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Place Recognition Using Image Signatures

Sean P. Engelson

Abstract

For reliable navigation, a mobile robot needs to be able to recognize where it is in the world.
We describe an efficient and effective image-based representation of perceptual information
for place recognition. Each place is associated with a set of stored image signatures, each
a matrix of numbers derived by evaluating some measurement function over large blocks of
pixels. Measurements are chosen to be characteristic of a location yet reasonably invariant
over different viewing conditions. Signature matching can be done quickly by element-wise
comparison; greater stability is assured by offset matching. Multiple measurements are easily
used in tandem for enhanced recognition accuracy. Even so, all image-based techniques are
subject to the recognition problem, in that many scenes are inherently unrecognizable, due to
view ambiguity and instability. We deal with this problem by using active methods to select
the best signatures to use for recognition. We formulate heuristic distinctiveness metrics as
functions on image signatures which are good predictors of view distinctiveness. These functions
are used to direct the motion of the camera to find locally distinctive views. These views are
also stable, since we use local optimization techniques. We evaluate the results of applying this
method with a camera mounted on a pan-tilt platform.

This work was partially supported by the Defense Advanced Research Projects Agency, contract
number DAAA15-87-K-0001, administered by the Ballistic Research Laboratory. The author is sup-
ported by a fellowship from the Fannie and John Heriz Foundation
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1 INTRODUCTION 1

1 Introduction

Mobile robots often need to register their current location in a stored map of the world. There
are chiefly two types of robot maps used: metric and topological. Metric maps represent the
geometrical shape of the world to one degree or another. Systems using such representations
can thus make use of a more-or-less well-defined correspondence between map components and
environmental structures. However, this approach becomes less useful and more cumbersome
when sensor uncertainty is introduced; furthermore, information is not easily represented in a
way which is useful for task performance.

The topological approach, pioneered by Kuipers [17, 18], avoids these problems by discretizing
the world in a robot-relative manner. A topological map is a graph whose nodes represent places
in the world, and whose arcs encode robot actions taking the robot from one place to another.
Since topological representations focus on the structure of the robot’s paths rather than that
of its environment, they are immediately useful for navigation; in addition they appear to be
more concise than the metric alternatives. In [9] we proposed a system for learning topological
maps reliably in the presence of sensor and odometric error.

Any system which makes use of topological maps must be able to tell which place node represents
the robot’s current location (if any). In particular, a map-learning system must be able to tell
if it is at a place it already knows about (whose description it should update) or an unknown
place (and therefore augment its map). Thus, we posit that place representations must include
a description of the place sufficient to support reliable recognition. Some of this burden can be
laid on representations encoding the relative positions of places in the map [7, 28]. In [9], we
introduced the diktiometric map representation, which integrates both topological and high-
level geometric knowledge in a uniform framework. In any case, due to odometric uncertainty,
perceptual cues must be used as well.

1.1 The basic idea

Image-based place recognition has several benefits over reconstructionist approaches. Recogni-
tion based on visual extraction of geometric features is often slow and error-prone. Representing
uncertainty in a way which is efficient, complete, and consistent is also a difficult problem. We
therefore propose to use an image-based matching technique, using arrays of measurements
called image signatures. The method of image signatures is simple and easy to apply, generally
applicable to all sorts of environments, computationally inexpensive, and is easily integrated
with other recognition cues. When used with appropriate measurement functions, image signa-
tures support efficient recognition over a range of viewer positions and orientations.

Signatures are matched against one another to confirm hypotheses of the robot’s location, and
can be used to efficiently index into a knowledge base to generate such hypotheses. Reduction
of images to signatures can be very fast, since only simple image-based processing is required.
Matching is also quite fast, as only a small amount of data is involved. By matching signatures
at offsets and using signatures of differing resolution, approximate correction can be made for
differences in viewing position. Databases of image signatures can also be indexed efficiently
due to their simple structure.

An image signature is an array of measurement values. The input image is tesselated into a
grid of subimages. Each measurement value in a signature is derived from a subimage by a
measurement function. Measurement functions usually map from image regions to numbers
or angles. The idea is that a measurement represents some coarse-scale physical property
of a portion of the scene. By representing images coarsely, signatures achieve significant data
reduction, and also affords stable recognition. Recognition is decided by element-wise matching.
Signatures from several measurement functions can be used together for conjunctive match
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filtering. Viewpoint rotation can be corrected for by matching signatures at an offset. Signatures
can be indexed for hypothesis generation using standard techniques for multidimensional point
indexing (cf. [26]). These techniques provide efficient search methods for finding good matches
for an input image. Image signatures thus provide an simple, efficient, and effective basis for
place recognition.

An inherent difficulty with any image-based recognition method is the recognizability problem.
This problem consists of two factors. First, many scenes inherently give little information for
localization (eg, blank walls). Second, there are too many scenes in the world to remember
them all—which should be used for recognition? The image signature paradigm provides a
direct approach to dealing with this problem. We develop the notion of distinctiveness metrics,
real-valued functions of signatures such that high values indicate unambiguous scenes. -As for
recognition, distinctiveness values can be combined for different measurement types for added
reliability. Optimization techniques are then used for directing camera motion to find local
distinctiveness maxima. Such distinctive viewpoints will tend to be unambiguous. Furthermore,
since there are few local maxima, relatively few scenes will ever be used for recognition. This
further underscores the usefulness of the image signature method.

1.2 Place recognition

Nelson’s work on image-based homing [23] used a coarse pattern-matching approach, which our
framework generalizes. His ‘patterns’ are essentially image signatures based on measurements
of dominant edge orientation; he used them to construct a reactive plan for homing a robot to
a predetermined location. We generalize the notion to encompass matching based on multiple
feature types, at different offsets, and at multiple scales. A similar approach is taken by Zetsche
and Caelli for the problem of invariant pattern recognition [32]. They use oriented gaussian
filters to derive a 4D translation-, scale-, and rotation-invariant representation of 2D input
patterns, using cross-correlation for matching.

Another approach to place recognition for topological maps is to use local geometry. Sarachik
[27] has developed a robust method for estimating the size and aspect ratio of rectangular
rooms. In a non-homogeneous environment, this could be useful for place recognition. Krieg-
man [16] developed a system for instantiating generic place models (such as hallways), which
can be used both for recognizing place categories, and for matching based on high-level place
descriptions. Moravec and Elfes [22] used correlation of sonar-derived certainty grids for rough
place recognition and robot localization. Braunegg [6] developed a method for matching place
descriptions based on the relative 3D positions of vertical edges. In a similar vein, Leonard
and Durrant-Whyte developed a sonar-based mapping system [19], which effectively performs
localization using sparsely distributed geometric features.

Contextual information can also be directly integrated into the place recognition process. For
example, Kirman, Basye, and Dean [14] use a Bayesian decision theoretic approach to classifying
the robot’s place. They incorporate a temporal component to take into account the robot’s re-
cent history, allowing them to disambiguate places based on topological considerations. Mataric
uses a unique topological mapping scheme based on closed cycles [20], which makes contextual
cues very useful for place recognition. Her system also uses place categorization for recognition,
done by analysing the robot’s behavior in different locations.

1.3 Paper overview

The remainder of this paper describes our results in applying the image signature method
to the problem of place recognition!. We first develop the notion of image signature and

1Some aspects of this work were previously reported in [10] and [8].
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stable matching, within the context of our robust map learning framework. We then turn to
the question of measurement function design, exhibiting a sample of such functions, with some
empirical comparisons. Experimental results testing image matching in a large database support
our contention that image signatures can be effective at recognition tasks. This established,
we describe a method based on measuring signature distinctiveness to deal with the problem
of selecting good viewpoints for recognition. Experimental results using a pan-tilt platform
support the use of local distinctiveness search for viewpoint selection and suggest directions for
further research.

2 Image Signatures

We need a representation of an image which can be stably matched to representations of other
images showing the same scene. It should also be insensitive to the presence of image noise.
To satisfy these requirements, we define an image signature as an array of measurement values,
each value derived from a portion of the original image. An input image is tesselated evenly
on a grid (typically square), and a measurement function is applied to each subimage, giving a
value for the corresponding position in the signature array. Such measurement functions map
from image regions onto a low-dimensional codomain, typically either the reals or a discretized
space. One example of a measurement function is the dominant edge orientation (DEO) for a
region (see Figure 1); it is reasonable to expect that two image regions having a similar dom-
inant edge direction share some physical similarity. Signature matching is done by comparing
-corresponding elements for similarity; there are different types of matching, discussed below.
" A large number of images can be stored this way, since typical signatures will take up no more
than perhaps a hundred words in an optimized implementation.

