Mutation Analysis
Timothy A, Budd, Richard J. Lipton,
Richard A. DeMillo, and Frederick G. Sayward

Research Report #155

April 1979

Supported in part by the Office of Naval Research under Grant
N00014~75-C-0752, the Army Research Office under Grant
DAAG 29-78-G-0121, and the National Science Foundation under

Grant MCS-780-7291.

Mutation Analysis

- Timothy A. Budd
Richard J. Lipton

Computer Science Division
University of California,
Berkeley, CA 94720

Richard A. DeMillo

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

Frederick G. Sayward

Computer Science Department
Yale University
New Haven, CT 08520

ABSTRACT

A New type of software test is introduced, called mutation
analysis. A method for applying mutation analysis is described,
and the results pof several experiments to determine its
effectiveness are given. Finally it is shown how mutation analysis
can subsume or augment many of the more traditional program
testing techniques.

1. Introduction

Traditionally, program testing has been an ad hoe technique done
by all programmers: the programmer creates test data which he intui-
tively feels captures the salient features of the program, observes the
program in execution on the data, and if the program works on the
data (i.e., passes his test) he then concludes the program is correct.
Just as most programmers have tested programs in this manner, most
programmers have also deemed to be correct programs which were
indeed incorrect.

Modern testing techniques attempt to augment the programmer’s
intuition by providing guantitative information on how well a program
is being tested by the given test data. Certainly the sheer number of
test cases is not sufficient to significantly increase our confidence in
the correct functioning of a program. If all the test cases exercise the
program in roughly the same way then nothing has been gained over a
smaller number of executions. The key idea of modern testing tech-
niques is to exercise the program under a variety of different cir-
cumstances, thereby giving the programmer a greater confidence in
the correct functioning of the software component.

-2-

Several popular testing techniques use an idea called covering
measure. Examples of covering measures are: the number of state-
ments executed, number of branch outcomes taken, or the number of
paths traversed by the test cases. Test data with high coverage meas-
ures then exercise the program more throughly (according the the cri-
terion) then ones with low measure.

In this paper we will discuss a new type of testing method, pro-
gram mutation, which differs significantly from those previously men-
tioned. Numerous theoretical and empirical studies [1,2,4,5] indicate
that data satisfying this test criterion often perform significantly
better in discovering errors and validating programs then data satisfy-
ing other criterion. In many cases, the new test will actually subsume
the goals which have been earlier investigated.

2. Description of the Method

Mutation analysis starts with one important assumption whieh is
surprisingly not often recognized:

experienced programmers write programs which are either
correct or are aimost correct.

(one manifestation of this is the common programmers joke that the
code is always ""90%" finished.)

The mutation method can be explained as follows: Given a program
P which performs correctly on some test data T, subject the program
to a series of mutant operators, thereby producing mutant programs
which differ from P in very simple ways. For example, if

I=1+1
is a statement in P, then

=1-1
I=1+2
I=J+1

are all simple changes which lead to three mutants of P.

The mutant programs are then executed on T. If each mutant pro-
gram produces an answer which differs from the original on at least
one test case, then the mutation test for P is passed. If, as is more
likely, some of the mutants produce the same answers as the original
program on all the test cases submitted, then either

1) the mutant programs are equivalent to P

2) the test data T is inadequate for passing the mutation test and
must be augmented.

In this case the original program must then be examined with the
list of live mutants in order to derive test data on which some or all of
the remaining mutants will fail. The degree of testing is then measured
in terms of the number (or percentage) of mutants which have been
eliminated by the test data.

As an intuitive aid one can think of the mutation system as pro-
posing alternatives to the given program and asking the programmer
for reasons, in the form of test cases, as to why the alteratives are not
just as effective as the original program in solving the given task. This
then insures that the program is correct relative to small perturba-
tions in its structure.

-3-

At first glance, however, it would appear that a program and test
data which passed this test might still contain some complex errors
which are not explicitly mutations of P. To this end there is a coupling
¢ffect which states:

test data on which call simple muianis fail is so sensilive fo
changes in the program that it is highly likely that all complex
mutants must also fail.

By complex mutant we mean the transformation which takes the
original incorrect program into the presumed correct version. Since
therefore any such correct program will be differentiated from P, if P
truly executed correctly on T there can be no complex mutants, hence
P is correet.

Several experiments substantiating the coupling effect have been
conducted[1,4]. Some of these will be described in the following sec-
tions. The DAVE group [15,18] at the university of Colorado have also
observed that the ability to detect simple errors is often useful in
insuring against quite complex errors. The types of simple errors con-
sidered in mutation analysis is, however, much more extensive then
that considered by DAVE.

Constant Replacement {+ 1)

Scalar for Constant Replacement

Source Constant Replacement

Array Reference for Constant Replacement
Scalar Variable Replacement

Constant for Scalar Replacement

Array Reference for Scalar Replacement
Comparable Array Name Replacement
Constant for Array Reference Replacement
Scalar for Array Reference Replacement
Array Reference for Array Reference Replacement
Arithmetic Operator Replacement
Relational Operator Replacement

Logical Connector Replacement

Unary Operator Removal

Unary Operator Replacement

Unary Operator Insertion

Statement Analysis

Statement Deletion

Return Statement Replacement

Goto Statement Replacement

Do Statement Replacement

figure 1

3. The System

A system has been constructed which performs mutation analysis
on sets of subroutines written in ANSI FORTRAN. The system is interac-
tive and iterative, so that the user presents the system with a program
and an initial test set. After constructing and executing each mutant
serially the system responds with summaries and reports on the
number and type of mutants which remain (i.e. which produced the
same result as the original program.)} The user can then augment the

-4 -

test data set and reexecute the remaining mutants on the new test
cases. This process can continue until the desired level of testing is
attained.

