.




3. APPROACHING THE GLOBAL MINIMUM

Suppose a diffused version (in discretized form) of H(v) is woven into a recursion for
determining a local minimum of H(v). Diffusion will cause minima to flatten. In optimal
circumstances the shallower minima will evanesce, and only the more robust will remain
to serve as attractors of the augmented recursion. If we explore the entire domain of
H(v), we should expect diffusion to result in improvement of the result found. This
method should produce the global minimum in some cases, for instance when the global
minimum is the most robust. In such cases, by employing the parallel quantum
methodology of Sect. 2 that explores the entire (computational) domain of H, that
methodology, as it concentrates probability will yield a global minimum with probability
that increases with the recursion index. Note that the combined process specifies a

recursion of the form (2.1), although the feature H (v j+1)S H (v j) may be vacated

following a diffusion step. This mandates that diffusion should be exploited relatively
infrequently during the recursion, and certainly not at all towards the finish. With these
features and restrictions, minimization with diffusion could be compared with annealing,
another candidate for quantum parallelization by methods developed here (Kirkpatrick,
Gelatt and Vecchi (1983)). Augmenting the recursion will cause the location of the
minimum found to be a drifted away approximation to the true location. So a final post
processing step that uses the location found as a starting point is suggested.

The diffusion process is specified in Sect. 3.1. These methods apply to steepest
descent, but to demonstrate their scope and versatility, we show how they apply to the
relaxation dynamics of a Hopfield net; those dynamics used as a generator of a variety of
candidate descent minimization problems. As a byproduct, this also demonstrates how
recursive neural networks can be implemented on a quantum computer. The Hopfield net
example is treated in Sect. 3.2. A formalism for averaging and of diffusion in higher
dimensions is given in Sect. 3.3.

3.1 Diffusion

In this section, we specify what is meant by diffusion (in the discrete case). We shall
use v to denote the independent variable. Let Av be a vector of increments in v. Then a
step of diffusion replaces H(v) by H,(v), where

G3.1) H,;(v)= MHE +Av)+ H(v = Av)) + (1-2 ) H(v).

Here A is an arbitrary parameter. (A may be thought of as equal to DAt/]lAv”2 , the

familiar ratio of increments arising in the finite difference approximation to the diffusion
equation and where D is the diffusion constant.) For convenience we shall write AvasA.

Next define the shift operators $* (with $*= §) as

(3.2)  S*H(v)=HW*A).




Let M= %[S + §7] denote the averaging operator, and let D ,= D ﬁ(ﬂ) denote the

following discrete diffusion operator.

3.3) D,ﬂ=2 AM +(1-20)1.
Then
(3.49) H,,(v)= DWH(v).

Using Taylor’s theorem, (3.3) and (3.4) give
(3.5) H,;(v)=VH()+O(A%),

and so, with G=VH in (2.1), we see that the method of steepest descent fits our
framework. Note that diffusion reduces to averaging for A =1/2 in which case we write

H,, as H_. Extension to averaging and diffusion in d dimensions is given in Sect. 3.3.

3.2 Hopfield nets

The Hopfield net supplies a formalism for generating descent minimization algorithms
for a variety of combinatorial problems, and so, illustrates the range of our methodology.
We start with averaging, returning to the more general diffusion in Sect. 3.2.4. For
explicit Hopfield net applications, one of which is the Traveling Salesman Problem, see
Hertz, Krogh and Palmer (1991). For the problem of sorting, see Atkins (1989).

3.2.1 Hopfield dynamics
The dynamics of a Hopfield net with m neurons are given by (Haykin, 1999)

du, < o
(3.6) Ti—c};’-=—u,.+2wﬁg(uj), i=l-m,
=1

where g is the neuronal gain function, and the m-vectors of neuronal inputs u = () to
neuron i and outputs v = (v,) from neuron i are related by

3.7 A v=g(u)ov,=g(u), Vi.

w, is the synaptic weight connecting neuron j to neuron i. The total weighted input to
neuron i is

(3.8) u, =2wijvj.

Now discretize the time in (3.6), setting Az =1 and 7, =1 for convenience. Combining
the result with (3.7), we find




(3.9) v(n+1)=gWv(n),

where I = (w, ) is the weight matrix, and » indexes the (discrete) time. Under

appropriate conditions on W (namely, w; =w, Vi, j) and on g (namely, g ’>0), the

net’s dynamics, written in the discrete form (3.9) drives the associated energy function
(3.10) H(v)———Zw,, v+ 2 |8 ©ae
i 0

to a relative minimum as is well known in the theory of Hopfield nets. So gl plays the
role of G in (2.1).

3.2.2 Replacement energy H  (v)and gain function /() (the case of averaging)
Let the displacement vector be A=(A,,...,A,,). Then using (3.10) and specializing
diffusion to be averaging, we have

2H,, (v)= 2MH(v)
=-——Zwy(v +A)V, +A )~ —-Zw,,(v —A),—A))

G.11) +Z[I ) [ | XG5
=, = LA ,A,+Z[[’ g'@rayazef, - a el

+Z[Lv’g“(§+A,-)d§+I g N(E-A, )df}

=2Hv)+2J(A).
Here
(3.12) H(v)-——Zw,, Vit Lv" r(§)d¢,
where j
(3.13) h;‘(5)=-; gl (E+A)+g ' (€-A)]
and

G149 JA)= %Zwy.A,A ) +%Z[ I_OA, g(E+A e+ [ OA, gl (E-A ,.)df].