In the remainder of this section, we develop the machinery necessary to use image signatures
for place recognition. We begin with a discussion of how signatures are computed. This
amounts to a discussion of measurement functions. In addition to describing the particular
‘measurement functions we developed during this work, we also formulate evaluation criteria
that can be used to design good sets of measurement functions in general. In the next section
we describe methods for signature matching, including how we deal with viewpoint motion. We
then describe how signatures derived from multiple measurements are used together for place
recognition. We then conclude this section with discussions of scene ambiguity and hypothesis
generation.

2.1 Measurement functions

A crucial part of a place recognition system based on image signatures is the choice of measure-
ment functions. This choice is, to some extent, dependent upon the robot and its environment.
Although there is, as yet, no well-founded theory to guide development of good measurement
functions, we can state some heuristic principles that can be used to design and evaluate mea-
surement functions. Also, measurement functions should be quickly computable. Measurement
functions map image regions into values; without loss of generality, we speak of measurement
functions applying to entire images.

When considering measurement functions, it is often the case that we need to distinguish be-
tween sparse and dense measurement types. Sparse functions measure an overall property of
an image region by extracting a set of tokens from the region and computing an aggregate
measurement for the token set. A sparse measurement value can occasionally change drasti-
cally if the viewpoint changes so that a token moves into or out of view. By contrast, dense
measurements compute a value by averaging a pixel-based measurement over the image region.
Thus small viewpoint changes produce small dense measurement changes.
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2.1.1 Some measurement functions

We have developed a set of measurement functions which generally work reasonably well. We
describe them and their implementations below, as well as their classification as sparse or dense.
Examples of signatures derived using the various measures are shown in Figure 1. While we have
no formal results describing the properties of these functions, we present empirical evidence for
their stability and distinguishability in Sections 4.1.1 and 4.1.1.

Image
0° 180° 0° 180° (3.5 1.4 .55 .57
90° 0° 0° 180° 3.5 15 b5 1.45
0° 180° 0° 180° 25 19 15 .57
90° 180° 0° 180° | 25 2.1 .57 14
DEO SGD
39 34 .16 .20 C 30 29 .08 .13
36 .38 .17 .18 32 .18 11 .15
37 .40 .23 .22 23 14 .11 .18
37 43 22 .25 20 .11 .14 .19
ZC ) TEX
66 113 103 163 [ 92 1.1 1.3 1.2
67 88 121 140 84 1.0 1.2 1.1
47 44 90 121 83 92 1.0 1.0
36 35 96 120 | .79 .86 1.0 1.0 |
ESTR RI

Figure 1: Examples of image signatures for various measurement functions. All angles are given
with 0° vertical. SGD is given in multiples of 45° (the scale that the matcher uses).

Dominant edge orientation

The first measurement function we discuss is the dominant edge orientation (DEO) in a region,
suggested by Nelson [23] for image-based homing. The intuition behind this is that since
edges are discrete and mostly derive from scene features (occlusions, albedo, and so on), the
dominant orientation in a subimage will usually change little with motion, but will be useful for
recognition. We calculate DEO by convolving the image with the two first-order 3 x 3 Prewitt
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operators [2] to estimate the image gradient at each pixel. We then restrict attention to those
pixels whose gradient magnitude is both a local maximum in the gradient direction, and which
is above a threshhold, 033? . The selected pixels are then classified into one of eight categories
denoting the edge orientation implied by the gradient. The orientation to which most of the
pixels in the subimage are assigned is the DEO value of the subimage. Since DEO extracts
edges, it is a sparse measure.

Significant gradient direction

Another measurement, closely related to the DEO, is the significant gradient direction (SGD).
The directional intensity derivatives at 0, 45, 90, and 135 degrees are estimated using rotated
versions of the 5 x 3 Prewitt operator (at skew angles, the convolution masks are 5 x 5). The
mean of all pixels above a threshhold, 5P, in each derivative subimage is computed, giving
a ‘response’ for each direction. The average of the top two directions is computed, weighted
by their responses; this is the SGD of the subimage. The SGD is similar to the DEO, except
that (a) it takes into account the magnitude of contrast, and (b) it does not explicitly tokenize
edges by non-maximum suppression. Voting on edge du-ectlon does, however, constitute a form
of tokenization, so SGD is considered a sparse measurement function.

Edge strength

In addition to measuring the direction of the edges in the image, the strength of those edges can
also be measured. The edge strength (ESTR) measure is computed as the average directional
response over all filter directions (as computed for SGD). ESTR is simply an average ‘edginess’
for an image, and so is a dense measurement.

Edge density

A fourth edge-based measurement is the density of edges in the subimage (ZC). This gives a
rough measure of the visual complexity of the scene. It can be computed by convolving the
subimage with a Laplacian of Gaussian filter (we use a 3 x 3 mask), and then counting the num-
ber of vertical and horizontal pixel boundaries constitute zero-crossings of the convolved image.
The fraction of such zero-crossing boundaries constitutes the edge density of the subimage.
While fairly fine-grained, ZC relies on picking out edge fragments, and so is sparse.

Texturedness

We have also developed a simple measure which is more specifically sensitive to image tex-
turedness. We call a pixel’s ‘texturedness’ the number of neighboring pixels whose intensities
differ from it by more than a fraction 15X of the (sub)image’s mean. Then we calculate an
overall texturedness for a subimage as the average of pixel texturedness on the subimage. This
measure will not be much confused by edges, as areas will predominate by the number of pixels
involved in the average. Texturedness averages a local measure over the entire subimage, so is
a dense operation.

Relative intensity

We can also roughly estimate the average reflectance of surfaces in a scene by measuring the
relative intensity of a subimage compared to the entire image. We simply compute the ratio of
the intensity mean of each subimage to the intensity mean of the entire image. This normalizes




2 IMAGE SIGNATURES 6

for the ambient illumination level. Naturally, this measure will not be stable if the light source
direction is changed such that the shadow structure of the scene changes. In fact, this is the least
useful of the measurement functions tested. Relative intensity is clearly a dense measurement.

Other measurements

In addition to the measurement functions described above, we tried some others that were found
wanting. We describe them briefly here, and why we think they failed.

Vertical line count This measure extracted vertical lines that extended the full height of the
subimage and counted them. The intuition was to take advantage of the strong vertical
orientation of our office environment. It didn’t work too well, though, probably because
vertical lines tend to come in dense patches so that small motions could change the count
considerably.

Intensity centroid We also tried using measurements based on the grey-level centroid for
something like region segmentation. Unfortunately, these measurements are very sensitive
to camera motion for obvious reasons, which are difficult to correct for.

There is also a great deal of previous work that can be applied to measurement function de-
velopment. For example, detailed texture analysis (eg, [31]), color histograms [29], or shading
analysis (as in [15, 25]) might provide good physically-based measurement functions.

2.1.2 Evaluating measurement functions

What makes some measurement functions useful and others not? We would like a succinct
characterization of measurement ‘goodness’ which we could use when designing measurement
functions for a given environment. We can derive criteria for good measurement functions
by considering the properties demanded by place recognition. First of all, views from nearby
configurations should map to close measurements, since views from a single place should look
similar. This we call the stability criterion. Dominant edge direction, for example, satisfies this
criterion, since the features being measured change slowly and rarely disappear from view after
a small movement (this argument is made more formally by Nelson [23]). Another desirable
sort of stability is invariance with respect to lighting conditions. Unfortunately, it is nearly
impossible to achieve in general, so the robot may have to store different signatures for different
lighting conditions. But if shadows are rare or small, they will not often affect results.

Another criterion, distinguishability, is that views from distant configurations should have dif-
ferent measurements, so that recognition can be reliably performed. More practically, this
becomes a requirement that different physical layouts (geometry, reflectance, etc.) should look
different under the measurement. Since the information in the image is being reduced severely,
this criterion will not be completely satisfied; however, measurements that come close to de-
scribing inherent physical properties of the scene will be preferred. Thus, since contrast edges
usually denote physical structures in the world (occlusions, surface markings, and so on), we
expect dominant edge orientation to be a distinguishing measure.

