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Abstract

We introduce an optimization approach for solving problems in computer vision
that involve multiple levels of abstraction. Specifically, our objective functions can
include compositional hierarchies involving object-part relationships and specialization
hierarchies involving object-class relationships. The large class of vision problems that
can be subsumed by this method includes traditional model matching, perceptual
grouping, dense field computation (regularization), and even early feature detection
which is often formulated as a simple filtering operation. Our approach involves casting
a variety of vision problems as inexact graph matching problems, formulating graph
matching in terms of constrained optimization, and using analog neural networks to
perform the constrained optimization. We will show the application of this approach
to shape recognition in a domain of stick-figures and to the perceptual grouping of line

segments into long lines.
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1 Introduction

Optimization has been one of the more powerful and successful methods in many ar-
eas of computer vision. Examples include most of the work in relaxation labeling (see
[Hummel-83] for a review), the various uses of optimization in surface reconstruction
[Grimson-85, Terzopoulos-86] and optical flow computation [Horn-81,Anandan-88], some of
the early attempts at graph matching via template-spring models [Barrow-71,Ballard-82,
Fischler-73], and some of the recent formulations [Geman-84] of image restoration as a
stochastic optimization process.

Much of the past computer vision work involving optimization can be divided broadly
into three categories: (i) dense field computation typically involving a smoothness con-
straint, (ii) relaxation formulations, especially for edge and region labeling problems, and
(iii) simple model matching problems which are transformed into graph matching and
are solved using a type of “template-spring” approach. An attractive feature common
to all three classes of approaches is that they are easily amenable to “neural” network
implementation.

The most notable examples of the use of optimization for dense field computation are
the surface reconstruction algorithms [Grimson-85,Terzopoulos-86], the optical flow algo-
rithms [Horn-81,Anandan-88], and the shape-from-X algorithms — e.g., the shape from
shading technique of Horn [Horn-86]. For this class of techniques, which are referred to as
“regularization” techniques [Poggio-85), the input is usually a retinotopic map of low-level
measurements (involving image intensity and its various spatio-temporal derivatives), and
the output is another retinotopic map which is the dense field being computed. The op-
timization problem typically involves two terms which may be called the approximation
error and the smoothness error. The approximation error measures the amount of inconsis-
tency between the estimated dense field and the measured data, and the smoothness error
measures the amount of spatial variation in the dense field. Sometimes the smoothness
term is modified [Terzopoulos-86] to allow discontinuities in the field.

The relaxation approach for labeling has a long history in computer vision and in-
cludes the blocks world algorithms of [Waltz-75] and edge and region labeling algorithms
[Rosenfeld-76,Faugeras-81]. The problem is formulated typically as that of choosing a label




(from a discrete set of labels) for a set of objects so that certain compatibility constraints
between the labels of neighboring objects are satisfied. The edge and region labeling algo-
rithms are of particular interest to us, because they appear more readily amenable to an
optimization formulation. In fact, Faugeras and Berthod [Faugeras-81] provided an explicit
optimization formulation of the labeling problem. Later, Hummel and Zucker [Hummel-83]
unified a variety of relaxation algorithm into a single optimization framework, and provided
an extensive theoretical analysis of relaxation labeling.

The third class of approaches using optimization in vision has fewer examples. Fischler
and Elschlager [Fischler-73] proposed a template-spring model for matching an object,
represented as a graph, with image data. The nodes of the graph are the parts of the
object and the arcs between the nodes represent the constraints which the nodes must
satisfy. A function consisting of three types of terms is formulated to express the degree of
match between the model graph and the data. The three terms are a “template cost” which
measures the degree of mismatch between a model part and a piece of the data, a “spring
cost” which measures the degree to which a constraint between two model nodes is not
satisfied by the corresponding data nodes, and a “missing” cost, which penalizes for missing
as well as redundant nodes. Davis [Davis-79] used a similar formalism for solving a curve
matching problem. In their MSYS system, Barrow and Tenenbaum [Barrow-76] propose a
relaxation algorithm called M* (based on traditional heuristic search methods such as A*)
for the consistent labeling problem. This algorithm is somewhat more general in that it
combines a parallel relaxation algorithm with heuristic sequential search. Recently, von der
Malsburg and Bienenstock [von der Malsburg-86,von der Malsburg-88] have formulated a
graph matching problem in terms of optimization and have discussed its relevance for
pattern recognition. Although the search algorithm and the meaning of consistency differ
from technique to technique, the idea of translating the model matching problem into
a graph matching problem and constructing a functional indicating the degree of match
between model and data graphs is a common and recurrent theme.

