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81. Introduction

The computation of simple approximations to general functions

or data is a very common activity at most computing centers. In this
paper, we discuss the complexity of such computations. We discuss
questions which are direct analogues of those currently being discussed
in "concrete" complexity and computational combinatorics. Specifically
we will concentrate on four themes: (1) the general problem is
computationally difficult; (2). adaptive or artificial intelligence
algorithms are computationally difficult; (3) subproblems are
computationally easy; and (4) computationally easy "approiimate"
algorithms exist.

In this regard, the emphasis of this paper is somewhat different
from that of the recent paper of J. Rice [14] on a similar topic and the
work of J. Traub and others on "analytic computational complexity,"
cf. J18].

In Section 2, we show that for all reasonable mathematical models,
linear approximation algorithms have infinite computational complexity
(for the worst case analysis). Moreover, we show that nonlinear,
adaptive algorithms are of no assistance in the worst case.

In Section 3, we deriye lower and upper bounds for the error in

approximating an important class of smooth functions defined on the unit

interval [0,1]. For the class of functions under consideration, we show



that the subspace of continuous, piecewise linear polynomials with n
umniformly spaced knots is an essentially optimal n-dimensional subspace.
This demonstrates theme (3).

In Sections 4 and 5, we concentrate on theme (4) and study
computationally easy, approximate mappings into subspaces of continuous,
piecewise linear polynomials. In Section 4, we introduce and study the
mapping which yields a discrete Tchebycheff approkimation and in Section
5 we consider the familiar interpolation and least squares projection
mappings. Finally in Section 6, we consider the extension of the
material of Section 5 to the approximation of functions of two variables
defined on a square domain.

Most of the results of this paper can be. extended to subspaces
of piecewise polynomials of arbitrary degree. What remains is a
verification of many technical details many of which have already been
provided by deBoor, cf. [2] and [3]. However, our goal in this paper
is to present a point of view rather than mathematical generality and
virtuosity. Hence, we consider only the technically simple case of

piecewise linear polynomials.



§2. A Discouraging Complexity Result

The general mathematical framework for our study of linear approiimation
algorithms will be an infinite dimensional real Banach space B, i.e.,
an infinite dimensional complete, normed, vector space over the real
field. Our prime example will be the space of all real-valued,
continuous functions f defined on the unit interval [0,1] with the
maximum norm “f“ E/mak{lf(x)l | 0 x5 1L

If § is an index set, an algorithm for linear approﬁimation in
B consists of a set of finite dimensional subspaces of B, {B(s) | snE'S},
and a set of associated mappings’{M(s) | SHG S} such that M(s): B = B(s).
Our primeﬁexample of S will be the set of all ordered n—tuples
A: O = X Xy < ... <x = 1 and our prime example of B(s) will be the

n-dimensional space

L(a)

{2(x) € c[0,1] |

%(x) is a linear polynomial on each el
ement [Xi’xi+l]’

1 <i<n-1},

where n > 2.

We input as data to the algorithm the element s € S and the element

b € B. As out i i {
output, we obtain M(s)b which we hope is a "good" approximation.

n " a
By "good" we mean that the error E(b,s) = ”b—M(s)b” is sufficiently small.

Generally we are given a tolerance € > 0 and we must select s to

guarantee that



2.1) E(b,s) 5 e.

For a worst case analysis, we wish to have (2.1) for all bAG B; Hence,

we want

(2.2) E(s) = sup{E(b,s) | b € B, ||b]| = 1} < e.

Clearly we may view e.l as a fairly accurate parameterization of the
computational difficulty of the approximation problem. If

dim B(s) > dim B(t) for s,t € S, we expect that E(s) < E(t) and

cost M(s) > cost M(t).

Recent work in complexity theory leads us to investigate the
dependence of E(s) on the dimension of B(s). In particular, we would
like to find a space B and a linear approximation algorithm such that
E(s) = 0((dim E(s))—t) as dim B(s) + «, thus giving polynomial complexity.
However, it may be that the best we can do is E(s) = 0((log dim B(S))“l)
as dim B(s) + «, thus giyving exponential complexity.