Note that J(A), being a constant independent of v may be discarded in the context of
minimization. Comparing (3.10) and (3.11), we see that the Hopfield net corresponding




to H is the same as the original net that corresponds to H >except that the gain function g
is replaced by the displacement dependent gain function 4, given in (3.13).

For clarity, we shall take all of the displacements A ; to be equal. Then we may drop
the subscripts on the 4, and on the A ;. Note that if g is linear in its argument, averaging
changes nothing, since then /4 and g are identical.

3.2.3 Solving for the replacement gain function

Sinceu=g"'(v), we have dig V) =1/¢g'(w), and g'(v)=—g"(w)/(g(u))*. Then

Taylor’s theorem gives

A g A
gy (W) 2

(3.15) g'vEA) =g+

Inserting this into (3.9) gives

gw N
gy’ 2

This specifies an equation for determining the input-output relation

(3.16) CHW=g'M-

(3.17) v="h(u)

for the averaged Hopfield net. In particular, combining (3.16) and (3.17) gives

g’(u)3 S
W) 2

From this, we find the gain function / of the averaged net in terms of the gain function g
of the original net. Namely, ‘

[ w8
(3.19) h(u)—-g(u+(g,(u))3v 5 + )

Since we are to repeat this net averaging process (equivalently, the net’s gain function
replacement process) recursively, we index the successive stages with n. Then denote the
gain functions for the succession of averaged neural nets as g, (1), n=0,1... Then
go(u) = g(u), the original gain function, and g,(«) = 4(), the gain function of the first
averaged net. Also let A(n) denote the displacement A used at the n-th stage (A(0) =0),
and letv(n) denote the output of the (averaged) neural net relevant to the n-th stage.

Then from (3.19) (using Taylor’s theorem), we have the following approximation to the
successive input-output relations v, = g, (1), n >0, in terms of g(u).

(3.18) u=g"'(v)-

(3.20) v, = g(u)+ 2" A(n)g" () (g W)+, n>0.




Coupling (3.20) and (3.18) gives the relation (2.1) to be implemented in the quantum
computation.

To avoid divergence of the expression in (3.20) as n — oo, the displacement A(n)
must be made to tend to zero as » increases. A convenient choice for achieving this is

A(n)= 2l 26, where ¢ is a constant chosen suitably small, namely so that expressions
like 8°g”(u)/(g' (1))’ are small for all values of u that may arise in the course of running
the computation. Notice that these choices of the A(n) may be interpreted as requiring
that the average of the original energy function H(v), specified in (3.8), be taken over
ever smaller displacements in the independent variable v. This is a common feature of
recursive minimization methods wherein the displacements toward the minimum sought
(are made to) tend to zero as the location of that minimum is approached.

3.2.4 Diffusion in the Hopfield net

~ Now we translate the development for employing averaging with a Hopfield net to the
general case of diffusion.

Referring to Sects. 3.1 and 3.2 (and writing h(u) as is h,;(u)), we see that
(3.21) H,,(v)=44(1- D)H () +22J(A).

Here J(A) is given in (3.14), and

(3:22) dﬁ(v)-——Zw,, p+ 2 1) e,
where
(3.23) Ny () =——[Ag" E+A)+(1-2D)g" (&) + g (¢-D)]

4,1(1 )

The analog of (3.16) is

(3.24) ( )=

[ 0) - AL g’ () A2+._;I'

2(-4) (&)’ 2

The input-output relation (3.15) becomes v = h,;(u), where

N gw &
(3.25) hd,ﬂ(u)-g(ml(l /1)u+2 1-DE @) 2 + )

(3.25) is the analog of (3.19).
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Finally the analog of the input-output relation (3.20) is

2" g"(u)
2(1- (g (w))?

(3.26) v(n)=4(1- Dg(u)+ A'(n)+---, n>0.
3.3 Averaging and diffusion in d dimensions

In this section we develop some formalism for specifying and computing averages and
diffusion in 4 dimensions (v =(v,,---,v,)). To proceed, define the shift operators
S, j =1,--d appropriate to each coordinate (S ,H(v) = HWy v, v, A0 000,).
Next define a grid of lattice points in d dimensions, G*, where

327 G=1{0,£1,--,xd},

and a corresponding grid v(G) in d-space. Namely,

d
(3.28) vG)=]1v,, v, ={044 o kdd ) j=1od
j=1

We say that the grid v(G) is centered at the origin, v=0. Then the shift operator,

(3.29) S4(G) :ﬁZ s,

j=1 ieG
when applied to H(v) delivers the sum of its values over the grid v(G).

Let 4 be an array of real numbers that sum to unity. 4 has the configuration of the
grid G’. Thatis, 4 is a (2d+1)* array in d dimensions.

Now let
(3.30) M,=A4Q® SG),

where ® denotes the direct (element-wise) product. Then M, is a generalized averaging
operator in d dimensions. Note that by inserting zeros appropriately into the array 4
(maintaining the sum to unity property), the grid may be shaped into a desired stencil of
points. Applying M, to H(v) delivers a generalized average of H(v) over a grid of the
form v(M) that is centered at v (more precisely, over a stencil specified by 4).
Discretized diffusion operators in d dimensions correspond to particular choices of 4, that
is, they are special cases of M .
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