The mutant operators used in the current system are shown in
figure 1. The names are fairly self explanatory; for example, the three
mutations given in section 2 are produced by arithmetic aoperator
replacement, constant replacement, and scalar variable replacement,
respectively.

Various versions of the mutation system have been in operation
for about two years [2], and in that period numerous experiments have
been conducted investigating the coupling effect and the utility of the
tool for program development and testing [5]. The next section details
some experiments performed which substantiate the coupling effect.

4. The Coupling Effect

We have already reported on an experiment f4] involving Hoare's
FIND program [9] that supplied empirical evidence for the coupling
effect. The experiment went as follows:

(1) We derived a test data set T of 49 cases to pass the mutation test.
(The large size of T was due to our inexperience.)

(2) For efficiency reasons, we reduced T heuristically to a test data
set T' consisting of seven cases on which FIND also passed the
mutant test.

(3) Random k-order mutants of FIND, k>1, were generated. (A k-order
mutant comes from k applications of mutant operators on the
program P.)

(4) The k-order mutants of FIND were then executed on T".

The coupling effect says that the non-equivalent k-order mutants of
FIND will fail on T". Note that step 2 biases the experiment against the
coupling effect since it removes the man-machine orientation of our
approach to testing. We would have been quite happy to find a coun-
terexample to the coupling eflect for the mutation system, since it
would have allowed us to improve the set of mutant operators. The
results of the experiment, though, gave evidence that we had chosen a
well coupled set of mutant operators for the pilot system:

K Number of k- order mutants Number successful on T”
2 21100 19
>2 1500 0

The 19 successful mutants were shown to be equivalent to FIND. We
concentrated on the k=2 case since, intuitively, the more one mutates
FIND the more likely one is to get a program that violates the com-
petent programmer assumption.

The major criticism of the experiment concerns step 3. Since the
first-order mutants that compose the k-order mutants are indepen-
dently drawn, the resulting k-order mutant is likely to be very unstable
and subject te quick failure, in contrast to the more desirable case
where the k-order mutant contains subtly related changes that
correspond to the subtle errors programmers find so hard to detect.

The current experiment on the coupling effect omits step 2 above
and make the following important change to step 3: '

-5-

(3) Randomly generate correlated k-order mutants of the program. By
correlated we mean that each of the k applications of mutant
operators will in some way be related to all of the others -- they
could for instance effect the same statement of P, or the same
variable name, or the same statement label, or the same constant.

Once again, if P passes the mutant test with test data T, the coupling
effect says that the correlated k-order mutants of P will fail on T.

For this experiment three programs are being used: FIND, STKSIM
and TRIANG. STKSIM is a program that maintains a stack and aliows
the standard operations of clear, push, pop, and top. TRIANG is a pro-
gram that, given the lengths of the three legs of a triangle, categorizes
the input as not representing a triangle or as representing a scalene,
isoceles or equilateral triangle [3]. The following is a summary of the
results of the experiment so far:

PROGRAM K=2 K=3 K=4
number successes number successes number sueccesses
FIND 3000 2 3000 O 3000 O
STKSIM 3000 3 3000 O 3000 O
TRIANG 3000 1 3000 1 3000 O

In all cases, the successful correlated k-order mutants have been
shown to be equivalent to the original program.

We have yet to find a non-trivial counterexample to the coupling
effect for our FORTRAN systems. The one successful 3-order mutant of
TRIANG deserves closer examination; indeed, we initially felt that it was
a non-equivalent mutant. The mutant is ‘

-8 -

SUBROUTINE TRIANG(I,J,K,MATCH)
INTEGER LJ,K,MATCH

MATCH IS OUTPUT FROM THE ROUTINE
IF MATCH = 1 THE TRIANGLE IS SCALENE
IF MATCH = 2 THE TRIANGLE IS ISOSCELES
IF MATCH = 3 THE TRIANGLE IS EQUILATERAL
IF MATCH = 4 IT IS NOT A TRIANGLE

aaoaQaoaoaa 0

IF (1.LE. 0 .OR. J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH = 0
IF (1.NE. J) GOTO 10
MATCH = MATCH + 1
10 IF (1.NE. K) GOTO 20
MATCH = MATCH + 2

MO :change statement to MATCH = MATCH + K

20 IF (J .NE. K) GOTO 30
MATCH = MATCH + 3

30 IF (MATCH .NE. 0) GOTO 100
IF (I+J .LE. K) GOTO 500
IF (J+K .LE. 1) GOTO 500
IF (I+K .LE. J) GOTO 500
MATCH = 1
RETURN

100 IF (MATCH .NE. 1) GOTO 200
IF (1+J .LE. K) GOTO 500

110 MATCH =2
RETURN

200 IF (MATCH .NE. 2) GOTO 300

M0,: change statement to IF (MATCH .NE. K)

IF (I+K .LE. J) GOTO 500
GOTO 110

300 IF (MATCH .NE. 3) GOTO 400 :
IF (J+K .LE. I) GOTO 500

MOg3: change statement to IF (J+1 .LE. 1)

GOTO 110
400 MATCH =3
RETURN
500 MATCH =4
RETURN

END

Note that the correlation is with respect to the variable K. The mutant
operators M0 and MO, produce incorrect mutants while 04 produces
a mutant equivalent to TRIANG. Yet the 3-order correlated mutant is
equivalent to TRIANG.

This makes a beautiful illustration of the part of the programming

-7 -

process that program mutation is trying to exploit. Using the constant
2 in the first two mutated statements is an arbitrary but coupled deci-
sion. Indeed, you can replace both instances of 2 by any positive con-
stant (or any variable whose value doesn’t change between the execu-
tion of the two statements) and you get an equivalent program --
replace only one instance and you get an incorrect program. In a
sense, the constant 2 in those statements is what would be called in the
terminology of formal logic a "bound variable."