Each of the three categories of approaches listed above are homogeneous in the sense
that all the objects and models involved are at a single level of abstraction. For ex-
ample, the surface interpolation schémes (even when they include explicit representation

of discontinuities) do not include explicit abstractions representing objects whose surface




characteristics may in fact determine the expected degree of smoothness. On the other
hand, the relaxation labeling (and the model matching) approaches rely on an unspecified
low-level algorithm that delivers the objects to be labeled. This low-level algorithm must
determine the objects by processing raw intensity data without benefit of the emerging
results of the labeling process. While it would seem highly beneficial to allow objects at
multiple levels of abstraction to simultaneously interact, surprisingly, none of the opti-
mization approaches used in computer vision appear to have done this.

In order to incorporate interactions involving objects at multiple levels of abstrac-
tion, it may be necessary to include hierarchical organization, as it is typically done in
non-optimization approaches to computer vision [Hanson-86]. Two types of hierarchical
organizations are important: compositional hierarchies involving object-part relationships
and specialization hierarchies involving object-class relationships. The advantage of hier-
archical organization is that it makes the search process involved in image interpretation
easier to express and more efficient. In this paper, we will introduce methods for obtain-
ing these improvements in programmability and efficiency by incorporating hierarchical

organizations into the optimization paradigm.

2 Casting Model Matching as Optimization

Our approach to the use of optimization in vision involves casting a variety of problems
as inexact graph matching problems and formulating the graph matching problem as the
minimization of an objective function. We are interested in analog neural network solu-
tions to this optimization problem. Many advantages of such networks, including speed,
parallelism, and biological plausibility have been noted [Hopfield-85,Poggio-85]. Network
formulations of vision problems involving multiple levels of abstraction have been pursued
by Ballard [Ballard-86] and others. We, too, are concerned with network formulations
of problems involving multiple levels of abstraction, but in the context of objective func-
tions for graph matching. The large class of vision problems that can be subsumed by
our method includes traditional model matching, perceptual grouping, dense field com-
putation (regularization), and even early feature detection which is often formulated as a

simple filtering operation.
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Figure 1: Graph Matching — The circles represent graph nodes, the solid lines graph
arcs and the dotted lines matches between nodes in two different graphs. The nodes 1,2,3
and 4 form a consistent rectangle.

2.1 Model Matching as Graph Matching

Consider the following problem of pure graph matching (see Figure 1). Given two graphs
each consisting of V nodes, let & (1 < a < N ) index the nodes of one of the graphs,
and 7 (1 < ¢ < N) index the nodes of the other. Let Gop be the connection matrix of
one of the graphs, i.e. G,3 = 1 if the nodes o and B are connected by an arc; otherwise
Gop = 0. Likewise g;; is the connection matrix of the other graph. A sparse match matrix
M (0 < M,; < 1), of dynamic variables represents the correspondence between nodes a
and ¢. Note that the entries in the graph connection matrices and those in the match
matrix represent the pointers that are typically used in symbolic graph matching, but the
numerical encoding has the advantage that it allows for concise expression of objective

functions.
A simple objective function for this match matrix just maximizes the number of con-

sistent rectangles[Hopfield-84a] (see Figure 1):

E(M) = =33 Gapgij MaiMg;. (1)

af ij

This expression may be understood as follows: Given nodes o and ¢, the match value M,




is to be increased if the neighbors of a match to the neighbors of i. If nodes 8 and j
are neighbors of o and i, respectively, (i.e., Gog = 1 and g¢;; = 1), then a nonzero Mg,
is evidence of such a neighborhood match, hence M,; should be increased. By symmetry,
a non-zero M,; causes an increase in Mp;. As shown in Figure 1, nodes 2 and 3 on the
model side and 1 and 4 on the data side form the corners of a “rectangle”. For a binary-
valued match matrix, E as defined in equation 1 merely counts the number of consistent
rectangles in the system. Thus minimizing F is the same as maximizing the number of
consistent rectangles.

