Abstract. Many important algorithms in signal and image processing, speech and pattern recogni-
tion or matrix computations consist of coupled systems of recurrence equations. Systolic arrays are
regular networks of tightly coupled simple processors with limited storage that provide cost-effective
high-throughput implementations of many such algorithms. While there are some mathematical
techniques for finding efficient schedules for uniform recurrence equations, there is no general theory
for more general systems of recurrence equations. The first elements of such a theory are presented
in this paper and constitute a significant step towards establishing a complete methodology that
determines systolic array implementations for a very general class of coupled systems of recur-
rence equations; these implementations exhibit provably optimal computation time while satisfying
various user-specified constraints.
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1. Introduction

Systolic arrays, regular networks of tightly coupled simple processors with limited storage
provide cost-effective high-throughput implementations of important algorithms in a variety of
areas (signal and image processing, speech and pattern recognition, matrix computations). The
simplest of these algorithms consist of a single recurrence equation while most of them are fairly
complex systems of coupled recurrence equations. A recurrence equation specifies the computation
of a variable at various index values as a function of other indexed variables. In this paper, we
present the first steps towards a mathematical theory for the systematic implementation of coupled
systems of recurrence equations on systolic arrays. The resulting arrays exhibit provably optimal
computation time while satisfying various user-specified constraints. Our theory employs several
concepts introduced in early works by Karp, Miller and Winograd 3, 4].

The starting-point for the systematic systolic implementation of recurrence equations was
made with methods developed for the simplest class of equations. This is the class for which the
difference between the indices of a used variable and the indices of the computed variable within a
recurrence equation is constant (uniform recurrence equations [7] and regular iterative algorithms
[8]). Recently, extensions have been attempted to cover the implementation of a larger class of
equations: those containing variables with differing numbers of indices (e.g. [6]) or functions with
large fan-ins, encountered in dynamic programming, for instance. These attempts, however, lack the
rigour found in the afore-mentioned theories for uniform recurrence equations; they are expedients
with a limited and not clearly delineated domain of application.

For more general systems of equations, a mathematical model must be established that captures
the main properties of the recurrence equations under consideration, and mathematical methods
consistent with the model should be used to perform a computability analysis and to determine
efficient schedules. These recurrence equations are characterised by differences between the indices
of computed and used variables that are affine, rather than constant, functions of the indices. The
key uniformity property exploited in [4, 7, 8] is thus lost. Previous works tried to convert the
affine equations to uniform ones, thus attempting to render the scheduling problem amenable to
the techniques developed for uniform recurrence equations. We propose instead a theory that, for
arbitrary affine functions of the indices, parallels at a fundamental level the work in [4]. When fully
developed, it will permit the automatic determination of efficient implementations for the types of
algorithms of concern in previous extensions as well as for some algorithms (of proven importance
in signal processing) that do not fall into the categories covered by previous extensions.

We believe that the proper implementation of recurrence equations on systolic arrays (or any
other parallel architecture, for that matter) necessitates a determination of the computability of
the equations. The information gathered during the verification phase can then be profitably used
in the scheduling and processor assignment phase.

In Section 2 we introduce the concept of computability of a variable: a variable is not com-
putable if there exists an index value P so that up depends on itself, possibly through a number
of intermediate variables. The renaming algorithm presented in Sections 3 and 4 identifies and
extracts (i.e. gives a new name to) those ‘harmless’ instances of each variable that can never be
responsible for a self-reference. The variables associated with the remaining, potentially harmful,
instances form groups (the ‘steps’ of the algorithm) in which they mutually depend on each other.
Hence, each variable u in a step gives rise to ‘cyclic’ dependences of the form: up depends on ug.
A computability analysis then determines whether Q happens to be equal to P for some P.

A direct application of the definition of computability would lead to the exhaustive examina-
tion of possible self-dependences for all instances of a variable « in a step. The notion of dependence
mapping (the difference between the indices of a used variable and the ones of the computed vari-
able), introduced in Section 2, allows us to look at all instances of a variable at once instead of
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looking at every instance in turn. It is sufficient, as shown in Sections 5 and 6, to consider compo-
sitions of dependence mappings around cycles instead of individual dependence mappings for the
verification of computability. Moreover, for affine (or uniform) dependence mappings, computabil-
ity tests can be performed by examining those properties of compositions of dependence mappings
around cycles that are invariant with respect to affine (or uniform) similarity transformations —
so as to keep the dependence mappings affine (or uniform). Necessary and sufficient conditions for
the computability of uniform recurrence equations are given in Section 6.

In Sections 2 to 6 the computability analysis is shown to necessitate the decomposition of
algorithms into steps. This same decomposition will also be used for scheduling the computations in
the algorithm. The scheduling process first determines independently for each step all its possible
schedules and then selects through an optimisation process one schedule for each step in order
to obtain an efficient schedule and processor assignment for the whole algorithm. With regard
to uniform recurrence equations, Section 7 introduces the notion of a ‘time cone’ that concisely
characterises the totality of schedules for a step, and describes how to obtain a particularly simple
type of schedule from the time cone. Although a step is computable it may not necessarily possess
a time cone, the dependence mappings are then converted to affine ones in order to find an efficient
schedule for the step. The concluding section gives a flavour of the scheduling of affine dependence
mappings that we plan to investigate in depth as we further develop our theory.

2. | Verification of Computability

The algorithms to be considered consist of coupled systems of recurrence equations. In a
recurrence equation the computation of a variable at various index values is specified as a function
of other indexed variables (by convention, a variable is computed only once for each index value,
thus no overwriting is allowed).

As an example consider the algorithm that computes for a given symmetric Toeplitz matrix
both its LDLT factorisation and the LDLT factorisation of its inverse.