Unfortunately this problem is a disaster; it has infinite
complexity! We will show that we always have E(s) = 1. This will show

that no matter how clever we are a priori and no matter how much computer

time we invest, there will be inputs for which our algorithm computes
approximations which are no better than the zero of the Banach space.
Theorem 2.1. For all B, {B(s) | s € S}, and s € §
E(s) = sup{[[b=2(s)bll | b € B, |jp)| = 1} = 1.
Proof. It suffices to show that for all SJE S, there eéists bmﬁ B

such that “b“:#_l and E(s,b) = 1. Since B(s) is a closed, proper



subspace of B, there exists a vector Y\e B(s). If z denotes a best
approximation to y in B(s), then the wvector b = (y-z)/“y4z”.has the
necessary properties.

QED

There are a number of valuable lessons to be learned from this
result. First, we must take our input data from dense, nonclosed
subspaces of Banach spaces. Second, worst case analyses may be
misleading -- after all people do successfully use linear appro%imation
algorithms in practical situations.

We might hope to be rescued from our difficulties by resorting to
nonlinear, adaptive algorithms. However, we will show that these
approaches won't help as far as a worst case analysis goes.

We can model nonlinear, adaptive algorithms by assuming the
algorithm "chooses" both 3 6 S;and Mb € B(s). For example, we may
consider L(A), where A is a set of n knots, and allow our algorithm to
vary the n-2 internal knots.

However, under reasonable conditions (which are satisfied in the
above example), we can prove an analogue of Theorem 2.1.

Theorem 2.2. 1If the closure of B(S) = U B(s) is a proper subset
s€s

of B and M: B > B(S), then
(2.4) E(S) = sup{lb-M]| | b € B, |[b]l = 1} = 1.

Proof. 1t suffices to show that there exists b € Blwith.”b“,=yl



and

2.5) d(®,8(8)) = inflfb~yll | y € B(s), s € s} = 1.
Assume (2.5) is false, i.e., there exists & < 1 such that

(2.6) d(b,B(S)) <6

for all b € B with “b“_=ll. Since the closure of B(S), B(S), is a proper
subset of B, there exists y & EZET. Let'{yk};;l‘: B(S) be such that
ly-s;ll ~ a(7,8(5)) as & > =

The sequence of vectors Vi = (Y‘Yk)/”Y‘yk”, k > 1, has “Vk“ =1
and by (2.6)
(2.7 d(v,,B(S)) <§. i

Thus, d(y7y, »B(S)) = 6“y-yk”- Hence,

d(y,B(8)) = d(y—yk,B(S)) §:6“y-yk“ and taking the limit as k + «, we -

obtain d(y,B(S)) % 6d(y,B(S)) < d(y,B(S)), which is a contradiction.
QED
Thus, we have shown that for a worst case analysis nonlinear,
adaptive algorithms do not help us. oOf course, for particular classes

of problems they are very effective, cf. [13].



§3. Lower Bounds

The results of Section 2 suggest that we should restrict our inputs f
to our approximation algorithm if we hope to achieve some reasonable
results. In 1936, the Russian mathematician Kolmogorov, cf. [8], had
the brilliant idea of studying the quantities
(3.1) d_(A) = inf sup inf “b—bn“,
B DbEA Db EB
n n.n

where A is the set of allowable inputs, n is a positive integer, and
the infimm is over all n dimensional subspaces Bn of B. Once we know
" the quantities dn(A), we have a hold on lower bounds on the complexity
of linear approximation algorithms.

For the remainder of this paper we will restrict ourselves to the
special case of B = C[0,1] with norm | £| = max{|f(x)| | 0 £ x 5 1} and

- 1,

A={f | £f€W? (0,1) and |[Df]| < 1}, i.e., A is the set of absolutely
continuous functions f with ||Df| 5 1. Following a technique giyen in
[9], we may prove a lower bound due to Tihomirov [17].