Note that E as defined above can be trivially minimized by setting all the elements
of the match matrix to unity. However, to do so will violate the syntactical constraint of
having a one-to-one match between nodes. For the case at hand where the two graphs

have equal numbers of nodes, such syntactic constraints can be expressed as follows:
> My—1 =0
[23

ZMa,-—l =0. (2)

In addition, we may also require that the elements of the matrix be binary-valued, i.e.,
M,i(1 — My;) = 0. (3)

In summary, the graph matching problem can be expressed as the problem of minimizing

the objective function shown in equation 1, subject to the constraints given in equations 2
and 3.
A similar objective function for pure graph matching has been found independently

by von der Malsburg and Bienenstock [von der Malsburg-86]. Also, Cooper and Hollbach
[Cooper-87,Cooper-88,Feldman-88] have described a neural network expressing much the
same graph-matching strategy,

The transition from pure graph matching to model matching is achieved by first identi-
fying the graph G, as a model, and identifying g;; as the data. However, to complete the
transition the above graph needs to be augmented in a number of ways. To represent com-
plex visual objects, the nodes of the data graph must include quantitative parameters that

record information about shape, size, position, etc. In addition to checking the structural




similarity between model and data graphs, the matching process should also measure the
degree to which the data-side parameters satisfy the requirements imposed on them from
the model side. Since object recognition must be independent of transformations such as
translation, rotation, and scaling, parameters must be checked in a manner independent of
these transformations. Although it may be possible to precompute and store the parameter
checks in tables, geometric transformations (which typically occur in shape recognition)
are sufficiently complex, and the incoming data may vary over a sufficiently wide range,
that the table will be prohibitively large. This implies that the necessary arithmetic should
be done dynamically.

As discussed above, we also require that nodes on the data side must be capable of
representing objects at different levels of abstraction. To introduce the compositional
hierarchy, there must be nodes representing wholes and nodes representing parts, and a
special graph representing the relationship between parts and wholes. Since a single whole
is usually connected to several parts, the part-whole graph is restricted to be a tree (or
generally a Directed Acyclic Graph or DAG). Given a model node and a data node which
matches it, all nodes which represent the parts of the data node must find unique matches
among the parts of the model node.

In the simple graph matching example given above, the arcs between the nodes on the
data side were provided as input. However, in most recognition and grouping problems,
the dynamic determination of part-whole relationships and group membership is itself a
significant and unavoidable task. The matching process should compute such relationships
rather than assume them as input. The dynamic character of the grouping problem also
implies that a node representing a group may not even exist until at least some of its parts
have been determined. At that time the node may be allocated.

The motivation for incorporating specialization hierarchies includes the search efficiency
provided by using a discrimination tree to index the models, and the notational convenience
provided by the inheritance of properties from the general to the more specialized models.
In particular, the addition of a specialized model requires only the verification of new
properties not shared with the more general model; all the properties which are shared
with the general model are automatically inherited. In order to achieve this, our model

base should incorporate a specialization hierarchy (in the form of a tree or a DAG), the




data nodes should be allowed to simultaneously match to a model and at most one of its
specializations, and the match process should include property inheritance.

In summary, in order make the transition from pure graph matching to model matching
and perceptual grouping, we have identified the following design requirements: parameter
checks and arithmetic operations involving parameters, a compositional hierarchy with
nodes representing objects at different levels of abstraction, dynamic allocation, and a

specialization hierarchy with property inheritance.

2.2 Frames and Objective Functions

The introduction of compositional hierarchy to the pure graph matching problem is straight-
forward. We simply let the connection matrices represent part-whole relationships between
objects and denote them as INA,3 on the model side and as ina;; on the data side. The
need for dynamic allocation of part-whole relationships implies that the data side ina val-
ues cannot be predetermined. This means that ina;; will, in general, be a variable quantity.
Also, the dynamic determination of “groups” implies that the parameters of the data node
representing the group cannot be predetermined; hence, these parameters must also be
variable quantities.