2.2 Signature matching
2.2.1 Similarity metrics

There are different methods that could be used to determine if two signatures may match,
depending on the properties of the measurement function used. Those we consider allow a
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match if some ‘similarity metric’ is above a given threshhold. So, if the robot wishes to test the
hypothesis that it is at a particular place, an allowable signature match permits the hypothesis
to be accepted. If competing hypotheses must be disambiguated, the match with highest
similarity is chosen.

Nelson, in [23], suggests using the fraction of identical elements in two signatures (which he calls
‘patterns’) as a similarity metric. He uses discrete measurements—for real-valued measurements
we can define two values to be ‘identical’ if their difference is less than a threshhold. So, if s
and ¢ are n x n image signatures, we have the pattern similarity metric:

. 1 .
simpae(s,t) = 3 Z id(si5, ti5)
ij

where

. 1 i v —v<6iq
id(vy,v2) = { 0 otherwise

This metric corresponds to using a 0-1 loss for measurement estimation [4], and so is rea-
sonable if measurement deviations are usually less than 64, but occasionally are completely
unpredictable. This will typically be the case if the measurements are based on tokens rep-
resenting features in the world which may suddenly disappear from view when the viewpoint
changes. If features are sparsely distributed, few will move out of a given image region un-
der small motions—allowing pattern similarity to match the derived signatures. A match for
signatures s and ¢, with measurement function M, is permitted under pattern similarity if
simpa(s,t) > Ogt.

A second similarity metric is based on the rooi-mean-square-difference, or cross-correlation, of
the signature array elements. To wit:

. 1
simpms(s,t) = —\/;1—2' E :(Sij — ti;)?
ij

This similarity metric corresponds to using a squared-difference loss for measurement estima-
tion [4], hence a Gaussian probability density on measurement deviation?. More generally,
this metric is reasonable whenever the chance of a particular measurement deviation decreases
smoothly with deviation’s magnitude. In particular, dense measurement functions vary contin-
uously with robot motion, so simms will be appropriate. A match is permitted (as above) if

simyms(s,t) > 6M .

2.2.2 Offset and cross-scale matching

Recall that one of our goals for matching is stability—signatures from nearby views should
be ‘close’. However, even with reasonably stable measurement functions, signatures will only
match by the above criteria if they line up almost exactly. For example, with 5 x 5 signatures
and a 25 degree field of view, a rotation of only 5 degrees will induce a signature match where
no matching parts of the scene are compared. But if matching is done at a horizontal offset
of one column, the signatures will match. Thus we see that matching signatures at horizontal
offsets can correct for rotation about the vertical axis. Of course, under planar projection,
the corresponding subimages will not be identical, but we have empirical evidence (see section
4.1.1) that the difference is tolerable.

21t is possible that matching could improved by reducing the influence of outliers, using robust estimation
techniques [13]. This kind of approach has been applied to good effect for pixel-level matching, see [5] for
example. We have not yet examined the effects of robustification on signature matching.
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Translation can be corrected for similarly. Translation perpendicular to the optical axis results
in simple image translation and can be dealt with by offset matching as above. If translation is
purely along the optical axis, then the focus-of-expansion (FOE) is at the center of the image.
Provided that objects in the scene are reasonably far from the observer and motion is small,
the image change can be approximately modelled as pure expansion. If this is the case, then
the center portion of a high-resolution signature at the original position should match a lower-
resolution signature at the forward position. Other translations can be approximately corrected
for by combining multiscale and offset matching.

2.3 Using multiple measures

Despite our best efforts, any measurement function we design will be far from perfect, due to the
amount of information reduction inherent in the process. Hence we use additional cues to filter
allowable matches and improve recognition. The most obvious is to use several measurement
functions together for matching. The basic idea is quite simple. Several signature databases
are kept, one for each of the different measurement functions used. A suggested image match is
permitted if the several signature matches implied by the hypothesis are themselves permitted.
Even though one particular measurement function may accidentally allow an invalid match, it
is less likely that several will. This is only valid, of course, if the measurement functions are, in
some sense, independent. The notion of independent measurements we discuss in more detail
later.

More precisely, matching using multiple measurement functions is done as follows. Given a
match hypothesis, corresponding signatures are checked to see if a match is allowed, based
on the measurements’ threshholded similarity metrics. Note that different measurements may
use entirely different match criteria. If fewer than a given number of the signature matches
are disallowed, then the match is allowed. If enough measurement functions are used, then
allowing one or two mismatches avoids some false negatives without unduly hindering positive
recognition.

Choosing the ‘best’ match among several permissible alternatives is more difficult, however,
since signature similarities for different measurements are not generally commensurable. The
strategy we currently use is to designate one measurement as ‘special’ and rank matches based
on similarity with respect to that measurement. There are a host of other methods for producing
orders using all an image’s signatures, but this simple method seems to work reasonably well
(for a good choice of special measurement).

2.3.1 Measurement set evaluation

For a set of measurement functions to be usefully combined, they should be ‘independent’ in
some sense. If different measurement functions measure different image properties, then they
will tend to disagree on accidental matches of different scenes, and hence the set will perform
better than its elements.

Dependence

The most direct way to evaluate measurement independence is to estimate the probability that
the measurements agree on an incorrect match. This gives the dependence of the measurements

D=P(Am,~ | I 76I2A\/mi)
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where I; are images, m; denotes the event that I; and I, are deemed to match under measure-
ment function ¢, and I; ~ I iff the images arise from the same scene. This can be simplified

as follows:
P(Aimi | (V;mi) AL # Ip)

PUA; manV malnAL)
P(\/, mill1#12)

D

P(/\ m.~|1176I2)

P(vima'lfu”z)

This can be estimated from a representative sample of images S after computing sets of incorrect
matches for each measurement function 7, B; C S x S by

lneBi|
[U; B:l

This provides an easy way to approximately evaluate the independence of a set of measurement
functions. In section 4.1.1 we evaluate a set of measurement functions by this criterion.

Measurement utility

What may be more useful in practice than the raw independence of a measurement set is to
determine how useful it would be to add another measurement function to a given set. In
decision-theoretic terms, this corresponds to calculating the expected risk of using the aug-
mented set over the given set. If we ignore the cost of storing another signature database for
the new measurement function, all we need to know is the cost of applying the new measure-

~ment function, C,, and the cost of allowing an incorrect signature match C,,. In practice,
this latter may be difficult to estimate. We can conceive, though, that it might be estimated
experientially over a period of time by correlating image signature matching with other place
recognition cues. The probability that the new measurement will rule out a bad match that
would otherwise have been accepted is given by

P(~new | moia ATy #:Ty) = ECppentioalluzle

— P(raewAmaalli £I2
P(moall1£12)

anewn(n.Bi]

= Sp (estimated)

where mpew and mgq are the events that a match is allowed by the augmented and non-
augmented measurement sets respectively, rnew is the event that the new measurement function
rejects a match, and Rpew C S X S is the set of matches from a sample set rejected by the new
measurement function. If we call this probability p, then the expected utility of adding the
new measurement is given by C, — pCy,. This can then be used to evaluate new measurement
functions, so that system design can be done incrementally (and perhaps automatically).
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2.4 Ambiguity

Many scenes in the real world are inherently ambiguous. For example, if a robot is navigating
in an office building, an image of a blank wall gives it almost no information3, as blank walls
are everywhere. Hence, ambiguous images should not be used for matching; if the robot is
somewhere with an ambiguous view, it should look around for a less ambiguous one to use
for matching. Ambiguity filtering of a signature database can easily be done by removing all
signatures which match to more than a given fraction of the signatures in the database (say,
5% for a large database). Then, if an input image is ambiguous by this criterion, it is also
ignored, and the robot should move a bit and try another view. This method is quite easy
to implement, but not too efficient for large databases. In the sequel we address the problem
of directly determining if an image is ambiguous and using this information to choose useful
viewpoints for recognition.

2.5 Hypothesis generation

The above discussion on matching image signatures assumes that all signatures in the database
are checked as possible matches. Since in practice the robot may need to store thousands of
images, it must be able to find the relevant ones effectively. Such hypothesized matches can be
found relatively easily if the robot has strong expectations about its current location. If the
robot believes it is at one of a small set of places in its map, then it need only search signatures
corresponding to those places to disambiguate its position. If it fails to rule out all but one
possibility, then it can look around some more and repeat the process with another image.