Theorem 3.1. d_(A) > —1-;

n = 2n.
Proof. Let Bn- < C[0,1] be any n-dimensional subspace spanned by

¢1(x), . d)n(x) and An+l: 0= X} S S ... <X = 1 be. the wmiform

n+l
partition with uniformly spaced knots, x = (i-1)/n, 1 5 i < ntl. If A

1

is the nx(n+l) matrix given by A = [aij] [qbi (Xj)], the linear system

(3.2) Ac = Q@



n+l
has a nontrivial solution € such that 2 léi[ = 1.
i=1

If Ai = sign c,, 12 1i < ntl, choose 2(x) € L(An+1) such that
) S i _ 1 .
sign &(x;) =2;, 1 21 s ntl, and [Z(xi)[ = 5o Clearly 2(x) € A.

Moreover, for all a € Rn, we have

“ n “ n+ll . [ ‘ n |
2= Z-a, ¢, |l 2 I |&. L(x.)—- L ¢ (x.)
k=lak k" = j=1 T i 'k=1ak k¥

In+1 n n+l I l1:1+1 I
2| T eax)-I Loeo, (%) = e x|
=1 £ 1 k=laki=1 i'k1 i=1 iYL
. —l—n;l[a | =—}-
=2n , i 2n’

i=1

QED
A particular n-dimensional subspace is L(An) and as a corollary

of the Peano Kernel Theorem, cf. [16], we have the following upper bound.

Theorem 3.2. sup inf “f"ﬁ,“ ‘S'"E—(%;—l_)—.
fEA 2€L ('.An) o
Since—l-—=—l+———-—];-—-—weh e that L(A ) is essentiall
2(@-1) ~ 20 2n(a-1)° ave that 4%y sseatlally an

optimal n-dimensional subspace of C[0,1] with respect to A.



8§4. Discrete Tchebycheff Approximation

In view of the results of Section 3, we will concentrate on finding
"good" mappings M(a): C[0,1] -+ L(A) for all sets of knots

A: 0 = x S ... S x = 1. By "good" we mean that (a) there exists

1% %
a positive constant K such that
(4.1) ls=21() £l 5 X d(£,L(A)), for all £ € C[0,1] and all 4,
and (b) M(A)f is inexpensive to compute, i.e., the number of function
evaluations and arithmetic operations needed to compute M(A)f is O(np),
p a positive integer, for all f:E clo,1].

In this Section, we describe and analyze an algorithm, which in
the context of polynomial subspaces is due to de la Vallée Poussin (1919),
cf. [4]. 1If Q@ is any subset of [0,1] and f € C[0,1], we will use the
notation “f“Q = maX{lfo)l ] x_e Q}. In particular, if

Y

'{ykvl 0 sk £ m} < J0,1] is a discrete point set,. then we may consider
the discrete Tchebycheff problem by finding QY4€ L(A) which minimizes

“f—&“YE‘ maxlf(y)-ﬂ(y)l over all x‘e L(A) and we define MY(A)f = QY. The

problem of constructing ly is equivalent to a standard linear programming
problem, cf. [15], which may be solved by the simplex algorithm.
We now analyze this algorithm.
Theorem 4.1. 1f Y, =YN [x,x,,,1#0,
1}

lYiJ = max min |x-y|, and lYiJ < %{xi+lfxi), 1<1ixn-1, thed
w€lxpxp, ) v& o



].0-

@2 el s 2a-2eg )™y Tl Lw)
for all f € c[0,1].

To prove this result we use a basic inequality of A. A. Markov
(1889), cf. [11], for polynomials. We state and prove Markov's
inequality for the deceptiyely simple case of linear polynomials.