The addition of variable parameters to the data nodes suggests a natural organization:
we package the parameters into “frames” which are bundles F; of variable parameters
Fis, where s indexes the different parameters (or “slots”) of a frame. Frames can be
regarded as representing visual abstractions or perceptual organizations in terms of a few
parameters. The process of dynamically employing a frame to represent an abstraction
is called “allocating” a frame. We will refer to such a network of frames and models as
“Frameville”. Our use frames is motivated by the conventional use of the same idea as
established in [Minsky-75,Fahlman-79]. Our frames contain slots for parameters, and are
connected to other frames via ina links. No information concerning the match criteria

or information about the control flow is included in the frame. Our match criteria are
expressed as objective functions while our control process is based on the particular choice

of a technique for minimizing the objective function.
We introduce the necessary modifications to the objective functions and constraints in

order to perform model matching with the aid of a Frameville example (Figure 2). The
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Figure 2: Example of Frameville rectangle rule.(a) Example object, a plane, consists
of parameterized parts fuselage and wings. (b) shows the rectangle relationship between
frames (triangles) representing a wing and the fuselage. The open circles symbolize dy-
namic variables that interact according to Equations 4 and 5. The ovals represent the

models (plane and wing) and the arc connecting them represents the INA relationship
between them.




rectangle shown in Figure 2b is the extension of the rectangle shown in the pure graph

matching problem (see Figure 1). Equation 1 becomes the “rectangle” rule:

E(M)==3_3% INAugina;; MoiMp;. (4)
aB ij

Whereas in the case of graph matching the sole syntactic constraint was that of one-to-
one matches between data and model nodes, with the introduction of the compositional
(and specialization) hierarchies, more complex syntactic constraints are needed. The new
syntactic constraints will be discussed below. In Figure 2b, the ovals on the left represent
the models while the triangles on the right are the data side frames. The circles inside the
triangles represent the parameters (slots) of the frame. The line connecting models 1 and
2 indicates the part-whole relationship between the two models. The circles labeled M
are the match variables. The circle labeled ¢na on the data side is the variable indicating
the dynamic part-whole relationship between the frames. We will use circles to denote
dynamic variables, ovals to denote models, and triangles to denote frames.

In this example, the parameters of the line representing the fuselage are also used as the
parameters of the entire plane. In Figure 2a, the parameters (24, y4) denote the coordinates
of the end point of that line, 64 represents the orientation of that line with respect to an
arbitrary but fixed coordinate system, and L, represents the length of that line. Similarly
(z9,yo,09, Lg) are the parameters of the line representing a wing of the plane. As in the
case of the pure graph matching, the number of consistent rectangles should be maximized.
This is expressed as the minimization of the term given above in equation 4.

Additionally, in order for the rectangle (1,4,9,2) to be consistent, the parameters Fy,
and Fy, should satisfy the criterion indexed by models 1 and 2. Such a constraint generally

results in the addition of the following term to the objective function:

> INAugina;;Mo;Mp;H**(Fy, Fa,...,Fj1, Fy,...) (5)

15,0,
where the term H*A(.,.) measures the deviation of the parameters of the data side frames
from what is demanded by the models. Equation 5 expresses a general principle of
Frameville, namely that objective functions can be model specific. This is an extension

of the usual use of distance metrics in pattern recognition. Here the metric to be used is
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Figure 3: Frameville sibling competition among parts. The match variables along
the dotted lines (M3 9 and M, ) are suppressed in favor of those along the solid lines (M,
and M3 7)

context dependent - indeed there is an entire database of metrics H*%. In the example
in Figure 2 we specifically require that the end point of the line representing the wing
should lie on the line representing the plane (fuselage), and that the wing should be at
some reasonable angle for being a wing, e.g., the relative angle of the wing to the fuselage
should be in the range (45 — 90°).