If, on the other hand, none of the expected signatures match, or the robot has no expectations
at all, the robot must figure out where it is from scratch. If it has knowledge about its geometric
position from odometry, that may be used to generate candidate places the robot might be.
If not, or if its positional information is not good enough, the robot must solve the kidnapped
robot problem. It is as if the robot fell asleep and then was silently kidnapped and moved to
some new location by gremlins. When the robot wakes up, it must come up with some idea of
where it is based on purely perceptual cues (we ignore here the use of experimentation). Thus,
we require an efficient way to index a signature database for effective retrieval of reasonable
match hypotheses.

The solution is to index signatures using k-d trees (a k-dimensional generalization of binary
search trees [26]). Direct search can be efficiently performed on a k-d tree for points falling
within intervals of IRF. A more flexible search strategy for our purposes, though, is a variety of
spiral search [21]. Spiral search uses a heuristic strategy to find points in the tree progressively
further and further from a given starting point. Note that k-d tree search can be efficiently
implemented on massively parallel machines using marker-passing.

For our application, the simplest thing to do would be to treat n x n signatures as points in R~
and index them in the tree directly. However, this does not take into account the element-wise
flexibility of our similarity measures (some elements may be very different) or offset/multi-
scale matching. These problems can both be heuristically ameliorated by indexing on signature
subarrays. If we index each signature under each of its columns, offset match hypotheses can be
generated using markers. Each signature keeps a vector of markers, one for each possible offset.
Every time a column of the input signature is ‘matched’ to an index column, the corresponding
offset marker is incremented; when it goes above some fraction of n, a match hypothesis at that
offset is proposed. This also eases the problem of some elements being far off, since only some
columns must be nearby. This approach may be generalized by indexing based on arbitrary

30f course, generic knowledge that the robot is looking at a blank wall may, combined with other cues, serve
to disambiguate its location. We are concerned here, however, with highly-disambiguating perceptual cues.
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sub-signatures—supporting generation of cross-scale match hypotheses. However, there are an
exponential number of such possible indices, so only ‘reasonable’ ones should be used. A good
way to filter indices is to only use those which are relatively unambiguous; if an index points
to hundreds of signatures it doesn’t constrain the hypothesis space much.

3 The Recognizability Problem

There are several difficulties with the naive approach to place recognition described above. First,
if all images seen are stored, the signature database will grow enormously. Thus, some method
is needed to choose which signatures are most useful for recognition, and should be stored. This
brings us to the second point, which is that a large fraction of images in many environments are
ambiguous, and tell us nothing about the viewer’s location. Consider how many viewpoints in
an office building give an image of a blank wall. In the experiments described above, upwards
of 35% of images were found to be ambiguous. Measuring ambiguity by seeing how many
signatures in a database are matched by an input image is expensive, in both time and space
(since ambiguous signatures must be stored for testing). Hence, finding distinct images should
not depend on direct examination of a signature database. A final consideration is the problem
of stability. The difficulty here is that there are configurations where a change in viewpoint can
radically change the view seen. Thus, if the naive approach is applied at an unstable viewpoint,
many more views will need to be stored for a small region, to cover all the possible views. The
question we address in this section is finding viewpoints which are distinctive and stable. We
term such viewpoints (and the images they induce) recognizable.

To find recognizable viewpoints, we use the fact that place recognition is performed from a
mobile platform, and hence the camera can be moved during recognition. Most work in vision
that uses camera motion can be divided into two categories: active vision and sensor planning.
Active vision techniques focus on temporal integration of visual information over a controlled
trajectory to improve interpretation (see [1]). Usually, low-level intensity/feature models are
“used to determine camera motion (for, eg, fixation as in [3]).. Visual servoing of some sort is
often used for controlling camera motion, though arbitrary motion can also be helpful [24].
Sensor planning, on the other hand, addresses the problem of finding good viewpoints for
object recognition and registration [30]. This is done by optimizing some criterion of image
goodness, using measures such as number of visible useful features or expected accuracy of
image measurements. A high-level model is used to determine the best viewpoint subject
to kinematic constraints, given some previous estimate(s) of the target’s pose. The problem
can also be formulated as a decision-theoretic problem of choosing the viewpoint with highest
expected utility [12]. This can be iterated to obtain successively better estimates (of target
identity or pose).

The problem of finding recognizable viewpoints is similar to the classical sensor planning prob-
lem, in that we seek to optimize some measure of viewpoint ‘goodness’. However, we do not
have an accurate and complete geometrical model of the target, and so such approaches cannot
be used. The approach we took uses a coarse sort of visual servoing to find distinctive view-
points. This is done by performing local maximization of ‘signature distinctiveness’ to home in
on distinctive images. This has an advantage that it does not require explicit modelling of envi-
ronment structure, only a heuristic notion of signature ‘distinctiveness’. It is still nontrivial to
develop such notions, and to show that they correspond to something like true distinctiveness.
‘We shall do this below.
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3.1 Distinctiveness

Generally speaking, for recognition we prefer signatures which rarely match others, since a sig-
nature will always match itself. Given a representative signature database, then, a signature’s
distinctiveness can be directly measured, by seeing how many signatures in the database match
it (this is how ambiguous images were filtered out for the recognition experiments described
above). For batched experimentation this is satisfactory; however it becomes impractical when
(quasi-) real time performance is needed (as on an autonomous robot). Hence we need distinc-
tiveness metrics that can be computed directly from an image signature; a distinctiveness value
can then be used to classify images as distinctive or ambiguous. This seems a plausible goal
since we, as humans, can usually easily tell whether or not an image is distinctive.

Given a distinctiveness metric, the locally ‘best’ view is chosen by searching for a local maximum
of the metric. This idea is similar to that used by Kuipers and Byun for place definition [18],
though our purposes are different. Here, we deal only with rotational search, but the approach
can be extended to include translation as well.

Now, while the main motivation for using locally distinctive signatures is to improve recognition
by filtering out ambiguous views, there are other benefits as well. Most obvious is the reduction
in the size of the necessary signature database. Assuming that distinctive images are relatively
rare, substantially fewer signatures will be stored for each place, since only the most distinctive
views will be recorded. A further benefit that we would hope to obtain would be greater
recognition stability, since active search should compensate for differences in original viewpoint.
Such stability is not a priori obvious though, and must be demonstrated. We do so empirically,
as described below in section 4.2.

3.2 Search

Since it is impractical to examine all viewpoints in a neighborhood for a distinctive image, some
sort of search is required. In this paper, we only consider rotational search, so we specify a single
search granularity, ev°, such that a view orientation within ey ° of a true distinctiveness max-
imum is acceptable. We mainly consider two search algorithms: a linear hillclimbing method
and an interval subdivision method. The hillclimbing method works by sampling images every
ev® (always turning clockwise, say), until a three-image window is found whose middle image
is a distinctiveness maximum. If the expected distance to a maximum is V°, this algorithm
will examine 0(2‘77) images.

For interval subdivision, we use a form of bisection line search, since no derivative information is
available. Also, rather than assume that we have a maximum bracketed, we search for the local
maximum within a predetermined interval. The algorithm is given a starting search size V;°.
The starting interval is then that of size V;° clockwise (say) of the starting orientation. The
current interval is iteratively trisected?, and the side containing the most distinctive signature
is chosen as the next interval. This continues until the search interval is smaller than ey °. The
trisection algorithm processes 2 images on each trisection, and performs O(log({’})) trisections.
Clearly, if V is known, choosing Vo = V makes trisection more efficient than hillclimbing, but
this is hard to do in general. However, in practice we found that trisection was more efficient
with only a rough guess of a good Vp.

4Golden section search could be similarly used with a further efficiency improvement; trisection search was
used due to ease of implementation. Also, some results seem to show that trisection is more stable, probably
since more data are used.
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3.3 Using multiple measurements

As demonstrated above, using multiple measurement functions can dramatically improve recog-
nition. However, finding distinctive images based on multiple measurement types is not simple,
since distinctiveness is not comparable across measurement types. Rather than try to guess at
a combination function (which we have no principled method for), we make use of the fact that
we are trying to maximize distinctiveness. This means that we only need a comparison relation
giving a partial order (preferably nearly total). To compare two signature sets S; and S5, we
can count up the number of measurements for which each corresponding signature in S; has
higher distinctiveness than that in S, and vice versa. The set with a higher count is preferred.
This is extended for trisection search by also counting the number of distinctiveness preferences
of each internal view to the interval endpoints. In general, preference comparison leads to the
same results as distinctiveness comparison, though there are cases in which preferences cannot
distinguish between possibilities. Note also that the preferred viewpoint may not be distinctive
with respect to all measurements; a higher preference is still indicative of a better viewpoint.