Lemma. If 2(x) is a linear polynomial on [a,b], then
(4.3) loellp, oy = 22> 7Hiall, o5

Proof. We clearly have

[pe)| = m-a)"H[a(b)-2(a)| s-a) L(e®)|+|Lca )
s 20-a) " all, op-
QED
Proof of Theorem 4.1. Let t € If»‘i”‘i+13 be such that
|2(6)-2 (&) | = lI8-2y)| where & is a best approximation to f in L(3). By

the Mean Value Theorem,

N T = lr@ =2y @ < lliaglly +7,] IpG-2ll

19%541]

Using Markov's inequality (4.3) to bound the right hand side of (4.4),

we have

(4.5) “i"%“,xs;,xi+11 < IIE-*_ZYHY;z (g0 Y, | IIE--zY-uIX,i,Xm]
and hence

(4.6) ll2-2ll I, x, ] % 12 (xiﬂ—‘xi)'l[Yil)f'llli—;zYH‘Y .

174+ i

since ll2~£lly 5 lla£ll and llay-slly < lle-£ll, < li-ll, we have from



inequality (4.6),

(4.7) lla-2ll = li2-2 ]

i
Yz ,x

< (126, =) D7 - (.Ili--fﬂyifﬂf—zillYi)

5 (=26, x) Ty DT sl )

i+1 751

£ 202Gy g Y D el

Combining (4.7) and the triangle inequality, we have
=2 i < lle-ni+liz-2 | = D2 @=2.Ge =) 7w, D7 l£=2ll, which yielas
v i+l i i
(4.2).
QED

Unfortunately we can show that the simplex algorithm for
constructing QY will require O(nz)'arithmgtic operations (not counting
function evaluations). As for function evaluations, there are two
regimes to investigate. The first is where we can compute f at arbitrary
points and we wish to economize, i.e., we want to minimize the number of
function evaluations. The second is where we are a priori given large
quantities (relative to n) of data or approximate function evaluations ——
a situation typically arising in the analysis of experimental data which
we ﬁish;to smooth and compress.

We will discuss the first regime in the remainder of this Section.
The second regime will be discussed in Section 5.

1 .
By Theorem 4.1, we need IYiJ < §(¥i+lﬁxi) for all 1 < i 5 n-1,

ll'



which implies that we need at least two function evaluations in the

interior of each element Ixi,x By symmetry, we minimize the

i+1]'

coefficient of the right-hand side of (4.2) by evaluating the function £
. 1 1 . . .

at the points 4(3Xi+xi+l) and 4(:xi+3xi+l). With this choice of

evaluation points for each element, (X [Y l and using (4.2).

i+l_'1

we obtain the following result.

Corollary. 1f Y = {yk}k -1 where Yoi-1 = %{3x +x, +l) and
_ 1
Ypq = Z(X +3x, +l)’ s£1i=x<n,
(4.8) Mg £ll,, < 5 d(£,L()).

This algorithm requires 2n eyaluations of Ff.

It might be rather surprising that we can obtain a better result
with essentially half of the function evaluations and no arithmetic
operations! Suppose we evaluate f only at the knots {x o 1=1° i.e.,

Y = A, Then the preceeding analysis does not quite hold since

x,). However, in this case the discrete Tchebycheff

=L -
7] = 3=

problem is trivial to solve. In fact, its solution is the piecewise

linear interpolate I f of £. That is, if x € Ix.,x

L(4a) '+1]’
M Q)i =L L)@ = Gy If(x )y (R ) (%) ]
Fortunately, by a different technique, we can prove a version of
(4.2) for this set of data.
Theorem 4.2. If fé cla,11,

(4.9) ll£-T 2d(£,L(0)).

12.



Proof. 1If £ 6 L(A), the result is trivial. Otherwise, let

x € Ixi,xi_l_l] be such that lf‘(X)_IL(A)f(X)[ = “f‘,IL(A.)f“ .