To illustrate the dynamic character of the matching variables M and the “allocation”
variables ina we include an additional part (the tail) to our example (see Figure 3). We
impose the additional constraints that a single frame (say 7) cannot match simultaneously
the wing (model 2) and the tail (model 3), and that a single model (say 2) cannot match
simultaneously two different frames (say 7 and 9) which are constituents of the same parent
frame (say 4). More generally, two distinct parts of the same whole on the model side must

match two distinct frames and vice-versa. This is expressed by the two equations given
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below:

IJ\MaﬁMai—ZinaﬁMﬁj = 0 (6)
J

ina;jMu; — > INAogMg; = O. (7)
8

Obviously, the correct assignment of the frames to models will be determined by the most
consistent parameter checks.

We illustrate the incorporation of a specialization hierarchy by modifying the example
shown in Figure 2 to the one shown in Figure 4. Specifically, two competing specializations,
“propeller-plane” and “jet-plane” are introduced, along with the corresponding specializa-
tions of the wing model. We incorporate a specialization hierarchy by introducing a link
on the model side called IS4,4, a binary matrix equal to unity if model 3 is a specialization
of a model a: A frame may simultaneously match to a model and at most one of its spe-
cializations. Thus, in this example we require that Frame 4, which matches to the plane
(model 1) should also match uniquely to one of jet-plane (model 4) and propeller-plane
(model 6). Similarly Frame 9, which matches the wing (model 2) also matches uniquely to
one of models 5 and 7 (prop-wing and jet-wing respectively). In general, matches between
I$A siblings compete for matches to a given frame; it is this competition which makes the

network act as a discrimination tree, and is expressed as

My — > ISA.sMpg; = 0. (8)
B

Note that property inheritance is automatically achieved by allowing the same frame to
match to a model and its specialization. The additional verification of properties specific
to the specialization is simply expressed as additional model-specific constraints involving
the parameters. For example, in order for a plane to specialize to jet-plane, its wing must
specialize to a jet-wing, which involves verifying more stringent constraints on the relative
angle of the wing to the fuselage (e.g., that it should in the range 45-60 degrees). We need
not reverify that the jet-wing satisfies all requirements for a general wing model, as this
is verified by the plane-wing consistency rectangle (i.e., the rectangle involving models 1

and 2 and frames 4 and 9).
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Figure 4: Frameville specialization hierarchy. The plane model specializes to a pro-
peller or a jet plane and correspondingly the wing model specializes to prop-wing or jet-
wing. Match variables Ms 4 and M,,4 compete as do M7g and Mso.
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Figure 4 also illustrates a general syntactic requirement on the IS4 and INA matrices. If,
for example, three of the four links of the “diamond” formed by the plane, wing, propeller,
and propeller-wing models are present then the fourth must also be present. Note that
this is a syntactic requirement on the constant matrices of the model side and not a rule
involving the dynamic variables.

Finally, we include the constraints that the match M and the ¢na variables should
stabilize to binary values (0 or 1), although they may take intermediate values during the

course of the optimization. Thus, we require the following:

My(l—My) = 0
z'na,'j(l—ina;j) = 0. (9)

The parameters Fj, should, however, be allowed to take real values; currently, we use an
analog variable to represent such parameters. This contrasts with the value-unit repre-
sentations used in [Ballard-86] and other traditional connectionist approaches. Our choice
is motivated by the fact that complex arithmetic relationships, such as those involved in
coordinate transformations, will be relatively inefficient if value-unit representations are

used.

3 Optimization Techniques

Having outlined some of the basic objective functions and constraints involved in our
optimization problem, we now consider various approaches for performing the optimization.
The optimization problem at hand can be stated as that of minimizing E(x), subject to

constraints
hi(x) = 0, Vi,1<i<m (10)

9i(x) < 0, Vj,1<j<p (11)

where x is the collection of all dynamic variables M, ina, and F}, in Frameville, and h; are
the previously listed syntactic constraints and g; express the restrictions on the ranges of

some of the dynamic variables.
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3.1 Unconstrained Optimization — Hopfield Networks

One can generally approximate a constrained problem as an unconstrained problem by
incorporating the constraints as additive “penalty” terms in the objective function. Each
constraint results in a term of the form c;h?(x) where ¢; is a constant. For example,
Equation 8 specifying the constraint of sibling competition in a specialization hierarchy

becomes the additive term
C (Mai — Z IS4.aﬁMﬁ,')2. (12)
B8

Thus the Frameville objective function to be minimized consists of the original rectangle
rule plus penalty terms to reflect constraints.