Toeplitz Factorisation Algorithm:

1<:<n, ro=a;—
2<i<n, $i0=ai_
1<j<n—1, pj=s41,-1/rj -1
J+H1<i<n, riy=ri15-1—p5sig-1

J+250<n, 8;=—pri—1,j-1+8 ;-1

s1,0=1
1<j<n-1, 1<i<5+1, 8i;==pjSjta—ij—1+8ij-1

Any scheduling procedure should a fortiori be able to determine whether a coupled system of
recurrence equations is computable, specifically it should be able to verify that there is no instance
where the computation of a variable at some index value depends on that variable at the same
index value. A particular instance would be that a variable with index value P depends on another
variable with index @ which in turn depends on the first one at P, thus forming a cycle through
one intermediate variable. Verifying computability calls for the examination of all possible cycles,
going through any number of intermediate variables. The solution to this problem represents a
cornerstone in our scheduling procedure.

The verification process should exploit the structure of the computations and check that given
coupled systems of recurrence equations do not exhibit any cycle — without direct examination of
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Figure 1: Illustration of Dependence Mapping as introduced
in Definition 2.1.

the variables at every index value. In other words, the time to detect a cycle should be independent
of the index range of the variables. To this end, we shall deal with sets of index points, called
domains and ranges, and mappings that relate the two. Explicitly, one defines:

Definition 2.1. The mapping Q = D,,(P) associated with an equation up = f(vg, ...) is called
dependence mapping (the precedence of v over u in the subscripts indicates that v at point Q must
be available before the computation of u at point P can commence). The domain of computation
Cyu is the set of index points P for which the variable u is computed according to the equation
up = f(vg, ...), it is the domain of D,,. The set of points Q at which variable v is needed in

order to compute up for all P € Cy, is denoted by R,, and is the range of D,,. These notions are
illustrated in Figure 1.

The dependence mapping Dyy(P) = Q associated with a recurrence equation up = f(vg, ...)
represents the index value @ of v as a function of the index value P at which u is computed.

For the Toeplitz factorisation algorithm the dependence mappings are

Dy (4,0) =1 =1, Dygy(5,0) =i —1
Dpr(4,9) =3, Dpr(iyg)=(—1,5 - 1), Dsp(4,5) = (4,5 — 1)
Dps(i,5) =5, Dys(i,5) = (i —1,5—1)
D (i,5) = (6,5 —1), D@ (i,5)=(j+2—4,5—1)
Dyp(5) = (4,5 = 1), Dsp(j)=(5+1,5-1).

and the corresponding domains of computation are

Cor ={(2,0) : 1 <7 <n}, Co ={(:,0):2<4<n}

Cor =Crr=Cor={(i,): j+1<i<n, 1< j<n—1}

Cps ={(,7):1<i<n, 1<5<n—1}, Cp={(4,5):/+2<i<n,1<j<n-1}
M ={(,5):1<i<n,1<5<n—1}, CO={(,/):1<i<j+1,1<j<n—1}
Crp=Csp={j:]-San'—'1}'

The ranges may readily be determined from the dependence mappings and their domains.

3. Renaming

During the process of verifying the computability of a variable one realises that certain instances
of this variable could not possibly result in a self-reference. The purpose of renaming is to identify
and extract for each variable its ‘harmless’ instances so that the remaining instances may then be
subjected to a verification process. This is accomplished by dividing up the domains of computation,
and distinguishing the resulting subdivisions by giving the associated instances of the variable a
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Figure 2: Dependence Graph for the Toeplitz Factorisation
Algorithm.

new name. As a result each variable may be identified with exactly one domain of computation,
and only certain variables need to be examined for computability.

At first, a directed dependence graph [4, 5] is constructed whose nodes correspond to the vari-
ables and whose arcs represent the dependences between variables. Figure 2 shows the dependence
graph for the recurrence equations of the example algorithm. However, this graph captures only
the dependence with regard to variable names but does not take into account indez values. For
instance, one could infer from Figure 2 that the composition of dependence mappings

Dy 0D,50 Dg)

may lead to a cycle while in fact one cannot perform this composition since the range of Dg) and
the domain of D,, do not intersect. The computability analysis would be greatly simplified if any
composition of dependence mappings associated with a cycle, i.e. a closed path, in the dependence
graph were well-defined (these cycles should not be mistaken for the cycles encountered earlier,
which are cycles in a larger graph where each node corresponds to a variable at a particular index
point). Thus in each cycle of the dependence graph the range of the dependence mapping associated
with an arc is required to have a non-empty intersection with the domain of the mapping associated
with the next arc in the cycle. This may be ensured by properly assigning variable names to the
left-hand sides of recurrence equations. Consequently, the first step in our scheduling procedure
will perform a ‘renaming’ of the variables in the algorithm.

4. Renaming Procedure

1. Construct the dependence graph of the algorithm.

2. Determine the strongly connected components of the dependence graph via an efficient proce-
dure such as the one in [9] (see also [4] and m-blocks in [5]). The dependence graph for the
example contains only two strongly connected components: {r,s,p} and the single node a.
Since all dependence mappings involved in cycles incident on the same node must correspond
to arcs within the same strongly connected component in the dependence graph, the renam-
ing may be performed by examining each strongly connected component in turn. Thus the
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remaining steps of the procedure are applied to every strongly connected component in the
dependence graph.

- Find all ‘well-defined’ elementary cycles within a strongly connected component, where a cycle
is elementary if its arcs have all different initial endpoints and it is well-defined if the dependence
mappings associated with its arcs can be composed according to the order imposed by the cycle.
This is done by checking for each elementary cycle within the strongly connected component
whether the range of each of its dependence mappings intersects the domain of the subsequent
dependence mapping.

. Find those cycles which can be iterated arbitrarily many times, in these ‘iterative’ cycles the
number of possible iterations is unbounded as the cardinality of the domains of the variables
involved in the cycle is increased. This is done by performing a test whose description follows
for each (well-defined) cycle.