5. An Analysis of How Mutation Works

In this section we will go through a detailed analysis concerning
how and why mutation analysis can be expected to uncover errors
under a wide variety of situations.

5.1. Trivial Errors

If one of the mutants considered is indeed the correct program
then of course the error will be discovered when an attempt is made to
eliminate that particular mutant. Alternatively if the errors in the ori-
ginal program act in a reasonably independent manner and each error
is individually captured by a single mutation then the errors will
almost certainly be detected.

Given the vast folklore about large systems failing for extremely
trivial reasons, the ability to detect such simple errors in indeed a
good starting place. However many errors do not correspond exactly to
the generated mutations, and multiple errors may interact in subtle
fashions. This being the case we must demonstrate that mutation
analysis possess many more powerful eapabilities.

5.2. Statement Analysis

Many programming errors manifest themselves by sections of
code being "dead", that is unexecutable, when they shouldn’t be. Also
many bugs are of such a serious nature that any data which executes
the particular statement in error will cause the program to give
incorrect results. These errors may persist for weeks or even years if
the error occurs in a rarely executed section of code.

Accordingly a reasonable first goal for a set of test cases is that
every statement in the program is to be executed at least once [12].

Various authors have presented methods to achieve this goal. Usu-
ally these methods involve the insertion of counters into the straight
line segments of code. When all counters register non-zero values every
statement in the program has been executed at least once.

In Mutation analysis we take a different approach to the same
objective. If a statement is never executed then obviously any change
we produce in it will not cause the altered program to produce test
answers differing from the original. However as a means of directing
the programmers attention to these errors in a more direct and unam-
biguous fashion a simpler approach is taken. Among the mutations
generated are ones which replace the first statement of every basic
block in turn with a call on a special routine which aborts whenever it
is executed. Obviously these mutations are extremely unstable, since’
any data which executes the replaced statement will cause the mutant
to produce an incorrect result, and hence to be eliminated. The

-8-

reverse, however, is also true. That is, if any of these mutants survive,
then the statement which the mutation altered has never been exe-
cuted. Hence an accounting of the survival of this class of mutations
gives important information about which sections of code have and
have not been executed.

Mutation Analysis goes even one step further. Some authors have
assumed that not executing a statement is equivalent to deleting it [8].
This is certainly not true. A statement can be executed but still not
serve any useful purpose. In order to investigate this another class of
mutants generated replaces every statement with a CONTINUE state-
ment (a convenient FORTRAN NO-OP.) The survival or elimination of
these mutations gives more information then merely whether the
statement is executed or not, it indicates whether or not the state-
ment is performing anything useful. If a statement can be replaced by
a NO-OP with no effect then at best it indicates a waste of machine time
and at worst it is probably indicative of much more serious errors.

Merely being able to execute every statement in the program is no
guarantee that the code is correct [7,10]. Problems such as coinciden-
tal correctness or predicate errors may pass undetected even if the
statement in error is executed repeatedly. In subsequent sections we
will show how mutation analysis deals with these problems.

5.3. Branch Analysis

Some authors have pointed out [12] that an improvement over
statement analysis can be achieved by insuring that every flowchart
branch is executed at least once. For example the following program
segment

A;

IF (expression)
THEN B;

C;

has the flowchart shown in figure 2.

figure 2

All three statements A,B and C can be executed by a single test
case. It is not true, however, that in this case all branches have been
executed. For example in this case the empty else clause branch (a)
has been ignored. '

-g9-

We can state the requirement that every branch be taken in an
equivalent manner by requiring that every predicate expression must
evaluate both TRUE and FALSE. It is this formalization which is used in
mutation analysis.

Among the mutants generated are ones which replace each rela-
tional expression and each logical expression by the logical constants
TRUE and FALSE. Qf course, like the statement analysis mutations
these are very unstable and easily eliminated by almost any data. But
if they survive they point directly and unambiguously to a weakness in
the test data which might shield a potential error.

By mutating each relation or logical expression independently we
actually achieve a stronger goal than that achieved by usual branch
analysis.

Consider the compound predicate
IF (A< B AND C < D) THEN

The usual braneh analysis method would only require two test cases to
test this predicate. If the test points were (A<B,C<D) and (A<B,C>D)
this would have the effect of only testing the second clause, and not the
first. This is because branch analysis fails to take into account the
"hidden paths" [4], implicit in compound predicates. (see figure 3).

F ALSE | FALSE TRwE

figure 3

In testing all the "hidden paths” mutation analysis would require
at least three points to test this predicate,. The three points
correspond to the branches (A> B,C>D),(A<B,C>D),and (A<B,C=<
D).

As an example of this consider the program shown in figure 4,
adapted from [8]. The program, which was also studied in {17], is
intended to derive the number of days between two given days in a
given year. The If statement which determines whether a year is a leap
year or not is, however, incorrect in this version. Notice that if a year
is divisible by 400 (year REM 400 = 0) it is necessarily divisible by 100
(year REM 100 = 0). Hence the logical expression formed by the

-10 -

conjunction of these two terms is equivalent to just the second term
alone. Alternatively, the expression year REM 100 = 0 can be replaced
by the logical constant TRUE and the resulting mutant will be
equivalent to the original. Since this is obviously not what the program-
mer had in mind the error is discovered.