3.4 Distinctiveness metrics

Due to the unpredictable complexity of the world, we designed distinctiveness metrics heuris-
tically and evaluated them empirically. The basic idea is to ask what sorts of views tend to
be ambiguous, and what signature features predict those views. We look at ambiguous views
since they seem to be a more homogeneous class than distinctive views. Naturally, different
measurement functions will require (in general) different distinctiveness metrics. Also, since
views considered ambiguous in one environment may not be in another (consider a view of a
tree in a forest, or in an office building), different environments may require different distinc-
tiveness metrics. Discussion of the issues of operation in multiple environments is beyond the
scope of this paper, however. The environment which we consider is the ubiquitous indoor
office environment. This means that the main class of ambiguous images will be blank walls.
- Below we describe the distinctiveness metrics we developed for the measurement functions we
developed (see section 2.1.1 above). Since relative intensity gave indifferent recognition results,
it was omitted from consideration in this part of the work.

If we assume that most ambiguous views will be of blank walls (or others similarly homo-
geneous), we can design distinctiveness metrics for each measurement function to test for
homogeneityS. We developed a number of possible metrics, only some of which checked out;
due to space limitations we only discuss the good ones here. The simplest way to measure the
featurelessness of a signature is to estimate its homogeneity. For real-valued measurements such
as TEX and ZC, the homogeneity of a signature can be taken as inversely proportional to the
variance of the signature array values, glz—zi’j <n(vij — 7)2. Note that the signature variance
metric (SigVar) is applicable to signature subarrays as well.

SigVar is not applicable to DEO, however, since its values are angles (and so variance is not
well-defined). A similar idea can be applied, however, by calculating the estimated entropy of
the signature values, taking them to come from a single probability distribution. It must be
emphasized, though, that we only use this as a useful measure of homogeneity of values—if all
values are the same, entropy is minimized; if they are equally distributed, entropy is maximised.
If the possible values are indexed by i, and the fraction of signature elements with values ¢ is
Pi, the signature entropy (SigEnt) is computed as Y, p; log p;.

As it turns out, neither of the metrics above works well for SGD. SigVar is again inapplicable
due to SGD being angle-valued, and SigEnt has trouble, it seems, because lighting can cause

5Note that signatures are homogeneous, not image intensity. For example, wallpaper with a repetitive but
highly textured pattern would be judged to be homogeneous, since it is self similar on a large scale, despite
being visually interesting.
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noticable contrast variations over large areas of homogeneous regions. However, a metric that
does give satisfactory results for SGD is the fraction of array elements for which a significant
gradient was registered. When there is any significant environmental structure, a significant
intensity gradient will usually be generated; empirically, the converse seems to be true as well.
Hence, the noticable gradient metric (NoGrad) will usually be low only for ambiguous featureless
views.

4 Results

4.1 Place recognition

We conducted experiments on image matching using the measurement functions described above
in section 2.1.1. Images were taken by a CCD camera with a 25mm lens, giving slightly more
than 12 degrees of view. The images were reduced by pixel averaging from 640 x 480 to 60 x 45
before signatures were computed. The bulk of the experiments described here were performed
on a corpus of 168 images taken from 8 different locations in our building. At each place a
sequence of 21 images was taken, with a rotation of around 6 degrees between adjacent images.
Thus a total of about 130 degrees were covered at each place. Note that adjacent images
overlap by about half and non-adjacent images barely, if at all. This gives us an easy way to
automatically check ground truth for matching.

Except as otherwise noted below, the system parameters were as follows. Signatures were
8 x 8 grids. Mismatches were generally disallowed. Matching threshholds were: 01?5'0 = 0.6,
fos = 0.6, 623 = 0.5, Ohai ™ = 25, 67FF = 0.5, and 651, = 0.1. Measurement parameters
were set as 9PEQ = 70, 0331) = 50, and 9};%)( = 0.05. When filtered, ambiguous images were
taken to be those matching more than 5% of the database.

4.1.1 Measurement evaluation
Stability

We first evaluate individual measurements for their stability. Stability was estimated separately
for rotation and translation. Rotational stability was evaluated by plotting the match similarity
change with rotation at intervals of about 2 degrees. Translation was evaluated similarly for
forward and transverse movement at intervals of about 5¢cm. The image sequences are shown in
figure 2. We calculated both full signature similarity and best offset similarity between the first
image and all other images in each series. The similarity is plotted against image number in
figures 3, 4, and 5. The solid lines represent matching without offset, the dashed lines matching
at best offset, and the thick horizontal lines show the matching threshhold we use.

Most of the plots show a reasonable degree of stability for non-offset matching; the exception
are the rotation matches, which is understandable since a 2 degree rotation is an offset of just
over one grid cell (at 8 x 8). The usefulness of offset matching is immediately apparent; most
measures allow offset matching to a distance of about 25cm forward, 35cm sideways, and 9
degrees of rotation. The main exception is relative intensity, which doesn’t match at all for
any rotation. It appear that this is due to the greatly changing global illumination in that
sequence; it confuses RI’s normalization. In our experience, these plots seems representative
of the measurements’ behavior. The stability region implied, 25cmx35cm, is probably made
smaller by the fact that our camera has a fairly narrow field of view.
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Rotation sequence

Forward translation sequence

Transverse translation sequence

Figure 2: Image sequences for measurement stability evaluation (every second image shown).
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Figure 3: Rotation sequence stability plots. Signature similarity is plotted versus angular
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Average number
Measurement(s) of matches
DEO 1.66
SGD 2.26
C 3.43
TEX 3.39
ESTR 1.68
RI 2.74
DEO,SGD 2.08
DEO,TEX 2.19
TEX,ESTR 1.59
ZC,RI 2.14
DEO,SGD,TEX,ESTR,ZC 1.74

Table 1: Estimated measurement function distinguishability.

Distinguishability

The distinguishability of measurement functions was evaluated, based on our image corpus, by
computing, for each measurement function, the average number of matches found per image for
which a match is found. Since there are two correct matches for nearly every image in the corpus
(its predecessor and successor), we should expect this average to be something less than 2. The
greater the number, the less distinguishable the measurement. To avoid being confounded
by inherently ambiguous images, this average was computed while filtering ambiguities out.
Table 1 summarizes our results; we also evaluated some sets of measurement functions working
in tandem. The most distinguishable measurements seem to be DEO and ESTR, and the
least ZC and TEX. As expected, distinguishability increases when measurement functions are
combined.

Independence

Recall that in section 2.3.1 we came up with a way of evaluating the dependence of sets of
measurement functions in the context of signature matching. Since efficiency dictates that as
few measurements should be used as possible, effort should be taken to choose a reasonably
independent set. We evaluated pairs of measurement functions described above in terms of the
approximate dependence formula derived above. In our case, the numerator counts the number
of non-adjacent image pairs in our sample which matched according to both measurements
being evaluated, and the denominator those which matched one of the two. Table 2 shows the
results of applying this dependency metric to pairs of measurement functions over the image
corpus described above.

Some of the results in the table immediately make sense. For example, the high degree of
dependence between TEX and ZC—since TEX measures texture by large intensity variations
between neighbors, it is to be expected that those same pixels would tend to neighbor on
Laplacian zero-crossings. Some results are somewhat surprising, though. The high degree of
dependence between RI and ESTR seems strange at first; but it is probably due to the fact
that image regions with high edge strength will have large amounts of intensity variation, and
hence the average intensity will tend to not be extreme. This would tend to correlate the two
measures. A similar argument explains the lesser, though significant, dependence of RI with
DEO and SGD. The result that is perhaps most surprising is the lack of dependence between
DEO and SGD. Since these were both intended, in a way, to measure ‘edge direction’, one would
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| || SGD | ESTR | ZC | TEX | RI |
DEO 0.08 | 0.10 | 0.05| 0.06 | 0.17

SGD - 0.17 | 0.05| 0.06 | 0.10
ESTR || 0.17 - 0.10 | 0.08 | 0.22
ZC 0.05 | 0.10 - | 0.26 | 0.09
TEX 0.06 | 008 [026| - 0.05
RI 0.10 | 0.22 [ 0.09 | 0.05 -

Table 2: Matching dependencies for pairs of measurement functions.

expect their matches to be highly correlated. However, since SGD does not extract edge tokens,
but merely looks at high-magnitude gradients, it also picks up curved and specular surfaces, as
well as surfaces near a light source. These results support our dependence measure.