If e(x) = f(;g)—IL (yE@), then clearly e(x,) = e(x,

1+1) = 0 and
inf “:E—IL“  = inf “e-—JL“ . Thus, it suffices to show that for all
2€L(A) Q,EL(A) '
2 € L(A)
. 1 1 :
el 2 ety gz el .y = Bl

If le(x)-—l(x)l ;%:“e”[x. < for all 2 € L(A), we are done.

i :i.+1J

Otherwise, e(x) and %(x) have the same sign and

1 : 1
£ (%) ;—“e“ . This implies that |%( )[ ;f“e“ for
| 23 [z 4] 165 N R
k = either i or i+l.
Since e(xi) = .e(_xi_l_l) = 0, this implies that either

1 : 1
lex.)-2 )| 2 Hlell or lex,, )=, )| 2 5lell .
i i 20 Ixi,xi .+l‘] i+1 i+1 2% Ixi ’Xi+l]

QED

This is the ideal situation for those problems in which we can

evaluate a function arbitrarily. This interpolation algorithm has

additional desirable features, such as linearity, which will be

considered in detail in the next Section.

13.



14.

§5. Least Squares Algorithms

The problems in which we have a large quantity of data which we wish to
smooth and compress have not been satisfactorily resolved as yet.
Moreover, it is of further interest to have a projection algorithm;
that is, one based on projection mappings. To be precise, a linear
approximation algorithm is said to be a linear projection algorithm if
and only if the associated mappings M(s) are linear and are such that
M(s)y =y for all y € B{s), i.e., the mappings M(s) are linear projectors.
Following ideas of Kantorovich, Lax, and deBoor, cf. [7], we have
the following equivalence result for linear projection algorithms.
Theorem 5.1. Let the sequence of subspacesi{Bn I l13in< ®} be

such that lim inf “b—h “ = 0 for all b € B and the sequence of mappings
n . . ; ”
e b €8

A{Mﬁ [ 1 s n < «} be linear projectors which are consistent, i.e., there

exists a dense subspace, D, of B such that lim “Mhb—b“ 5.0 for all b € D.
n->e. '

The following conditions are equivalent: (a) there exists e > 0 such
that ||| < e for all n; ) [b4 bll £ (1+e)d(®,B ), for all n and
b € B; and (o) [[b-M bl + 0 as n > for all b € B.
Proof. (a) = (b): For all g € B,
b2 bll < llb-gl+lg-1 pll = Ilb-gl+iM_(e-0)Il = @+e)llo-gll.
() = (c): Obyious. | ” |

'(c)‘='(é): If b‘e B, then'{“Mnb“ | n > 1} is bounded. For



otherwise there exists a sequence of elements Mh Dy veey Mh b whose
1 k|

norms tend to infinity which contradicts convergence. Condition (a)
follows from the uniform boundedness principle of functional analysis.
QED
This equivalence theorem is quite general. Let us consider some
elementary applications.
Examples:
=1

(1) B =c[0,1], By = L(A), and M(A) = T Then ||I

L(a)* L(A)
and hence Nf—-IL yEll = 24(£,1.(8)), which is the result of Theorem 4.2
(2) Let B = C(), p = AXXAy be the product grid on the umit

square, U, and consider the tensor product space

B
p

L(p) = L(AX)SE(Ay). If IL(p) denotes the two dimensional
interpolation mapping into L(p), cf. [16], then “IiCp)”~=.1 and hence

ll£-1. , £l 5 2d(£,L(p)).

L(p)
(3) Let T be a triangulated polygon, L(T) be the space of

continuous, piecewise linear polynomials with respect to T, and Ii(T) be

the obvious mapping of B = C(T) into B,, = L(T). Then, once again

T
Izy(qyll = 1 and ll£=1p o £ll < 2a¢2,20m).

We now consider least squares algorithms. Given f € CIO,l],

we determine 2'6 L(A) which minimizes féfé(f(x)—%tx))zdx = “f—x“% over

2 € L(A); 1i.e., & = P(A)f is the orthogonal projection of f onto L(A).