PROCEDURE calendar (INTEGER VALUE day1, monthl, day?2, month2, year);
BEGIN
INTEGER days;
IF month2 = month1l THEN days = day? - dayl
COMMENT if the dates are in the same month, we can compute
the number of days between them immediately;
ELSE
BEGIN _
INTEGER ARRAY daysin (1.. 12);
daysin(1) := 31; daysin{3) := 31; daysin(4) := 30;
daysin(5) := 31; daysin{8) := 30; daysin(7) := 31;
daysin{8) := 31; daysin(9) := 30; daysin(10):= 31;
daysin{11):= 30; daysin{12):= 31;
IF ({year REM 4) = 0) OR
{((year REM 100) = 0 AND (year REM 400) = 0)
THEN daysin{2) := 28
ELSE daysin(2) := 29;
COMMENT set daysin(2) according to whether or not year
is a leap year ;
days := dayR + (daysin(month1) - day1);
COMMENT this gives {the correct number of days - days
in complete intervening months);
FORi:= monthl + 1 UNTIL month2 -1 DO
days := daysin(i) + days;
COMMENT add in the days in complete intervening months;
END;
WRITE(days)
END;

figure 4

5.4. DATA FLOW ANALYSIS

During execution a program may access a variable in one of three
ways. A variable is defined if the result of a statement is to assign a
value to the variable. A variable is referenced if the statement required
the value of the variable to be accessed. Finally a variable is undefined
if the semantics of the language do not explicitly give any other value
to the variable. Examples of the latter are the values of local variables
on invocation or procedure return, or DO loop indices in FORTRAN on
normal do loop termination.

Fosdick and Osterweil [16] have defined three types of data flow
anomalies which are often indicative of program errors. These
anomalies are consecutive accesses to a variable of the forms:

1) undefined and then referenced

-11 -

2) defined and then undefined
3) defined and then defined again

The first is almost always indicative of an error, even if it accurs
only on a single path between the place where the variable becomes
undefined and the reference place. The second and third, however, may
not be indications of errors unless they occur on every path between
the two statements.

Although the first type of anomaly is not attacked by mutations
per se it is attacked by the mutation system, which is a large interpre-
tive system for automatically generating and testing mutants. When-
ever the value of a variable becomes undefined it is set to a unique con-
stant undefined. Before every variable reference a check is performed
to see if the variable has this value. If the variable does the error is
reported to the user, who can take corrective action.

The second and third types of anomalies are attacked more
directly. If a variable is defined and not used then usually the state-
ment can be eliminated with no obvious change {by the CONTINUE
insertion mutations described in the last section.) This may not be the
case if, for example, in the course of defining the variable a function
with side effects is invoked. In this case the definition can likely be
mutated in any number of different ways which, while preserving the
side effect, obviously result in the variable being given different values.
An attempt to remove these mutations will almost certainly result in
the anomaly being discovered.

5.5. Predicate Testing

Howden [10] has defined two broad categories of program errors
under the names domain error and computation errors. The notions
are not precise and it is difficult with many errors to decide which
category they belong in. Informally, however, a domain error occurs
when a specific input follows the wrong path due to an error in a con-
trol statement. A computation error occurs when an input follows the
correct path but because of an error in computation statements the
wrong function is computed for one or more of the output variables.

After Howden's study was published, some researchers examined
the question of whether certain testing methodologies might reliably
uncover errors in these or other classification schemes. One method
proposed specifically directed to domain errors was the domain stra-
tegy of White, Cohen and Chandrasekaran [19].

The reader is referred to the references for a more complete
presentation of the technical restrictions and applications of their
method, but we can here give an informal description of how it works.

If a program contains N input variables (including parameters,
array elements and 1/0 variables) then a predicate can be described
by a surface in the N dimensional input space. Often the predicate is
linear, in which case the surface is an N dimensional hyperplane. Let us
consider a simple two dimensional case where we have input variables I
and J and the predicate in question is

I+2J5-3

The Domain strategy would tell us that in order to test his predi-
cate we need three test points, two on the line 1+2J=-3 and one a small

- 12 -

fiqusee 5

13

distence £ from the line. (see figure 5.}

Assuming a correct outcome from these tests what have we
discovered? We know the line of the predicate must cut the sections of
the triangle AB and BC. Since ¢ is quite small the chances of the predi-
cate being one of these alternatives is also small. Hence, although we
don’t have complete confidence that the predicate is correct, we do
have a much larger degree of confidence then we could otherwise have
attained.

To see how mutation analysis deals with the same problem we first
observe that it really is not necessary to have both A and C be on the
predicate line. If A is on the line and B and C are on opposite sides of
the line the same result follows. We now described how mutations
cause these three points to be generated.

As an intuitive aid one can think of mutation analysis as posing
certain alternatives to the predicate in question, and requiring the tes-
ter to supply reasons, in the form of test data, why the alternative
predicated would not be used just as well in place of the original.
These alternatives are constructed in various ways.

A number of the alternatives are generated by changing relational
operators. Changing an inequality operator to a strict inequality
operator, or vice versa, generates a mutant which can only be elim-
inated by a test point which exactly satisfies the predicate. For exam-
ple changing 1+2J=-3 to I+2J<-3 requires the tester to exhibit a point
for which 1+2J=-3, hence which satisfies the first predicate but not the
second.

A second class of alternatives involves the introduction of the
unary operator "twiddle" (denoted ++ or --). Twiddle is an example of a
non FORTRAN language construction used to facilitate the mutation
process. For an integer expression a, ++a has the meaning a+1. For
real expressions ++a means a + 1/100. --a has a similar meaning
involving subtractions.

Graphically, the effect of introducing twiddle is to move the pro-
posed constraint a small distance parallel to the original line {see
figure 8). In order to eliminate these mutants a data point must be
found which satisfies one constraint but not the other, hence is very
close to the original constraint line.

Finally a third class of alternatives are constructed by changing
each data reference into all other syntactically correct data refer-
ences, and each operator into all other syntactically correct operators.
The effects of these are related to the phenomenon of spoilers, which
are described in section 5.8.

The total effect caused by so many alternatives is to increase the
number of data points necessary for their elimination, hence by a pro-
cess similar to that of Cohen et al[19] to increase our confidence that
the predicate is indeed correct.

In order to more graphically illustrate the construction of these
alternatives and demonstrate their utility we will go through a small
example. The program in figure 7 was taken from [19]. No
specifications were given, but the program can be compared against a
presumably "correct” version. It was chosen here because it only
involves two input variables, hence the alternatives can be easily illus-
trated in a graphical manner.