4.1.2 Recognition

Finally, we tested the recognition capabilities of the system on our image corpus. The images
were each processed to produce a set of 6 8 x 8 signatures, one for each combination of image
and measurement function. The following experimental procedure was performed twice, once
as is, and again filtering out ambiguous images (those matching more than 5% of the corpus).
For different combinations of measurement functions, each image’s signatures were matched at
all offsets, up to 3/4 of the signature, against all other images’ signatures. Several statistics
were accumulated:

o The number of ambiguous images found (presented above),

o The number of images for which a match was found,

o The average number of matches per image with one (presented above),
o The number of images for which the highest-ranked match was correct,

o The number of images for which a correct match was among the 4 highest ranked. This
gives us an idea of how well we could do with geometric and contextual filtering.

The results for various combinations of measurement functions are summarized in Table 3.

The first thing to note is that we can get accuracy of around 90% when filtering ambiguities.
When combined with geometric and contextual matching in a full mapping system, we can
expect near-perfect accuracy. Also, most of the time adding more measurement functions
increases accuracy. In those few places where percentage accuracy decreases, this is because
fewer images are being classified as ambiguous, and the raw number of correct matches does
increase. The relatively poor results that we got without ambiguity filtering are mainly due to
the high degree of inherent ambiguity of some of our images—the average number of matches
found for each image was typically over 40 without ambiguity filtering. We also note that
distinguishability seems to correlate with performance without ambiguity filtering, as we would
expect. For example, ZC is the least distinguishable, and it gives the worst results. On the other
hand, DEO and ESTR, which are much more distinguishable, give noticeably better results.
Thus, these empirical results also support our evaluation metrics.
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Ambiguity filtered Not ambiguity filtered

Measures M BC 4C M BC 4C
DEO 41 (24%) | 20 (49%) | 24 (59%) || 158 (94%) | 18 (11%) | 58 (39%)
SGD 39 (23%) | 26 (67%) | 30 (77%) || 166 (99%) | 53 (32%) | 66 (40%)
ZC 14 (8%) | 8 (57%) | 9 (64%) || 168 (100%) | 3 (2%) 9 (5%)
TEX 23 (14%) | 8 (35%) | 21 (91%) || 168 (100%) | 13 (8%) | 24 (14%)
ESTR 25 (15%) | 21 (84%) | 24 (96%) || 163 (97%) | 24 (15%) | 30 (18%)
RI 38 (23%) | 17 (45%) | 24 (63%) || 165 (98%) | 13 (8%) | 27 (16%)

DEO, SGD 51 (30%) | 39 (76%) | 46 (90%) || 139 (83%) | 49 (35%) | 62 (45%)
DEO, TEX 63 (38%) | 39 (62%) | 51 (81%) || 148 (88%) | 39 (26%) | 39 (26%)
TEX, ESTR || 29 (17%) | 26 (90%) | 28 (97%) || 163 (97%) | 28 (17%) | 33 (20%)

ZC, RI 44 (26%) | 25 (57%) | 29 (66%) || 159 (95%) | 26 (16%) | 34 (21%)
DEO, SGD, || 54 (32%) | 43 (80%) | 50 (93%) || 128 (76%) | 47 (37%) | 61 (48%)
TEX, ESTR,

ZC

DEO, SGD, || 50 (30%) | 37 (74%) | 45 (90%) || 116 (69%) | 37 (32%) | 49 (42%)
TEX, ESTR,

ZC, RI

Table 3: Recognition statistics both with and without ambiguity filtering. M = images for which
matches were found, BC = preferred matches which were correct, and 4C = correct match in
the top 4. With ambiguity filtering, ambiguous images were neither checked for matches nor
matched against. Percentages shown in parentheses are as follows: images matched vs. images
checked, best match correct vs. images matched, correct match in top 4 vs. images matched.

4.2 Distinctiveness search

We performed a number of experiments to evaluate the performance of the active recognition
methods described above. Experiments were performed using a CCD camera at a height of
110cm. Images were reduced by pixel averaging from 640x480 to 60x45 before signatures were
computed. Some of the experiments below use a corpus of 291 images (a superset of that
used in section 4.1) taken at 11 different positions in our building using a 25mm lens. Those
experiments not involving the image corpus used an 8mm lens, for a larger field of view. At
each position a set of images was taken with the camera at different orientations. Some others
of our experiments were performed using a pan-tilt platform in our laboratory. A drawing of
the laboratory layout during the experiments is shown in Figure 6. The robot arm in the upper
left and the electronics workbench were the most visually interesting things in the room.

Due to the difficulty of performing exhaustive and systematic tests using a mobile platform,
two sets of experiments were performed to evaluate the signature distinctiveness method. The
first are static evaluations, using the image corpus and rotational image sequences to evaluate
ambiguity prediction and density of distinctiveness maxima. A second series of experiments
was performed using a pan-tilt head to perform rotational distinctiveness maximization, and
the results were evaluated. The details of the experiments and analysis are described below.

4.2.1 Distinctiveness and ambiguity

Due to the difficulty of obtaining large quantities of representative data using dynamic, on-line
techniques, we evaluated the use of distinctiveness metrics for predicting ambiguity statically,
using the image corpus. This gave us a large, reasonably representative data set (for our office
building). For each measurement function, we computed signatures at several resolutions from
each image in the corpus. For each signature we then found all other signatures that matched
it, and computed the signature’s distinctiveness using the appropriate metric. This then gave
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Workbench I

Figure 6: Approximate floor-plan of our laboratory. The two camera positions (“Door” and
“InLab”) used for rotational experiments are shown as grey circles, with the zero points for the
static stability experiments (section 4.2.2) shown as black wedges.

us a pair of numbers for each image 7, a number of matching images M; and a calculated
‘distinctiveness’ D;.

The task is then to evaluate the hypothesis that local distinctiveness maxima are probably also
unambiguous. The data for 8 x 8 signatures are plotted in Figure 7. From the shape of the
plots it is clear that there is a strong relationship between the number of images matched (ie,
ambiguity) and distinctiveness values. However, to properly evaluate the results, a more precise
evaluation of the data is required. Due to the impossibility of modelling, even approximately,
the underlying environmental structure that gave rise to the observations, we approach this
problem indirectly. We first established a threshhold 6 on the number of images matched for
calling an image ambiguous or not; this threshhold was 5% of the database (14.6 images). We
can then think of the distinctiveness values for ‘ambiguous’ images (M; > 15) and those for
‘unambiguous’ images (M; < 14) as two random variables, call them A and U. We then wish
to compare the two distributions to evaluate the reasonableness of our hypothesis. We did this
using four tests. The first two provide an intuitive feel for the overall properties of the data,
and the latter two statistically test the hypothesis that distinctiveness values are unrelated to
ambiguity.

e We calculate the ratio of the sample means U/A; if it is far from 1, then on average
unambiguous images have distinctiveness noticeably different from ambiguous images.

e We estimate the probability of a random unambiguous image having greater distinctive-
ness than a random ambiguous image, Pr(D; > D; | M; < § A M; > 6). This is evaluated
as the fraction of image pairs with one unambiguous and the other ambiguous, satisfying
the former condition. If this probability is high (say, >90%), a strong argument can be
made that unambiguous images have significantly greater distinctiveness than ambiguous
ones.

e We test the hypothesis that A and U come from distributions with the same median
(which we would expect if distinctiveness was unrelated to ambiguity). Since we have no
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Figure 7: Representative plots of distinctiveness estimates (y axis) versus number of database
images matched (z axis), using 8 x 8 signatures. (a) DEO signatures using the SigEnt metric.
(b) SGD signatures using NoGrad. (¢) ZC signatures using SigVar. (d) ESTR signatures using
SigVar (e) TEX signatures using SigVar. (f) TEX signatures using MeanVal; note the similarity
to (e).

good statistical model for the data, we use the Mann-Whitney median U non-parametric
test (described in [11]). It uses rank sums to test the hypothesis that two samples of
different sizes come from distributions with the same median. The procedure provides a z
score that can be checked for significance against tables of the normal distribution. If the
hypothesis of equal medians can be rejected at a reasonable level of significance (say, 1%),
then we can conclude that a distinctiveness metric operates differently on ambiguous and '
unambiguous images.

o Finally, we use the Kruskal-Wallis H test to test the hypothesis that the two samples of
distinctiveness values come from the same population. The H test tests whether sample
rank sums are equidistributed as would be expected if the samples came from the same
population. The procedure provides a number, H, which is used to perform a x? signifi-
cance test with 1 degree of freedom (since we have two samples). Again, if the hypothesis
(of a single population) can be rejected with reasonable significance, we can say that

- distinctiveness and ambiguity are related.