1

- n .
Expressing 4(x) = I BiziCx), where ZiCx) is the unique element in L(A)
i=1
defined by 2,(x,) = §,, = {l if i=3 the minimization problem is
, i ij 0 otherwise’

equivalent to

15.



solving
.1) 8 =k,
where A is the nXn matrix given by
-1 L
3% o
. . O
-
L] »
° * ]
= | L = g, .- Log, -
.2) A0y ) 3G =) g
L - *
. . ¢
0 - .
1,, .
- 3(“1-Xn - l)J
and
1 A
(5.3) k = [[ifE)e; x)dx].
For the case of a uniform mesh with h = X 17X 151 <01,
21
h 14 0
A=— \ . Using the elementary fact that
6 41 |
o)
« 2
n . 0
“ bX S‘i'q'i“ = ”_@_“c>° = max lﬁil for all B € R, we can obtain the following
i=1 o l<iz<n '

result for the mappings P At

Theorem 5.2. For all £ € C[0,1], “f-PAf”{ < 4d(E,L(A)).
‘ 1

Proof. If D= Idij] is the diagonal matrix with dll = 3x2_' s
= -1 4 = -1 . m—‘l .
dii = 3(xi+l—xi_l) s 2 <1<n-1, and dnn = 3(’1—Xn—-1) » .., D~ is

the diagonal of A, then AB = k implies

16.



170

~

(5.4) DAB = Dk,

l = '2];{ and “D.]‘_{_“@, 5_.: %“ﬂl- )

n
where DA = T4M, |M| = max I [m,,
" 1sisp j=1 Y

It follows that “(DA)__l“eo = “(IfM)_l“m_ézz,,cf. [1], and hence
that “é“m’;:BHf“,‘ The result now follows from Theorem 5.1.

QED

What about computing (5.4) and its solution? If we can compute
the integrals needed to evaluate k, then we need only 0(n) arithmetic
operations to compute the linear system (5.4). Moreover, we can solve
the tridiagonal linear system in O(n) arithmetic operations by means
of Gaussian elimination for tridiagonal matrices, cf. [1].

From the viewpoint of round-off error analysis, it is important
to know about the conditioning of DA. 1In this case, it turns out that
the condition number of DA, i.e., “(DA)flum“DA“w’;iS uniformly bounded
(independent of A) by 2+3 = 6. Thus, we have an ideal situation.

To handle discrete data, we suggest an algorithm of Patent,
cf. [12]. We note that the data occurs only in the right-hand side of
the linear system (5.1). Thus, if the data is at Y,“we.cﬁoose AC Y,
interpolate f at Y’by‘IL(Y)f, replace f in the xightfhand side of (5.1),
and compute the resulting integrals whose integrands are piecewise
quadratics by either symbolic methods or Gaussian quadrature with two
nodes in each element defined by Y. That is we solye the linear system

(5.4) AB = k = oIy py £G4, Gl



A n A~
and let M(AYE = I Sizi(x). We can prove the following error bound for
i=1

this procedure.
Theorem 5.3. If AC Y, then for all f € Clo;_l],
(5.5) llemeell < 4ace,L)).
Proof. By Theorem 5.1, it suffices to show that “ﬁA“ < 3. Since
A€ Y, L(A) C L(Y) and M() = 2T eny”
l £ 31=3.

Hence, “ﬁ(A)“ s “PA“ “IL(Y)

QED

18.
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8§6. A Two Dimensional Extension