9 Ny

- 14 -

READ LJ;

IFIsd+1
THENK=1+J-1;
ELSEK=2* + 1;

IFK21+1
THENL=1+ 1;
EISEL=J-1;

IFI=5
THENM=2*L+K; ~

ELSEM =L + 2*K -1;

WRITE M;

IF(I<I+0)

P (1T +2)
AF(I=T+10)
AF(II+1T)

F (13 + 1)
R (25T +1)
P (BT + 1)
P (I<1+1)
JFR(I£2+ 1)

10. IF (15 + 1)
11.IF(I £ T+ 5)
12.IF(-1<J + 1)
13.IF(++1 = J + 1)
14. IF(-1sJ + 1)
15. IF(I1<-T+ 1)
18.IF(1s ++J + 1)
17.IF(1 £ --J + 1)
18. IF(1 £ -(J + 1))
19. IF(I = ++(J + 1))
20. IF(1 £ --(J + 1))
21. IF{.NQOT. I J + 1)
22. IF(1<J-1)

23. IF(l £ MOD({J, 1))
24. IF(1 £ J/1)

25. IF(1 < J*1)

26. IF(1 < J**1)

27. IF(1 £ 1)

28. IF(1 < 1)

29. IFI< T+ 1)
30. IF(1 = J + 1)
31.IF(1 T+ 1)
32.IF(1>J + 1)
33.IF(127J+ 1)

CIORU D WN

2150

figure 7

figure B

-16_

As you can see the program has three predicates: IsJ+1, K=I+1
and I=5. We will illustrate only the effects of changing the first.

Figure 8 gives a listing of all the alternatives tried for the predi-
cate I £ J+1. Some of the choices are redundant, for example ++I <
J+1 and I £ --J + 1. This is because the mutations are generated in an
entirely mechanical way. It is our feeling that the processing time lost
because of redundant mutations is much less then the time which
would be required to eliminate them by preprocessing the alternatives.

The alternative predicates so introduced are illustrated in figure
9. The original predicate is the heavy line running from the lower left
to the upper right.

In the paper from which the example program was taken the
authors hypothesize that the program contains the following four
errors.

1) The predicate K 2 I+1 should be K 2 I+2.
2) The predicate I=5 should be I=5-J.

3) The statement L=J-1 should be L=I-2.

4) The statement K=I+J-1 should read

THEN IF (2*J < -5*1 -40)
THENK = 3;
ELSE K=I+J-1;

We leave it as an exercise to verify that the attempt to eliminate
the alternative K 2 I+2 must necessarily end with the discovery of the
first error. Note that his is not trivially the case since errors 1 and 4
can interact in a subtle fashion. In later sections we will show how the
remaining three errors are dealt with.

5.6. Domain Pushing

One very important mutation which was mentioned in the last sec-
tion is the introduction of unary operators into the program. These
unary operators are introduced wherever they are syntactically
correct according to the rules of FORTRAN expression construction. In
addition to the operators ++ and -- discussed in the last section, the
remaining unary operators are - {arithmetic negation) and a class of
non FORTRAN operators ! (absolute value), -! (negative absolute value)
and Z! {zero value). It is the last three which will be of most concern to
us in this section.

Consider the statement

A=B+C
in order to eliminate the mutants
A=1B+C
A=B+1IC
A=YB+C)

we must generate a set of test points where B is negative (so that B+C
will differ from !B+C), C is negative and the sum B+C is megativel.

1) Notice that if it is impossible for B to be negative then this is an equivalent mutation, that
is the altered program is equivalent to the original. In this case the proliferation of these al-
ternative can either be a nuisance or an important documentation aid, depending upon the

- 18-

Similarly negative absolute value insertion forces the test data to be
positive. We use the term data pushing for this process, meaning the
rnutations push the tester into producing test cases where the domains
satisfy the given requirements.

Zero Value is an operator defined such that Z! exp IS exp if the
value is non-zero, otherwise if the expression evaluates to zero the
value is an arbitrarily chosen large positive constant. Hence the elimi-
nation of this mutant requires a test set where the expression has the
value zero.

Multiply this process by every position where an absolute value
sign can be inserted and you can see a scattering effect, where the tes-
ter is forced to include test cases acting in various conditions in
numerous problem domains. Very often in the presence of an error this
scattering effect will cause a test case to be generated which will
demonstrate the error.

Consider again the example studied above. Figure 10 gives a list of
mutants and the accompanying graph shows the domains they push
into. As you can see even this simple example generates an extremely
large number of requirements.

LIF(I>J+1)
2.IF (1> 1+ 1)
.IF(I> KT+ 1))
4. K=(01+17J) - 1
5, K=(1+H1) - 1
B.K=1I+1J)-1
7.K=H{1+J)-1)
B.K=2*11+1
9. K=H{2*I)+1

10.K=1{2*1+ 1)
11.IF((K<I+1)
12.IF(K< !+ 1)
13. IF (K < 1(1 + 1))

14.L=1 + 1
15. L= (I + 1)
18.L=1 - 1
17. L=1(J - 1)
18. IF (11 ~ 5)

19. M=2*IL+K

20.M=12*L+K

Rl.M=2*L+ 1K

22.M=1(2*L+K)

2. M=IL+2*K-1

4. M=L+2*1K-1

25, M=L+12*K-1

26. M=1(L+2*K)-1
R7.M=1{L+2*K-1)

figure 10

Recall again that one of the errors this program was presumed to
contain was that the statement L=J-1 should have read L=I-2. One
effect of this error is that any test point in the area bounded by I = J+1

- 19 -

lo

-20_

and I = 1 will be computed incorrectly. But it is precisely this area that
mutants 8, 9 and 10 push us into. This means that this error could not
have gone undiscovered using mutation analysis.