Let « be the cycle under consideration and let u be a node in ~; denote by Doy : Cyy — Ry
the composition of dependence mappings around the cycle starting at u, where C.u is the
domain of the first dependence mapping in the cycle 4 when starting at u, and R.,, intersects
Coy since the cycle is well-defined. The lth iterate of D.y, i.e. the composition of D., with

itself repeated [ times, is denoted by Dfm :Cyy — S’J The range of D'Ivu may be determined
through the recurrence

c) =Cy, RY=R,
R,(y’f) = D'vu(Cﬂ(/ﬁ) )

The cycle is dterative if and only if |C$1.,+1)| may be made non-zero for any ! by selecting the

problem size, hence |C.y|, sufficiently large. This condition is equivalent to being able to

make the ratio ]C,(yl,,+1)| /|C+u| non-zero. The ratio ]C,(YIUH)[ /|Cyu| characterises the ‘shrinkage’ of

the computation domain after ! iterations of D., and is just the product of the ‘incremental’
shrinkages

*) — leiaml

= , k=1,2,...,1.
™ e

Therefore the cycle # is iterative if and only if all sg’f,), 1 <k <1, may be made non-zero. Note

that one need only construct the sequence of the ratios sg’f) for a single node u along ~ in order
to determine if v is iterative.
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Figure 3: Cycle Composition Graph for Variable s in
Toeplitz Factorisation Algorithm.

For illustration consider the cycle v associated with the dependence mappings D,,
and D,,, the compositions along the cycle are

Dy (i, 5) = D,y 0 Dp(i,5) = (4,5 — 1),
Dyp(5) = Dpro Dpp(4) =5 — 15

we also have
C'yr = Cpra O“/P = C"P’

and it is easily seen that

2(n —2) n—1-1
(22— 2 (O L. —. =
L)oo a(n=1)’ LY, — 1=2,3,
1 n—1-1
s,(,“l: 7 l=1,2,

The cycle is iterative since s!,l) (and sg,lg) is not identically 0 for any ! when viewed as
a function of the domain size parameter n.

5. Partition the domains of computation for each variable. For each node u, determine those
pairs of well-defined elementary cycles incident on u that can be composed with each other as
follows.

Consider all (well-defined) cycles 4% incident on u, and partition the set Ui Cyeu into the
subsets Cy; induced by the intersections and differences of the domains Cy,,.

Consider node s in the strongly connected component {r, s, p}. Four elementary cycles
Yk, 1 £ k < 4, are incident on that node, corresponding to Dg), Dg), D,,0D,, and
Dy, o Dy, respectively. The intersections and differences of the domains C,, s induce

the partition of | J, C,,s into Cs; U Cs2 where

Co={(i,7):1<i<j+1,1<j<n—1},
Coo={(6,§):j+2<i<n, 1<j<n-—1}.

Construct the directed graph whose nodes wu; correspond to the subsets C,;. There is an
arc, labelled «t, from node Cy; to node Cy; if there exists P € Cy; and Q € Cyj such that
@ = D,u(P); in other words, there is an arc from Cy; to Cyj if Doy, u(Crpu N Cui) N Cyj # 0.
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Continuing with the example, from

0,713 = 031 U 032, Cﬂ,zs = 031
0'133 =C4 U Cs2’ 0'143 = CUs2

we have

Cy1sNCs1 =Cs1, Dyys(Cs1)NCo1 #0, Dy, s(Co1) NCoz =0
C'yls n 032 = Cq2, D'ns(CsL’) n Csl = (0, D"/ls(Cs2) N Cy2 7"' (0
Crys NCs1 = Cs1, Dyys(Cs1)NCo1 # 0, Doqyys(Cs1)NCo2 =0
0.723 NCs = )

0'73.9 N Csl = Osls D'yss(Csl) n Csl = ﬂ’ D’yas(Csl) N 032 # ﬂ
Crss NCs2=Cs2, Dyys(Co2)NCs1 =0, Dyyy(Coz) NCoz # 0
0743 NCs = 1]

C'us n 03‘2 = 0323 D~/4s(032) N Osl = ﬂ, D'“s(Os?) N 032 # 0

The associated graph is displayed in Figure 3.

In general, find the partition of | J;, Cy,4 induced by the strongly connected components of this
graph. The elements in the partition are thus unions of subsets Cy,;. This partition is called the
‘composition-induced’ partition of u. (In the reduced graph obtained from the condensation of
each strongly connected component into a single node, the cycles ~; incident on the same node
may be composed in any order; this is the property we were looking for.)

The graph in Figure 3 has two strongly connected components, s; and s,. The analysis
is even simpler for the two other variables r and p. Since all the C,,.r are identical,
the graph for r has only one node hence just one strongly connected component; the
same is true for p.

. Explicitly rename instances of variables in the strongly connected component so that the set of
well-defined cycles incident on the same variable is closed under composition, i.e. all elementary
cycles incident on the same variable may be iterated an arbitrarily large number of times and
composed in arbitrary order. '

Renaming can be performed independently for each variable since it is based exclusively on the
analysis of the elementary cycles incident on that variable, independent of the names of the
nodes that these cycles traverse. For each variable u, it amounts to constructing a partition of
Uy C,u into nonoverlapping subsets and to giving distinct names to the instances of u whose
indices belong to distinct subsets.

In the actual process of renaming two issues have to be taken care of. Non-iterative cycles
7k should be ‘unrolled’; this means that a different name is given to the instances of « whose

indices belong to the subsets Cf(,?u - Cf(,itl), 1 <4 < I, where [ is the maximum number of

iterations of cycle v (i.e. C’,(ylk)u # 0 and C,(YI,‘T‘I) = (). The composition of distinct elementary
cycles incident on the same variable should be well-defined; this means that distinct names are
given to the instances of u according to the composition-induced partition of «.