While no one of these tests is sufficient to establish our main hypothesis, if a distinctiveness
metric satisfies all of them, the evidence is strongly suggestive that distinctiveness maxima
are generally unambiguous. The results of these tests for the various measurement func-
tions/distinctiveness metrics at signature resolutions of 5, 6, and 8 are given in Table 4.
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Measure Res. || R | P U sig. | Hsig. || Measure Res. | R | P U sig. | H sig.
DEO 5x5 | 1.7 ] 094 | 0.01 0.01 ESTR 5x51 39 | 1.0 0.01 0.01
(SigEnt) 6x6 1] 1.6 | 0.93 | 0.01 0.01 (SigVar) 6x6 1| 19 | 0.99 | 0.01 0.01
8x8 | 1.5 093 | 0.01 0.01 8x8 | 13 | 0.99 | 0.01 0.01
SGD 5x5 ] 1.3 | 0.66 | 0.01 0.01 TEX 5x5 | 53] 0.99 | 0.01 0.01
(NoGrad) 6x6 || 1.6 | 0.74 | 0.01 | 0.01 | (SigVar) 6x6|[52|0.99 |0.01 |o0.01
8x8 | 1.9 0.87 | 0.01 0.01 8§x8 | 41| 0.99 | 0.01 0.01
ZC 5x5 ] 89| 094 | 0.01 0.01 TEX 5x5 | 3.2 | 0.99 | 0.01 0.01
(SigVar) 6x6 || 9.3 094|001 | 001 | (MeanVal) 6x6 |[ 6.7 | 099 | 001 |o0.01
8x8 | 7.5 094 | 0.01 0.01 8x8 | 3.0 1 0.99 | 0.01 0.01

Table 4: Summary of hypothesis test results on the image corpus. R is the ratio of distinc-
tiveness means; P = Pr(D; > D; | M; < 8 A M; > 8); U significance is the probability of
erroneously rejecting the hypothesis of equal medians, and H significance of the hypothesis of
the same population. See text for a more detailed description of the tests.

When the results are examined, we see that the metrics presented here satisfy all the tests,
confirming the impressions gotten from the plots in Figure 7. The larger distinctiveness mean
is at least 1.3 times the smaller, which indicates that a difference is noticeable. For all mea-
surement functions but SGD, P > 0.9 which indicates that it is overwhelmingly probable that
unambiguous views can be distinguished from ambiguous ones. For SGD, the resolution of
the signatures seems to play a significant role; one explanation is that at lower resolution, the
regions that are averaged over are larger, and hence more likely to contain significant contrast
edges, obscuring the existence of large-ish regions with little contrast. In any case, while P > 0.7
is not overwhelmingly large, it may still be reasonable if SGD is used with other measurement
functions.

The significance of the median and population tests is quite striking. So striking, in fact, that
the figures were cross-checked in two ways: a random partitioning of the data into ‘pseudo-
ambiguous’ and ‘pseudo-unambiguous’ was used and the tests were performed, and the results
of the tests on non-meaningful distinctiveness metrics (eg, SigVar for DEO) were examined.
Random partitioning produced, as would be expected, no hypothesis rejection at any reasonable
significance level. Non-meaningful distinctiveness metrics occasionally checked out on one of
the two tests, but (a) not as significantly as those we accepted, (b) almost never passed both
tests, and (c) never passed all four tests. This leads us to conclude that the distinctiveness
metrics presented here are good predictors of scene ambiguity and hence, local distinctiveness
maxima should be unambiguous. This claim is tested more directly below.

4.2.2 Stability

One way to evaluate the inherent stability of a distinctiveness metric is to plot distinctiveness
versus viewpoint. If large maxima exist, then it can be assumed that stability can be achieved.
Also, such plots help us get a feel for what distinctiveness actually measures. Plots for two
positions in our laboratory are shown in Figures 8 and 9. The first salient feature of these
plots is that they form large, wide humps on a large scale, implying large stability regions.
This is mostly not the case for DEQ, which is largely constant, but since it doesn’t jump about
randomly it works well in conjunction with other measurements. Another feature of these
graphs is that the locations of their maxima correlate well across different measurement types.
These two facts lead us to conclude that our distinctiveness metrics contain enough information
for viewpoint stabilization.

If we look more closely at the plots and refer back to Figure 6, we can make correspondences
between computed distinctiveness maxima and the physical contents of our lab. First, consider
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Figure 8: Distinctiveness (y-axis) plotted against camera orientation (z-axis) from the lab
doorway. (a) Signature entropy of DEO. (b) Noticable gradient on SGD. (c) Signature variance
of ESTR. (d) Signature variance of TEX. (e) Signature variance of ZC.
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Figure 9: Distinctiveness (y-axis) plotted against camera orientation (z-axis) from the interior
of our lab. (a) Signature entropy of DEO. (b) Noticable gradient on SGD. (c) Signature variance
of ESTR. (d) Signature variance of TEX. (e) Signature variance of ZC (jagginess due to plot
‘quantization).

the doorway camera position. There are two large maxima here: at about 160° and at about
350°. The first corresponds to the camera looking towards the chair and door in the atrium,
-a region of considerable interest compared to the blank walls surrounding it. The second has
the camera looking at the robot arm, also a distinctive feature of the lab. The interior position
gives, as we would expect, more distinctive viewpoints. We can pick out several: at 10°, at
100°, at 190°, and at 300°. The first corresponds to the Sun workstation® and workbench in
the lower left. The second is the robot arm again. The third is a combination of the open door
and the camera tripod. The last is the constellation of chairs and workstations in the lower
right. Thus we see that signature distinctiveness corresponds quite well to our intuitive notions
of ‘distinctive views’.

4.2.3 Dynamic experiments

We conducted experiments to measure several features of the distinctiveness maximizing algo-
rithm described above in Section 3.2. The camera was mounted on an experimental pan-tilt
platform (manufactured by Zebra Robotics). The platform was positioned about 1 meter off the
- ground. For all experiments but one (as noted below), an 8mm lens was used. Two main posi-
tions were used, one in the middle of our lab (InLab) and the other in one of the lab doorways
(Door). Most of the experiments consist of a rotational test suite, each test performed starting
with a different camera orientation, at 15° intervals. The search parameters were Vy = 100°
and ey = 5°.

6Sun is a registered trademark of Sun Microsystems Incorporated.
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InLab Door

DEO SGD | ESTR TEX ZC || DEO SGD | ESTR TEX ZC
(x10%) (x10%) | (x10%) (x10%) (x10%) | (x10°%)
2.1 31 911 32 24 1.7 14 1129 25 25
2.0 50 277 23 25 1.8 22 1305 32 17
2.1 55 434 22 8 1.8 25 1421 31 17
2.1 47 1060 27 32 1.9 2 58 10 4
2.0 25 1031 33 32 1.9 3 83 8 3
1.8 27 1455 36 21 1.9 11 56 16 3
2.2 31 861 30 27 1.9 13 90 20 4
2.1 34 999 38 13 2.1 17 101 17 5
1.7 27 1203 32 29 1.7 28 104 15 5
2.0 12 1259 27 40 1.9 8 72 23 5
1.9 23 1146 25 33 2.3 26 467 20 8
2.2 34 1422 26 13 2.2 30 622 25 7
2.2 36 1291 28 14 2.3 34 692 26 9
2.3 30 986 37 6
2.3 38 1108 41 6

Average Average
2.1 | 35 1045 29 24 2.0 | 20 552 22 11

Table 5: Results of the rotation test experiment for InLab and Door, using trisection. The
calculated distinctiveness of attractor views are shown for the five measurement functions.
Averages were computed over all starting orientations.

Distinctiveness and rotational stability

We first checked the distinctiveness values of the views found by trisection search. At each
of the test positions the algorithm, using all five measurement functions, was used to find a
local distinctiveness maximum. We then recorded the distinctiveness of the final viewpoint
(an attractive viewpoint) with respect to all five measures. This was repeated for all starting
orientations 15° apart.