This process of pushing the programmer into producing data satis-
fying some criterion is also often accomplished by other mutations.
Consider the program in figure 12, which is based on a program by
Naur[14], and has been previously studied in the literature [7].

alarm := FALSE
bufpos := 0;
fill := 0;
REPEAT
incharacter{cw);
IF cw = BL or ecw = NL
THEN
IF fill + bufpos £ maxpos
THEN BEGIN
outcharacter(BL);
END
ELSE BEGIN
outcharacter(NL);
fill := 0 end;
FOR k := 1 STEP 1 UNTIL bufpos DO
outcharacter{buffer[k]);
fill := fill + bufpos;
bufpos := 0 END
ELSE
IF bufpos = maxpos
THEN alarm := TRUE;
ELSE BEGIN
bufpos := bufpos + 1;
buffer[bufpos] := cw END
UNTIL alarm OR cw = ET

figure 12

Consider the mutant which replaces the first statement FILL:=0
with the statement FlLl:=1. The effect of this mutation is to force a
test case to be defined in which the first word is less then MAXPOS
characters long. This test case then detects one of the five errors in
the program [7]. The surprising thing is that the effect of this muta-
tion seems to be totally unrelated to the statement in which the muta-
tion takes place.

5.7. Special Values Testing

Another form of testing which has been introduced by Howden[11],
is called special values testing. Special values testing is defined in
terms of a number of "rules", for example

1. Every subexpression should be testing on at least one test case
which forces the expression to be zero.

2. Every variable and subexpression should take on a distinct set of
values in the test cases.

That the first rule is enforced by the zero values mutations has
already been discussed in the last section on domain pushing.

-21 -

That the second rule is important is undeniable. If two variables
are always given the same value then they are not acting as "free vari-
ables" and a reference to one can be universally replaced with a refer-
ence to the second. In fact this is exactly what happens in this case,
and the existence of these mutations enforces the goals of the distinet
values rule.

A slightly more general method of enforcing this goal can be con-
structed as follows: A special array exactly as large as the number of
subexpressions computed in the program is kept, with two additional
tag bits for each entry in this array. Initially all tag bits are off, indicat-
ing the array is uninitialized. As each subexpression is encountered in
turn the value at that point is recorded in the array and the first tag
bit is set. Subsequently when the subexpression is again encountered if
the second tag bit is still off the current value of the expression is com-
pared against the recorded value. If they differ the second tag bit is
set. Otherwise no change is made.

In this fashion by counting those expressions in which the second
tag bit is OFF and the first ON one can infer which subexpression have
not altered their value over the test case executions, and hence one
can construct mutations to reveal this. This method is similar to one
used in a compiler system by Hamlet[8].

5.8. Coincidental Correctness

We say the result of evaluating a given test point is coincidentally
correct if the result matches the intended value in spite of the fact
that the function used to compute the value is incorrect. For example
if all our test data results in the variable I having the values 2 or O,
then the computation J = 1*2 could be coincidentally correct if what
was intended was J = I1**2.

The problem of coincidental correctness is really central to pro-
gram testing. Every programmer who tests an incorrect program, and
deems it to be correct, has really encountered an incidence of coin-
cidental correctness. Yet with the exception of mutation analysis no
testing methodology in the authors knowledge deals directly with this
problem. Some researches even go so far as to state that the problems
of coincidental correctness are intractable [19].

In mutation analysis ceoincidental correctness is attacked by the
use of spoilers. Spoilers implicitly remove from consideration data
points for which the results could obviously be coincidentally correct,
in a sense "spoiling" those data points. For example by explicitly mak-
ing the mutation J=1*2 => J=1**2 we spoil those test cases for whichI =
0 or I = 2, and require that at least one test case have an alternative
value.

Using again the example program introduced above, figures 13
and 14 show the spoilers and their effects associated with the state-
ment M=L+2*K-1. Notice a single spoiler may be associated with up to
four different lines depending upon the outcomes of the first two predi-
cates in the program. Pictorially, the effects of spoilers are that within
each data domain for each line there must be at least one test case
which does not lie on the given line. In broad terms the effects of this
are to require a large number of data points for which the possibilities
of coincidental correctness are very slight.

22

1. M=(L+1*K)-1
2.M=(L+3*K)-1
3 M=(0+2%)-1
4. M=(J+2%)-1
5 M= (K+2%K)-1
8. M= (L+2%)-1
7.M=(L+2%)-1
8. M= (L+2%)-1
9. M=(L+I*K)-1
10. M= (L+J*K) - 1
11.M=(L+K*K) -1
12.M=(L+L*K)-1
13. M=(L+2%K) -1
14. M= {L+2*K) -1
15.M=(L+2*K)-K
16. M= (L+2%K)-L
17.M={1+4+2%K) - 1
18.M=(2+2*K) -1
19. M= (5+2*K) -1
20. M= (L+2*1)-1
21. M= (L+2%2)-1
22. M= (L+2*)-1
23.M=(L+5%)-1
P4. M=(-L+2%)-1
25. M ={(L+-2%K)-1
26.M=(L+2*%-K)-1
7. M=(L+2*-K)-1
28.M=-(L+2%K)-1
29. M = - ((L + 2*K) - 1)
30.M=(L+2+K)-1
31.M=(L+2-K)-1
32.M = (L + MOD(RK))-1
33.M=(L+2/K)-1
34. M= (L+2%*K)-1
35.M=(L+2) 1
3. M=(L+K)-1
37.M=L-2%K-1
38. M = (MOD(L,2*K)) - 1
39. M =L/2%K- 1
40. M = L*2*K - 1

41. M = L**(2*K) - 1
42. M=L-1

43. M = (2*K) - 1

44. M=1L+ 2% + 1
45. M = MOD(L + 2%K,1)

46. M = (L + 2*K) /1
47. M = (L + 2*K)*1
48. M = (L + 2*K)**1
49. M = (L + 2*K)
50. M =

figure 13

Rl 2nng

Q/

- 23 -

oS

N\ %

Y/

24 -

for R1 =0 by 1 to N begin
RO <- a{R1)
for R2 = R1+1 by 1 to N begin
if a(R2) > RO then begin
RO <- a{R2)
R3 <-R2
end
end
R2 <- a(R1)
a(R1) <- RO
a(R3) <-R2
end

figure 15

Often the fact that two expressions are coincidentally the same
over the input data is an indication of program error or poor testing.
For example the sorting program shown in figure 15, taken from a
paper by Wirth[20], will perform correctly for a large number of input
values. If, however, the statements following the IF statement are
never executed for some loop iteration it is possible for R3 to be
incorrectly set, and an incorrectly sorted array may be produced.