Since an instance up may depend on other instances of u through both iterative and non-
iterative cycles, the two sources of renaming must be combined. This is simply done by renam-
ing according to the composition-induced partition of Ui Cr,u as well as the partitions of the

Cly,u associated with the non-iterative cycles +j into |J; (C,(,i)u - C.(,if,l)).
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No well-defined elementary cycle within the strongly connected component {r,ys,p}
is non-iterative. Moreover the union of the domains associated with variable s is the
only one to have a non-trivial composition-induced partition. Thus only the instances
of s corresponding to the sets Cs; and C,z will be given different names; we chose to
use y for the index values in C,; and to keep s for C,s.

7. Update dependence mappings and initialisations.

To motivate this kind of post-processing consider once more the example. After
renaming the last recurrence equation in the Toeplitz factorisation algorithm

1<j<n-1, 1<:<j+1, 8i,5 = —PjSj+2—i,j—1 + 851
becomes
1<j<n-1, 1<i<j+1, ¥i;=—pj¥Yjta—ij-1+ ¥ij-1-

Observe, however, that y; o is not defined since the renaming procedure left the
assignment s; 0 = 1 unchanged. Clearly the instance 81,0 must be converted to y; o.

Consequently, as renaming is performed, the dependence mappings must also be updated. Each
dependence mapping D,y is fully characterised by the mapping ‘function’ and its domain. If
y is one of the new names for u then the dependence functions of y on other variables are just
a subset of the dependence functions of u on other variables. While the functions remain the
same, the new and old mappings differ in their domains (hence also ranges). The according,
simple updating of domains is performed at this point for all variables in the algorithm.

For each renamed variable y consider the elementary cycles 44 incident on that variable. The
functions D.,, form a subset of the functions D.,,, and, by construction, the domains of the
mappings D.,, are all identical and equal to, say C,. The instances of the old variable u
whose indices belong to |J; D, (Cy) and are outside [J; Coy,u are renamed y. It may happen
that the same instance of u is renamed more than once but this does not pose a problem as
it corresponds only to additional assignments in the renamed algorithm (for example u could
be renamed into y and z so that the assignment u1,0 = 1 would be replaced by y;0 = 1 and

z10=1).

Upon completion of this last renaming operation the renamed algorithm may be written in full,
its dependence graph constructed and strongly connected components determined for further
use. The new dependence graph will typically have more strongly connected components than
the original dependence graph if some renaming has effectively occured. The portions of the
algorithm corresponding to the strongly connected components in that graph are called the
‘steps’ of the algorithm.

To sum up, renaming ensures that the mappings corresponding to the elementary cycles within
a step are all well-defined, can be iterated arbitrarily many times and composed in arbitrary
order. '




Step 0

Step 1

Step 2

Figure 4: Dependence Graph for the Toeplitz Factorisa-
tion Algorithm after Renaming.

The new version of the Toeplitz factorisation algorithm after renaming follows.

Toeplitz Factorisation Algorithm:

1<:<n, ro=a;-1
2<i<n, $i0=a;-1
1<5<n=1, pj=s541,5-1/r54-1
J+H1<i<n, rj=riogi-1— psSis-1
J+2<i<n, s;=—piri-1-1+ 8i -1

Yyr0=1 ‘
1<yj<n-—-1, 1<i<j+1, ¥i;=—pi¥Yi+2—ij-1+Yij-1

The associated dependence graph is given in Figure 4.

5. Affine and Uniform Dependence Mappings

As a result of the renaming process, mappings associated with cycles in a step are closed under
composition, and verifying the computability of a step amounts to an analysis of compositions of
its cycles. The key observation of the analysis is based on the fact that self-dependence is invariant
under a change of index: an instance up depends on itself if and only if u5 depends on itself, where
P= F(P) and F is bijective. Thus computability is invariant with respect to changes of the indices
of the variables, and it should therefore be verified by examining only those properties of mappings
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associated with the cycles that are invariant (with respect to changes of indices).
To characterise these invariants, consider the effect of change of index transformations applied
to every variable u

F,:C,— C,

where Cy, is the domain of computation for variable u. Under these changes of indices a dependence
mapping D,, becomes

f)vu =Fv°Dvu°FJ17

so that the composition of dependence mappings D., associated with a cycle incident on a variable u
undergoes a similarity transformation:

I~).,u= FuoDWoF,;'l.

Consequently, computability is determined from those properties of the mappings associated with
cycles that are invariant with respect to similarity transformations.

To carry the analysis further we shall now restrict the study to affine dependence mappings,
that is, mappings of the form Q = D(P), where D(P) = DP + d is an affine transformation. Note
that a non-linear dependence mapping may turn out to be an affine dependence mapping in disguise
and, as such, can be transformed into an affine dependence mapping.

The dependence mapping for the variable u in the recursion
ui—1)241 = f(ui), i€ {3,517,...,22" + 1}, ug given,
where the index ¢ runs over the set of the n + 1 first Fermat numbers, is
Dy((i-1)2+1)=i VieC,={5117,...,22" +1}.
Although D, is not an affine transformation, it can be expressed in the form
Dy =F ' 0Dy, oF,, where F, (i) = logylogy(i — 1), Dyu(j) =7 -1,

and D is an affine function. Thus, if the index set C, is transformed via F, then the
resulting dependence mapping Dy, is affine. Clearly, the transformation F, is just a
change of index and it does not change the computations of the recursion.

This situation should be recognised when it occurs since computability of affine dependences seems
to be more easily verified than that of arbitrary dependences and, looking farther ahead, advan-
tages will also accrue with regard to scheduling and processor assignment. Arbitrary non-linear
dependence mappings, however, are not likely to be convertible to affine ones through change of
index transformations F., as evidenced by the FFT algorithms. As already mentioned, all depen-
dence mappings encountered from this point on will be affine. For affine dependence mappings,
computability tests are performed by examining properties of cycles that are invariant with respect
to affine similarity transformations F,; the F, should be affine in order to keep the dependence
mappings affine.