In this Section, we consider the problem of approximating a function
f(x,y) of two variables on the unit square U by means of bilinear
functions in L(p), where p = AXXAy is a product rectangular mesh. Our

least squares algorithm seeks pr = QCx,y)_E L(p) which minimizes

1 2.
6.1) £ol 5 (G2 Gey)) Paxdy
- n n.
over § € L(p). If 2(x,y) = I L Bi.k.(x)ﬂ.(y), then it is easy to
. . J 1 J
i=1 j=1
show that g = Bn(i-l)+j = Bij’ 1<1i, j £n, is the unique solution of

the linear system

(6.2) ABAE =k,
where A.X and Ay are the one dimensional least squares matrices with
respect to L(AX) and L(Ay) respectively and Aézmy is the Kronecker

produce, i.e.,

"all[bij] e aln[bi,j]'
[aijjﬁﬂbij] = :‘ . . .
fhllhijj e annlbijﬂ

Note that we have used the "natural ordering along vertical lines of p"
for the solution vector B. The matrix Aé@Ay is sparse. 1In fact, it has
only nine nonzero diagonals and a bandwidth of n+2. For the special case

of n = 2, its associated graph is



Of course, we would like to prove an error bound which is a two
dimensional analogue of Theorem 5.2. We may do this with the aid of
Some elementary results about Kronecker products.

Theorem 6.1. For all £ € C(I),
6.3) lif-2 £l < 104(£,L¢))-

Proof. 1If DX and Dy are the diagonal matrices defined in the
proof of Theorem 5.2, then (DXAX®DyAy) _é_ = (DX®Dy) (jAX®Ay)§= (DXQDy)&,
where we have used the fact that the product of tensor products is the

tensor product of the products, cf. [10]. As in the proof of Theorem
5
4.

diagonally dominant. Howeyer, the inverse of a tensor product is the

5.2, DA, = T+M_ and D A_ = I+M_ where |[M]| = 2. Hence, D AGD A is not
X X x Yy y o xXx yy o —

tensor product of the inverses and the »-norm of a tensor product is less

than or equal to the product of the «-norms.

A

Thus, 10,480 807, = loap T l@a) ™, < 222 = 4.
Moreover, i, s £l . Hence, lle £l = llel,, < 4~

result follows from Theorem 5.1.

9ll£ll , and the

QED

20"



If the data is given as a discrete function on a rectangular grid
Y including p as a subset, we may prove a two dimensional analogue of
Theorem 5.3. The details are left to the reader.

An interesting and important issue is the choice of algorithms
for solving linear systems of the form (6.2). If we use band or profile

Gaussian elimination, we need O(n3) storage locations and O(‘n4

)
arithmetic operations, cf. [6]. If we use sparse matrix techniques,
then the best we can do is O(nzln n) storage locations and O(n3)

arithmetic operations, cf. [5] and [6]. These latter results hold for

J. A. George's "nested ordering" of the unknowns.

Howeyer, using the special structure of the equations, we can
achieve an "alternating direction" direct method which requires O(nz)
storage locations and O(nz) arithmetic operations. To start we observe
that it suffices to solve the coupled systems

(6.4) (]&AY)E =k

(6.5) (ARD)E = u
In fact, if w and é satisfy (6.4) and (6.5)

(mAy) (ABI)8 = (.I®Ay)_v_r_, = k.

- 1A
But IiXAY = |7 0 is an nxn block diagonal matrix with nxn blocks.
oA
Y

If we partition w and k into the corresponding n-block vectors, we have

(6.6) Ay£2, = _15_2, 1<2

A

n.

21.
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Moreover, each system in (6.6) can be solved with O(n) storage locations
and O(n) arithmetic operations. Since there are n such systems, we need
a total of O(nz) storage locations and O(nz)' arithmetic operations to
compute W.

To solve (6.5) efficiently, we define é and é by reordering the
components of _é_ and w to correspond to the '"natural ordering along

~

. - n =
horizontal lines of p, e.g. Sn(j-1)+i =

?

i <n. Then, (6.5)

|
=
[
He
“
[

may be rewritten as
(6.7) (1A )8 = w.

This system may be solved the same way we solyed (6.6) with 0(_nz)' storage

locations and O(n") arithmetic operations, and B'i , 1 £1i, j £n, may be

J
reconstructed from §.

A moral of this analysis is that a sparse linear system with a
special structure may often be solved more efficiently by means of a

special algorithm than by general sparse matrix algorithms.
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