By constructing the mutant which replaces the statement a(R1) «
RO with a{R1) « a(R3) we point out that there are two ways of defining
RO, only one of which is used in the test data. Therefore the error is
uncovered.

5.9. Missing Path Errors

As identified by Howden [10], we can say a program contains a
missing path error if a predicate is required which does net appear in
the program under test, causing some data to computed by the same
function when really different functions are called for. These missing
predicates can really be the result of two different problems, however,
so we might consider the following definitions.

A program contains a specificational missing path error if two
cases which are treated differently in the specifications are incorrectly
combined into a single function in the program. On the other hand a
program contains a computalional missing path error if within the
domain of a single specification a path is missing which is required only
because of the nature of the algorithm or data involved.

As example of the first type of path error is error number four
from the example in section 5.5. Although this error might result from
a specification, there is nothing in the code itself which would give any
hint that the data in the range 2*j<-5*-40 is to be handled any
differently then given in the test program.

For an example of the second class of error consider the subrou-
tine shown in figure 16, adapted from [13]. The inputs are a sorted
table of numbers and an element which may or may not be in the table.
The only specification is that upon return X{LOW) £ A < X{HIGH), and
HIGH <= LOW + 1. The problem arizes if the program is presented with
a table of only one entry, in which case the program loops forever.

Nothing in the specifications state that a table with only one entry
is to behave any differently from a table with multiple entries, it is only

- 25_

SUBROUTINE BIN(X,N,A,LOW,HIGH)
INTEGER X(N),N,A,LOW,HIGH

INTEGER MID

LOW=1

HIGH=N
6 IF(HIGH - LOW - 1) 7,12,7
12 STOP

7 MID = (LOW + HIGH) /2
IF (A - X(MID)) 9,10,10
9 HIGH = MID
GOTO 8
10 LOW = MID
GOTO 8
END

figure 16

because of the algorithm used that this must be treated as a special
case.

Problems of the second type are usually caused by the necessity
to treat certain values, for example negative numbers, differently from
others. This being the case the process of data pushing and spoiling
described in sections 5.8 and 5.8 will often lead to the detection of
these errors. So it is in this case where an attempt to remove either of
the following mutants will cause us to generate a test case with a single
element.

IF (HIGH - LOW - 1) 12,12,7
MID = (LOW + HIGH) - 2

Since mutation analysis, like most other testing methodologies,
deals only with the program under test (as opposed to dealing with the
specifications of those programs), the problems of detecting
specificational missing path errors are much more difficult. Since
mutation analysis causes the tester to generate a number of data
points which exercise the program in a multiplicity of ways our
chances of stumbling into the area where the program misbehaves are
high, but are by no means certain.

So it is with the missing path error from the example in section
5.5. It is possible to generate test data which passes our test criterion
but which fails to detect the missing path error. We view this not as a
failure of mutation analysis, however, but as a fundamental limitation
in the testing process. In the authors view the only way that these sorts
of problems have a hope of being eliminated is to start with a core of
test cases generated from the specifications, independent of the pro-
gram implementation. This core of test cases can then be augmented
to achieve goals such as those presented by mutation analysis. Some
methods of generating test data from specifications have been dis-
cussed elsewhere [7,17].

5.10. Equivalent Mutants

As was mentioned in a footnote in section 5.8, if a variable is con-
strained to being strictly positive {which is often the case) then insert-
ing an absolute value sign before each reference to that variable will

- 26 -

generate an alternative program which is in all respects functionally
identical to the original. A mutation which preduces such an equivalent
program is called an equivalent mutant.

Almost any of the mutation types used in the current system can,
under the right circumstances, produce an equivalent mutant. It has
been observed empirically that with the exception of those mutations
produced by inserting absolute value signs (which often vary widely)
the number of equivalent mutants produced is usually 2-5% of the total
number of mutants.

In the current system no attempt is made to remove equivalent
mutants algorithmically, even though in a large number of cases it
would be possible to do so. The reason for this decision is because even
though equivalent mutants serve no purpose from the point of view of
test data analysis, they serve a very important role in error detection.

No mutant is ever declared equivalent except by an explicit com-
mand from the tester. In order to determine equivalence the tester
must often spend a considerable amount of time examining the code,
and in the process obtain an intimate knowledge of the algorithm and
how it works.

Often a number of mutants can be labeled equivalent on the
strength of a single insight. Example are recognizing that a variable is
by necessity positive during part of the program, or recognizing that in
a binary search algorithm it doesn’t matter how you choose the middle
element as long as it is between the lower and upper bounds.

The fact is, however, that in attempting to remove equivalent
mutants we are forcing the programmer into a very careful review of
the program. How many errors are discovered in this manner is more
of a question in psychology then in program testing, but our experi-
ence has been that often such a careful review will uncover very subtle
errors which would be difficult to discover by other means.