A uniform dependence mapping is an affine dependence mapping of the form D(P) = IP+
d, where I is the identity matrix. Thus a uniform dependence mapping is just a translation
and the ‘dependence vector’ D(P) — P is equal to d, independent of the point P in the domain.
Recurrence equations for which all dependence mappings are uniform are called uniform recurrence

10




Figure 5: Dependence Graph for the Two-Dimensional Filter
Example.

equations [4]. To test the computability of such algorithms one should consider properties of cycles
that are invariant under translations F, (in order to keep the dependence mappings uniform).
The composition of uniform dependence mappings associated with a cycle is Dy, (P) = IP + Aoy
where d.y is just the sum of the individual translation vectors dyy; the vector d~y clearly depends
only on the cycle v and not on the variable u at which the cycle is started, hence one can write
Dyy(P) = IP + d,. Under index changes of the form Fi(P) = IP + d. a uniform dependence
mapping Dy, (P) = IP + d,, becomes

Dyu(P)=IP+dyy,  where dyy = dyy + (dy — du),

and the dependence mapping D~y around a cycle is left invariant. The translations d- around
the elementary cycles within the dependence graph represent the invariants to be examined for
computability verification.

6. Computability of Uniform Recurrence Equations

A direct application of the definition of computability would lead to the exhaustive examination
of all self-dependences of a variable u in a step. The notion of dependence mapping allows us to
look at all instances of a variable at once instead of looking at every instance in turn. We also
know from before that it suffices to consider cycles instead of individual dependence mappings for
the verification of computability. Moreover the renaming process ensures that any composition of
cycles in a step is well-defined. Consequently, instead of exhaustively examining all self-dependences
we consider arbitrary compositions of elementary cycles thus exploitating the property that the
mappings are uniform.

Arbitrary compositions of elementary cycles 44 within the step result in an overall translation

Z)‘kd"/ka )‘k 2 Oa
k
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Figure 6: Cycle Composition Graph for the Two-Dimensional
Filter Example.

where Ay represents the number of times cycle 7 is traversed. If a linear combination with positive
coefficients is to correspond to a cycle through the dependence graph the subgraph formed by the
nodes -y associated with the non-zero coefficients must constitute a connected component in the
graph T' that is defined as follows: the nodes of T' are the elementary cycles in the step, and two
nodes are connected by an edge if the corresponding cycles share a variable.

Two-Dimensional Filter Example:

In this example from [8] the filtered image Wn+1,5,k is computed from the given image
wy;; according to the equations

1<¢<n, Yoo =ui-1,0=Uj0,—1 =0
1<7<m 1<k<m, vpr =0, wy given
1<i<n, 1<7<m, 1<k<m, uijq1k+1 = f(Uijk, Vijk, Wijk)
‘ Vi—1,5,k = 9(Uijk, Vijk)
Wit1,5,k = h(Uisk, Vijk, wijk)

The corresponding dependence graph is shown in Figure 5 and the translations in the
dependence mappings are readily identified from the equations

duu d'v'v d'ww dm) d’vu duw d'wu de
0 1 -1 1 0 -1 0 -1

-1 0 0 0 -1 0 -1 0

-1 0 0 0 -1 0 -1 0
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There are six elementary cycles

T = {Duu}, T2 = {D'uv}, T3 = {wa}
T4 = {Duva D'uu}a V5 = {Duw, Dwu}, Yo = {Dwu’ D,,, Dv'w}

whose translation vectors are easily seen to be

d'11 d’12 d’Ya d"‘/d d’Ys d’76
0 1 -1 1 -1 0
-1 0 0 -1 -1 -1
-1 0 0 -1 -1 -1

Figure 6 contains the graph T that indicates cycles with common variables.

A variable u is not computable if the following three conditions are satisfied:

1. The equation }=; Axd~, = O has a non-trivial positive solution {\;}.
2. At least one of the cycles vy for which A; # 0 traverses u.

3. The subgraph in T formed by the nodes corresponding to A; # O is a connected component
(this condition ensures that one can go from one cycle to another).

In general, a step is computable if all its variables are computable, i.e. only conditions 1 and 3
must be satisfied, omitting condition 2. Thus testing computability amounts to determining all the
non-trivial positive solutions to
D Akdy, =0
k

and examining for each such solution the connectedness of the subgraph of T that is obtained by
deleting the nodes corresponding to A = 0.

The second and third components of the vectors d., reveal that any positive linear com-
bination Ek Akdy, = 0 must satisfy \; = Ay = A5 = A\g = 0. Coefficients of the form
Az = A3 > 0 solve the remaining system Aod,, + Asd,, = 0. However, the nodes in T,
72 and s, that are associated with A2 and A3, are not connected. Consequently, the
algorithm is computable.

7. Scheduling of Uniform Recurrence Equations

It is clear from the previous sections that a computability analysis necessitates the decom-
position of algorithms into steps. This same decomposition will also be used for scheduling the
computations in the algorithm. The scheduling process first determines independently for each
step all its possible schedules and then selects through an optimisation process one schedule for
each step in order to obtain an efficient schedule and processor assignment for the whole algorithm.
In this section we only describe the information characterising the schedules for an individual step
and the way this information is derived. The global scheduling and processor assignment problem
is presented and its solution discussed with the help of an example in [1, 2].