A similar method was used to evaluate rotational stability. The same procedures were used, and
the final orientations (attractors) after each search were recorded. If the method is rotationally
stable, we expect the camera to home in on one of a small set of distinctiveness maxima,
regardless of starting orientation. For our purposes, if two final orientations were within ey of
each other, they were considered the same. We measure stability in two ways. First, we look at
the total number of attractors found (A); second, we check the minimum number of attractors
needed to account for half of the starting orientations (M). For a very stable method, both
of these numbers should be small, relative to the number of tests run (36). But if M is small,

Search . InLab Door
Trisection Attractors 13 15
Main attractors 4 5
Average steps 9 9
Hillclimbing | Attractors 14 16
Main attractors 4 4
Average steps 12 11

Table 6: Rotational stability and efficiency results. Main attractors are the minimal set at-
tracting most viewpoints.
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InLab

Door

Figure 10: The images at the three most frequent trisection-attractive viewpoints for InLab
and Door in the rotation test.

then even if a few starting orientations lead to anomalous attractors, the method can still be
considered usually stable.

Tables 5 and 6 summarize the results of the distinctiveness and rotational stability tests. The
stability results show a reasonable level of stability, in that the majority of starting orientations
go to one of 4 or 5 attractors. On the other hand, the total number of attractors is over a
third of the number of tests performed. This can probably be attributed to two features of
our testing methods. First, only attractive orientations within 10° were considered the same.
However, with the camera’s 36° field of view, viewpoints up to 18° apart will be matchable
(using offset matching, see section 2.2.2); the ‘within ey’ criterion, while justifiable, is perhaps
too strict. Second, we would expect larger values of Vp and smaller values of ey to produce
more stable attractors, since (a) it is less likely for an attractor to be cut off from the initial
interval, and (b) local maxima are found more precisely. There is clearly a tradeoff between
search time required and quality of the solution.

In terms of distinctiveness, the first feature of the data which is noticed is the significant
difference between distinctiveness of InLab and Door attractors. This can be explained by the
fact that the doorway looks out on a hallway, thus many of the attractors (being local maxima)
are non-descript views of the hall. If the values are compared against the plots in Figure 7, the
distinctiveness of most attractors are clearly reasonable, and often excellent. This argues that
the local maxima found by our method tend to be truly distinctive. Another thing to notice is
that the distinctiveness measures are sometimes complementary, in that attractors distinctive
in, say, SGD, are less distinctive in ESTR, and vice versa.
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Search Direction | Ocm 10cm 20cm  30cm  40cm
Trisection Forward 46° 47° 48° 60° 62°
Transverse | 47° 61° 48° 56° 45°
Hillclimbing | Forward 65°  50° -161° 75° —
Transverse | 95° 30°  30° 180° —

Table 7: Orientations of the attractors in the translational stability test.

¥ i

Ocm 10cm 20cm 30cm 40cm

(b)

Figure 11: Images of the attractive viewpoints for the translational stability test, using trisec-
tion. (a) Forward sequence. (b) Transverse sequence.

Translational stability

The other sort of stability is with respect to viewpoint translation. We tested stability for
forward and transverse translation (with respect to the starting viewing direction) separately.
For each direction, we ran the trisection algorithm at 5 positions at 10cm intervals. A trans-
lationally stable method should give rise to similar attractive viewpoints and matchable views
at different positions, in the same way as rotational stability implies for different angles. The
results are summarized in Table 7. The data show a fair measure of attractor stability for tri-
section over a translation range of 40cm. While two attractors seem to have emerged, looking
at Table 7, the strictness of the ‘same attractor’ criterion can be seen to have an effect, as the
images in Figure 11 show. The images in each sequence, while not identical, show nearly the
same scene; nearly enough to match at a signature offset. Thus trisection appears to produce
reasonable translational stability. However, hillclimbing does not fare nearly as well, as is clear
from Table 7. This is because the method uses a narrow window for deciding when a point
is a maximum, and hence is more sensitive to low-amplitude distinctiveness oscillation (visible
in Figures 8 and 9). This means that a small change in starting orientation can cause the
method to miss a previously-found maximum. This reflects a more general problem, that of
distinctiveness smoothing. Ideally, we would like to perform a low-pass filter on distinctiveness
to produce a truly stable method; however, this is difficult to achieve on-line. This problem
definitely requires further study.
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[[ Maximum | Average | Not amb.
110 38% |20 7% 14
21 ™% (27 1% 17

Starting
Attractive

Table 8: Results of the ambiguity test. Shown are the numbers of images matched in the
corpus by images at all starting orientations (at 20° intervals) and at the resultant attractive
orientations. We show the maximum number of images matched in each set, the average over
the set, and the number of views in the set (18 images) not judged ambiguous (by the < 5%
criterion). We also give the percentage of the image corpus (291 images) matched.

Ambiguity

We also tested trisection attractors’ ambiguity directly, using the image corpus. The camera
was configured with a 25mm lens and set at a height of 110cm (to match the corpus). The
camera on the pan-tilt head was placed at Door, which was also a position used in the gen-
eration of the image corpus. A rotational test suite at intervals of 20° was performed, and
the attractive viewpoints were matched to the corpus, using all five measurement functions,
to directly evaluate their ambiguity. The results are given in Table 8. The difference is quite
striking; the average regular viewpoint is ambiguous, while the average attractor is not. In fact,
only one attractor was judged to be ambiguous; at least one is to be expected in a doorway, as
noted above. This reinforces the conclusion in section 4.2.1 that our distinctiveness metrics are
good predictors of ambiguity.

5 Discussion

Image-based place recognition has several benefits over reconstructionist approaches. In par-
ticular, the method of image signatures is simple and easy to apply, generally applicable to all
sorts of environments, computationally inexpensive, and is easily integrated with other recog-
nition cues. When used with appropriate measurement functions, image signatures support
image-based recognition over a range of viewer positions and orientations. The qualitative per-
formance of different measurement functions can be evaluated by the twin metrics of stability
and distinguishability, so that appropriate measures can be found for particular environments.
Signatures derived from different measurements can be used in combination for matching, to
improve correctness; ambiguity filtering can also be applied.

We have also identified a difficulty for any image-based recognition framework—the recognition
problem, which consists of two coupled subproblems: the ambiguity problem and the stability
problem. We deal with this by problem using viewpoint motion. Scene ambiguity, at least in our
indoor environment, appears to be reasonably well predictable from image structure by simple
distinctiveness metrics. Using such metrics, a local search procedure can be used to efficiently
find locally distinctive viewpoints. Most of the time, these locally distinctive viewpoints are
also unambiguous, and hence useful for recognition. It also turns out that there are not many
such attractive viewpoints, and so the method ensures a certain amount of viewpoint stability.
This improves recognition in that the same viewpoint will usually be found each time a place
is visited, easing the necessity of storing very large numbers of image signatures.

Future work

One area which needs to be addressed in the future is the development of a comprehensive
basis for measurement function design, particularly in the analysis of measurement stability,
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distinguishability, and independence. More principled methods of combining information from
different measurement types would also be desirable. Decision theoretic notions may be useful
for trading off the cost of matching against multiple measurements and the gain accrued.

Our methods have not yet been applied directly to mobile robot mapping and place recognition.
In the future, we intend to integrate signature-based place recognition with robust map-learning
[9] on a mobile robot. In addition to place recognition, we believe that image signatures can
be used for image-based homing, as a generalization of Nelson’s work [23]. If the robot can
recognize a place from afar, it should be able to use perceptual feedback to home to it. In
practice, efficient hypothesis generation is crucial, so effort needs to be put into developing
efficient indexing methods for finding plausible matches.

There are also some important problems here which we have not yet addressed. Chief among
these is the fact that image-based place recognition assumes that the world is visually unchang-
ing. There is some robustness to small changes through coarse representation and imprecise
matching, but the real world does change on a large scale. The best way in which to address
this problem is to integrate different forms of perceptual representation with image signatures.
If this is done, then inconsistencies between different representations of a scene indicates things
that have changed; the system can then ignore or compensate for the changed portion of the
scene. Another area for further work is extension of the method to deal with multiple environ-
ments. The measurement functions we developed are appropriate for some indoor environments
(particularly office buildings), but will probably not be as useful in outdoor environments or
even very different indoor environments (eg, malls). Hence there must be work done on devel-
oping a larger set of measurement functions, and determination of the conditions under which
each is applicable. In addition, we would like a truly autonomous robot to be able to decide
which measurement functions to use in a given situation, based on its sensor readings. This may
be doable by using a comparative analysis of the signatures produced by different measurement
functions.
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