As an example of this proeess, we must admit that no mutation in
the current system would force the tester into discovering the second
error in the program in section 5.5. (Notice that if J had been refer-
enced in the seection of code fellowing the I=5 predicate then the pro-
cess of data pushing would have revealed this error.} None the less the
following mutants are equivalent for the given program. An examina-
tion of these would force the tester almost directly into a review of the
area of code containing the bug. And the search would be intensified if
the tester realized these changes would not be equivalent in the
corrected program.

M = 2%L + K
M =124 + K
M = 2*L + IK
M = 1(2*L + K)

6. Discussion

After an extended exposition of the mechanics of mutation
analysis we are now in a position to take a more global look into why
this all works. It seems to us that there are twe general arguments
which can be put forth, summarized as follows:

-27.—

1) With respect to error detection, it is not that the mutants them-
selves capture the errors which may be in the program, it is
rather that the mutation task forces the tester into finding data
which exercises the program in a multiplicity of ways, and this
exercising is what is likely to uncover the errors.

2) The goal of mutation analysis is difficult to attein (this is
confirmed by more then two years experience with this process),
and by setting a difficult goal we force the programmer into a very
careful review of the programs. Independent of all other claims
made by this method, merely forcing the programmer to spend an
extended period of time reviewing the coded product will often
lead him into discovering errors in logic or design.

Of course we would hope that the first is the dominant reason for
discovering errors in programs, and indeed the studies we have so far
conducted indicate this. We mention the second, however, because it is
often significant in real applications, and is a fact not usually noticed
by automated tool designers.

As we saw in section 5.10, the mutations implemented in the
current system are not sufficient to detect all programming errors.
This we view not as a weakness in the methodology but in the mutation
operators used. As we collect more and more examples of such errors
we can look for patterns in the types of errors which can go undetected
by our system. By observing these patterns we may find new mutant
operators which will detect these errors. In this manner the system
may be continually improved, and our understanding of the program-
ming process itself increased.

We have also observed that as the complexity of programs
increases, the number of "building blecks" from which mutations are
constructed grows? and the chances for errors like those just
described to go undetected actually diminishes. This is perhaps a
novelty- a method which works better on complex programs then on

simple ones !

Acknowledgements

We wish to thank Alan Acree, Jim Barns, Edie Martin, and Dan
St. Andre for their contributiorns to the program mutation
effort. ‘

2) the number of mutants gré)ws roughly proportional to the number of statements times the
number of unique data references in the program.

- 28 -

[1] T.A. Budd and R.J. Lipton, "Mutation Analysis of Decision Table Pro-
grams”, Proceedings of the 1978 Conference on Information Sci-
ences and Systems, Johns Hopkins University, 1978.

[2} T.A. Budd, R.J. Lipton, F.G. Sayward and R.A. DeMillo, "The Design
of a Prototype Mutation System for Program Testing", AFIPS 1978
NCC, pp 623-627.

[3] J.R. Brown and M. Lipow, "Testing for Software Reliability",
Proceedings of the 1975 International Conference on Reliable
Software.

[4] R.A. DeMillo, R.J. Lipton and F.G. Sayward, "Hints on Test Data
Selection: Help for the Practicing Programmer”, COMPUTER, Vol.
11,4. April 1978.

[5] R.A. DeMillo, R.J. Lipton and F.G. Sayward, "Program Mutation as a
Tool for Managing Large-Scale Software Development"”, ASQC
Technical Conference Transactions- Chicago.

[8] M. Geller, "Test Data as an Aid in Proving Program Correctness”,
Comm. ACM Vol. 21,5 May 1978 , pp 368-375.

[7] J.B. Goodenough and S.L. Gerhart, "Toward a Theory of Test Data
Selection", IEEE Transactions of Software Engineering, June 1975.

[8] R.G. Hamlet, "Testing Programs with the Aid of a Compiler", IEEE
Transactions of Software Engineering, SE3-4, July 1977.

[9] C.A.R. Hoare, "Algorithm 65: FIND", Comm. ACM 4,1 (April 1981),
pp. 321.

[10] W.E. Howden, "Reliability of the Path Analysis Testing Strategy",
IEEE Transactions of Software Engineering, September 1976.

[11] W.E. Howden, "An Evaluation of the Effectiveness of Symbolic Test-
ing", Software - Practice and Experience, Vol. 8,381-397(1978).

[12] J.C. Huang, "An Approach to Program Testing", ACM Computing
Surveys, September 1975.

[13] B.W. Kernighan, and P.J. Plauger, The Elements of Programming
Style, McGraw Hill, New York,N.Y., 1978 (2nd ed.)

[14] P. Naur, "Programming by Action Clusters"”, BIT, Vol. 9, pp 250-258,
1969.

[15] L.J. Osterweil and L.D. Fosdick, "Experience with DAVE- A Fortran
Program Analyzer", Proc. 1978 AFIP NCC, Vol 45, PP. 908-915.

[18] L.J. Osterweil and L.D. Fosdick, "Data Flow Analysis as an Aide in
Documentation, Assertion Generation, Validation, and Error Detec-
tion", Technical Report CU-CS-055-74, Department of Computer
Science, University of Colorado, Boulder, September 1974.

[17] T.J. Ostrand, E.J. Weyuker, "Remarks on the Theory of Test Data
Selection", Digest for the IEEE Workshop on Software Testing and
Test Documentation, Ft. Lauderdale, F1. 1978.

[18] R.J. Rubey, J.A. Dana, and P.W. Biche, "Quantitative Aspects of
Software Validation", IEEE Transactions of Software Engineering,
June 1975.

[198] L.J. White, E.I. Cohen and B. Chandrasekaran, "A Domain Strategy
for Computer Program Testing"”, Ohio State University Technical
Report OSU-CISRC-TR-78-4, 1978.

[20] N. Wirth, "PL380, a programming language for the 360 computer",
JACM, 15, 37-74 (1968).

[21] E.A. Youngs, Error Proneness in Programming, PhD Thesis, Univer-
sity of North Carolina, 1971.