There is a fair amount of freedom in selecting the indices for the variables in the various
recurrence equations. One can for instance choose not to have any relationship among the indices
in each equation.
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The recurrence equations in the 2-D filter example could be rewritten

1 S ) S n, 1 S ] S m, 1 S k S m, Us j4+1,k+1 = f(u,'jk, Virgrgy 'u),'njukn)
1 S i, S n, 1 S j’ S m, 1 S k' S m, vi,"l,j’,k' = g(uijk, ’Uiljlkl)
1< <n, 15" Smy LK < mywing o jor = h(uiiy virgris, Wingimgn)

There is no relationship between P, = (i, 7,k), P, = (¢/,5',k') and P, = (", 5", k™).

It is also possible to impose some relationship among the indices, for instance P,=P,=P,in
the above example results in the original version of the algorithm. Once one decides to relate the
indices of all variables in a step many choices are possible. All these choices may be obtained by
replacing the index P, of each variable u in a step by F;1(P), the bijections F, being arbitrary
and the index P being the same for all variables in the step.

A schedule for each step is defined through a suitable set of such transformations F, and a
vector 7, called ‘time’ vector, in such a way that an instance of a variable u with index P, is
computed at time 77 P where P = Fy(P,). Of course not all transformations F, and vectors 7
define a schedule; they must also satisfy 77Q < 7T P whenever a variable at point @ is required
for the computation of a variable at point P. The set C = U Fu(Cy) may be viewed as the
computation domain for the whole step; in contrast to the domain C,, for a single variable more
than one computation may be associated with a point P in C. Also observe that different choices
of 7 may result in schedules with widely differing degrees of parallelism. \

For a cubical domain with |C| = n? the schedules

1 n n? n?~1

1 1 n nd=2
r= ||, r=]|:], = , and 7= :

1 1 1 n

1 1 1 1

result in respective computation times gn, n2, n® and n? up to lower order terms.

More specific schedules can be defined by requiring the transformations Fy to belong to a
certain class. When the transformations F, are restricted to be affine, i.e. Fy(Py) = FyPy+dy, the
schedule for the uniform recurrence equations is called affine. A translational schedule is obtained
if, in addition, F, = I for all variables u.

We shall now characterise all translational schedules for a step that consists of uniform recur-
rence equations. Application of the transformations F, results in P = F, (Py) = P, + d, and each
dependence mapping Q, = Dyu(P,) = P, + dyy becomes Q = P + Jvu where Jvu =dy + dyy — d,.
The set of translation vectors d, and a time vector 7 fully define a translational schedule subject
to the condition that 77Q < 7TP whenever a variable at point @ is required for the computa-
tion of a variable at point P. This condition is easily seen to be equivalent to the condition that
7Tdyy < 0 for all the dependence mappings in the strongly connected component. The notion of
‘time cone’ provides a characterisation of all translational schedules, this characterisation can be
used for the fast determination of translational schedules that have certain desired properties and
for the solution of the global scheduling problem.

For each elementary cycle ~ in the strongly connected component let vx be the number of
arcs in the cycle and d., be the translation vector associated with the cycle. The time cone of the
strongly connected component is the set of vectors 7 satisfying ‘er.ch < —vyyg for all elementary
cycles v in the component, where g is the greatest common divisor of the components of 7.
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Figure 7: Tree T from the Single-Source Maximum-Cost Al-
gorithm in Theorem 7.1.

The following theorem provides the main justification for the above definition.

Theorem 7.1. For each 7 in the time cone one can determine translation vectors d,, such that for
every arc (u,v) in the strongly connected component 77 dy, < —g, where dyy = dyy + dy — dy.

Proof. Let 7 be a vector in the time cone. With every arc (u,v) in the strongly connected compo-
nent G (in particular each arc in a set of multiple arcs) associate the cost cyy = 77 dyy + g. Since 7
belongs to the time cone, the sum of ¢,y along a cycle is at most zero.

Select a starting node r and construct the tree T' resulting from the single-source maximum-
cost algorithm (this is just a single-source shortest-path algorithm with cost equal to —e¢,, for each
arc (u,v)). Then, starting from the root r, assign to each node u an integer ¢, such that for every
arc (u,v) in T the new cost is Eyy = Cyu + €y — cy = 0 (¢, =0). We claim that &,, < 0 for all arcs
(u,v) in G. '

Observe that the arcs in G — T can be grouped into three categories:

o forward arcs (from a node to a descendent in T, solid line in Figure 7)
* backward arcs (from a node to an ascendant in T, dashed line in Figure 7)
e cross arcs (the remaining arcs, dotted line in Figure 7).

Consider an arc (u,v) from u to v in T with cost &yy. If (u,v) is a

e forward arc then, by construction of T, its cost must be less than or equal to the cost of the
corresponding path in T'; hence &y, < 0.

e backward arc then it closes a cycle in G, which has cost at most 0. Since the cost for the arcs
in T is O one must have &,, < 0.

e cross arc then the cost of the path from r to v must exceed the sum of the paths from r to u
and from u to v, otherwise v would be a descendant of u. Since the paths in T from r to « and
from r to v have zero cost, one must have &,, < 0.

Clearly, every cyy is a multiple of g, hence (with ¢, = 0) every c, is a multiple of g and the
Diophantine equation for the components of dy, 77d, = c,, has an infinite number of solutions
which can be easily characterised. For any set of translations dy,, each satisfying the corresponding
equation 71d, = Cu, the cost Cyy on every arc satisfies &y < 0 so that 77d,, < —g < 0. Thus, the
translations d, and the vector 7 define a valid schedule.

In general, to determine all the translations d, which define a valid schedule for a given 7
within the time cone, one would have to examine all possible assignments c, for which &,, < 0 (the
algorithm above constructs just one such assignment).
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For a vector 7 outside the time cone there is a cycle such that erA,,: > —vg, hence the cycle

contains at least one dependence vector dy, with Tdyy, > 0, whatever translations are applied. For
this particular time vector there is thus no set of translations d, that defines a valid schedule.

As we have seen in Section 6 the time cone corresponding to a step with uniform recurrence
equations may be empty while the structure of the graph I indicates computable equations. Thus,
a translational schedule may not always exist even though the algorithm is computable.

Consider the 2-D filter example. Since d,, = —d.,, the time cone is empty and Theo-
rem 7.1 implies that no translational schedule exists for this example. Yet, the algorithm

is computable as was proved in Section 6. In fact the longest path through the precedence
graph of the algorithm is

Uno0 *— VUn-1,00 *“ ... *— VU200 + V00 +— W00 *— ... +—  Wpoo
Unil = Unp-1,1,1 < ... *+ V211 + V111 + W21l + ... +—  Wpy13 —
Upnmm = Un—imm *+ ... *— V2mm *+“— UVimm <+ W2mm + = Wpmm < Wptlm,m

Hence a lower bound on the computation time is 2n(m + 1) — m and there exist
schedules attaining this bound.

Whenever a computable step of uniform recurrence equations does not possess a translational
schedule, schedules at the next level of complexity, in this case linear schedules, are considered.
‘Good’ linear schedules are obtained from affine transformations F, that map the domain of each
variable u onto the same domain C, Vu : F,(Cy) = C (after renaming all variables in the step
have domains of the same size) thus making the domain C for the whole step as small as possible.
Although this appears to be a only a heuristic measure with respect to total minimal computation
time, we plan to provide a rigorous justification of this procedure in another paper.

The set of affine transformations that map the domain onto itself may be completely chara-
terised; their linear parts, for instance, have all eigenvalues on the unit circle.

Possible transformations for a cubical domain with edges parallel to the canonical basis
vectors ey, ez and eg could be a reflection with respect to the (e2,e3) plane or a rotation
with respect to the e; direction. The linear parts of these transformations are respectively

-1 1

Since the transformations F, induce similarity transformations on the compositions of depen-
dence mappings Dy, the new D.,, are still translations but with modified translation vectors drpu.

For each variable 4 and every elementary cycle «x incident on u« one has ﬁ.yku = Fyo Dy o F;!
where )

Dyou(Py) = Pu+dy, Fu(P.)=F,Py+dy, F;Y(P)=F;'P—Fld,.
Hence ﬁqku(P) = P+ Fyd,, and the modified translation vector is

~

dypu = Fyds,.

The matrices Fy, are selected to render the time cone associated with the quu non-empty. Suppose
Ay = {dy,u} is the set of all vectors associated with the elementary cycles 4k incident on u. Since
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the algorithm is computable, the time cone for each individual A, is non-empty and the time cone
for the union |J, Ay can also be made non-empty through proper choices of transformations F,.

All matrices F, should also leave at least one common direction invariant: there exists a
vector o such that Vu : Fyo = 0. The projections of the ‘dependence vectors’ Dy, (P) — P along
o are independent of P, and as many directions o as possible should be left invariant by the
transformations Fy. If, in addition, the inner product between o and all modified vectors associated
with the cycles is negative, Vd,, : dy,40 < 0, then there exist translation vectors d, and time
vectors 7 such that the transformations Fy,(P,) = F,P, + d, and 7 define a linear schedule for the
step. Again, the proofs and the development of an algorithm for the proper choice of the F, are
deferred to a future paper.

- The projecﬁions of the vectors d,, on the (ez,es)-plane define a non-empty time cone
within that plane. Thus, we shall select the transformations F, so that they leave the
directions e; and es invariant, therefore

The first element of each matrix F, is chosen to result in a non-empty time-cone for the
vectors d,,k* A possible choice would be 1, —1 and 1 for F,, F, and F,, respectively, so
the translation vectors for the transformations may be determined and a time vector 7
selected, for instance

dy =(0,0,0)T, dy = (n,1,0)T, dy =(-2,1,1)T, r=(1,n,n)T.

In this schedule, the computations start at time n + 1 and end at n — 1 + 2n(m + 1),
requiring a total time of 2n(m + 1) — 1.

8. A View of Future Work

This last section conveys an idea of how we will deal with affine recurrence equations. We
shall use an illustration and consider the scheduling of a step whose dependence mappings are more
general than translations (uniform recurrences) although they still represent a very special class
of affine mappings. Each composition of dependence mappings associated with a cycle D,,ku(P)
DruP + dy,y is assumed to satisfy the following property there exists a translation vector d.,,
such that Dy,y(P) = DyuP + do,y satisfies D,y (C) = C, where C is the same domain for all the
variables in the step. Uniform recurrences are obtained when the matrices D.,, are all equal to

the identity. The dependence function D‘,,g (¢,5) = (j +2—14,7 — 1) in the Toeplitz factorisation
algorithm provides a practical example of a non-uniform recurrence that belongs to the class under
consideration.

To perform a computability analysis on such algorithms we need to study the eigenstructure
of the compositions of dependence mappings around elementary cycles. First we note that a finite
number of iterations of D.,, results in an identity transformation.

Lemma 8.1.
31>1:D

TkU

(P)=P VPecC.

Proof. Since C is finite and D.,, is bijective, D,,, is a permutation of the elements of C.
The set of permutations on C forms a finite group, with |C|! elements. The powers of Dy us
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{I,Dyyu,D?,,,...,}, form a subgroup which contains at most |C|! elements, hence there exists a
finite least | > 1 such that D! ,(P)= Pforall P€C.

Tk

Let g be such that C is a subset of Z? and is not included in a proper affine subspace of Z9.
The rest of the discussion is presented for ¢ = 2 but similar structural results may be established
for an arbitrary number ¢ of indices.

Theorem 8.1. In Z? either Dy, = I and dv,y = 0, or

_ 1 O <
Dyyu = F'n%: [0 _1] Fyu and (Dyu+ I)dyu =0.

Proof. In this proof we simplify the notation and drop the subscripts. Because D is an affine
transformation one has

D'(P)=D'P+(D"'+...+D+I)d=P VYPeC

implying
(D'-n(P-P)=0 VP,PecC.

The ability to select ¢ linearly independent vectors P; — P! where P;, P! € C implies that D' = I,
from which (D'~! +...4 D + I)d = 0 follows (moreover det D' = 1 so D is unimodular). When
¢ = 2 the Schur decomposition of D can be written as

_ 1M ou|
D=F [0 A F.

Suppose A1 # 1 and A # 1, then
D'+, +D+I)=(D-D)"YD'-1) =0,

hence D!(P) = P in contradiction to computability. Consequently, at least one of the eigenvalues
must equal one, say A\; = 1 and, since D is unimodular, Ay = £1.

/\2=1: !
T T
D'=F [O 1]F’--I
implies
1 Ip|
o 5]-n
hence y =0and D= I. Thus / =1 and d = 0.
Ao =l 1 O /2
— -1 |1 =
D=F [0 —-l]F’ where F-—[O 1 ]F,
hence

2
D*=rF! [(1) -?1] F=1I

Thus ! =2 and (D + I)d = 0.
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Figure 8: Illust;ration of the Proof of Theorem 8.2.

In a given cycle g, the linear part of the mapping D.,, starting at a variable  is a product of
the linear parts of the individual dependence mappings in 7. The linear parts of the mappings D.,,
and D.,, starting at variables u and v, respectively, in the same cycle 4 are cyclic permutations
of each other. Thus the eigenvalues of D.,, depend only on the cycle 44 [10] and are independent
of the starting variable u. Consequently, when ¢ = 2 each elementary cycle can be associated with
one of two types of dependence mappings: those that are just translations or those possessing as
eigenvalues 1 and —1. Note that the type of mapping for a given cycle is independent of its starting
variable.

For each composition of dependence mappings D(P) = DP + d associated with an arbitrary
cycle starting at variable u there exists a vector d for which D(P) = DP + d satisfies D(C) = C.
The arguments in Theorem 8.1 still apply and the linear part D must either be the identity or have
eigenvalues 1 and —1. The eigenvalues associated with the cycle will be shown to be only functions
of the number of times each of its elementary cycles is traversed. The fact that the eigenvalues are
independent of the starting variable constitutes a non-obvious generalisation of the above result for
elementary cycles and represents a step towards an efficient verification of computability.

Our key idea consists of performing index changes Fy for the variables so that the linear parts
of all dependence mappings in the step share the same set of eigenvectors. These transformations F
are assigned according the following simple rule: construct a spanning tree T' for the step and go
through T assigning F, = I for the root r and the other F, such that D,, = I for each arc (u,v)
in the tree. Thus the changes of index ensure that the linear part of the dependence mappings
corresponding to the arcs in the spanning tree is equal to the identity. We shall now prove that,
after this conversion, the linear parts of the dependence mappings are either the identity or else
are equal to the same matrix D with eigenvalues 1 and —1.

Lemma 8.2. In Z? two cycles with non-identity linear part and incident on the same node must
have the same linear part D.

Proof. Let the dependence mappings corresponding to these two cycles be D;(P) and Dy(P).
From the extension of Theorem 8.1 to arbitrary cycles we know that det(D;) = det(D3) = —1.
The linear part DyD; of the composition of these two dependence mappings Dy o D; must have
determinant one hence it must be identity, using again the extension of Theorem 8.1 to arbitrary
cycles. Therefore Dy = D7! = Dj since D? = I. ,
|

Theorem 8.2. In Z? if two cycles in a strongly connected component have non-identity linear part
then they have the same linear part D.

Proof. Let u and v, respectively, be nodes traversed by the two cycles, see Figure 8; v and v
are assumed to be distinct otherwise the previous lemma applies directly. Let D, and D, be the
associated compositions of dependence mappings. Since they are part of a strongly connected
component v and v are also nodes of another cycle. From Lemma 8.2 the linear parts of the
compositions associated with this cycle must be the same, say D, independently of the starting
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node. Then either D = I or D # I and then, by Lemma 8.2, D = D, and D = D,, implying
D, = D,. If D = I then there is one path, say D,,, between u and v that is in the spanning
tree and D = Dyy D,y (note that both Dy, and D,, may be compositions of individual D).
Since the change of index transformations have been applied, all arcs on the path Dy, have been
assigned identity matrices, so that Dy, = I, hence D,, = I. Since Dy, = D,, = I the mapping
DyDyyDyDyy : Cy — Cy is DyD,, and since det(D,D,) = 1 it follows that D,D, = I. Thus
D, = D,.
|

Since the cycles with non-identity linear parts have the same linear part D, the change of index
transformations ensure that the linear part of each dependence mapping automatically assumes the

value D or I. Let
1|1 0
D=F [0 _1] F.

If the change of index F, = F is applied to every variable, the dependence mappings are of the
form .

Dvu(P)= [1 I]P'I"dvua or Dvu(P)= [1 _1]P+dvu-

It is now clear that the eigenvalues associated with an arbitrary cycle are only a function of the
number of times each of its elementary cycles is traversed. Equipped with this result, we could now
carry out a computability analysis similar to the one for uniform recurrence equations.

The above results are also of importance for the scheduling of such recurrence equations.
In order to find schedules that are as simple as possible one could attempt one further index
transformation rendering the dependence vectors constant (independent of P). On each variable a
‘folding transformation’ may be performed that consists of mapping one half of the domain onto
the other half by folding it along an axis parallel to the e;-direction. The folding is accompanied
by a renaming of the variables associated with the folded half of the domain so that a variable is
computed only once for each point in the final domain. The dependence vectors become independent
of P (except for P ‘close’ to the folding axis). As in the case of uniform recurrence equations,
simple schedules associated with a folded domain may not always exist even though the algorithm
is computable. One must then give up constant dependences and resort to more complex affine
schedules.
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