Hopfield [Hopfield-84b] has proposed a neural network implementation for unconstrained
optimization problems similar to ours. In [Hopfield-84b] the dynamic variables are identi-
fied with neurons; the architecture (connection weights between neurons) follows from the
form of the objective function; and a descent procedure specifies the update rule for each
neuron. As discussed above, constraints are incorporated as penalty terms in the objective
function [Hopfield-85], and, in addition, an “analog gain” term is added to constrain the
dynamic variables to lie within a certain range. This analog gain term leads to a network
which includes the familiar nonlinear sigmoidal mapping beween the internal state of a
neuron and its output.

For a Frameville version, the resulting equations of motion are

dui _ _OE
dt 9V
Vi = g(w) (13)

where E is the objective function, and, for notational convenience, the dynamic variables
M, ina, and F;; are identified with a singly subscripted variable V;, the output of the
ith neuron. Also, u; is the internal state of the ith neuron and g is a sigmoidal mapping
between V and u. Unlike the familiar quadratic objective functions used by [Hopfield-85]
and others, our objective functions are of higher order (> 2) as seen from the form of the
rectangle rule, Equation 4, and the constraints in Frameville. Also, the nonlinear analog

gain term applies only to M and ina.
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Finally, it should be noted that for neural nets in general, the objective function should
be of a certain simple form, typically polynomial combinations of dynamic variables, in
order that the objective function be easily mapped into a network. For Frameville, this
means that the parameter check functions H*® of Equation 5 should be of polynomial

form.

3.2 Constrained Optimization With Networks

The advantage of approximating the constrained optimization problem by an uncon-
strained problem is that it is possible to use descent methods to solve the unconstrained
problems, and such methods naturally give rise to network implementations. However,
sometimes we may wish to retain “hard” constraints, i.e., require that a constraint be
strictly satisfied. In some cases, this may even be a requirement; for example, when per-
forming arithmetic it may be useful to have intermediate variables which are related to
other variables via hard constraints (see line grouping example in section 4).

A common method to solve a constrained optimization problem with “hard” constraints
is the method of Lagrange multipliers. This involves the formulation of the Lagrangian

[Luenberger-84]
I(x, A1, Az, . ) = E(x) + Z Ajh; (14)
J

where ); are the Lagrange multipliers. The necessary conditions for a solution to the

original constrained problem are,

Vxl(x, Al, Az, . )
hi(x)

o
o o

(15)

A search technique, itself possibly an optimization, is generally needed to solve for these
conditions.

Recently, a network implementation [Platt-87] has been developed for a continuous
descent algorithm [Platt-87,Arrow-58] to solve the search problem given above. In addition
to the original set of dynamic variables, the descent algorithm also updates the Lagrange

multipliers. Thus, in Platt’s implementation there are nodes denoted V; in the network
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corresponding to each of the dynamic variables and other nodes denoted A; to the Lagrange

multipliers. The equations of the motion are,

dV; _ OE oh;
dt “av;-_JZA’av;-

d\i

p hi(V1, V2, . )- (16)

Platt [Platt-87] has demonstrated good results in applying this method to the solution
of the Travelling Salesman Problem and an analog decoding problem. Since some of our
examples involve the use of hard constraints, this may be a promising technique to consider.

Finally, while there are a number of traditional optimization techniques, such as the
conjugate gradient method, Newton’s method, and heuristic search techniques such as
Branch and Bound (e.g., [Barrow-76] uses this technique for a labeling problem), it is not

clear whether these techniques are suitable for network implementation.

4 Examples

4.1 Recognition of Simple Stick Figures - Stickville

An early implementation these ideas was object recognition in Stickville, a precursor to
Frameville that contained many of its important aspects, but involved quadratic optimiza-
tion instead of the higher order terms typical of Frameville. Stickville is a domain of stick
figures composed of connected assemblages of linear segments or “sticks”. As shown in
Figure 5 a model part at the lowest level corresponds to a single stick. Abstraction in
Stickville is interpreted as representing a collection of parts by a single main part. Thus
the “plane” model is abstracted by “fuselage”, the main part of “plane”.

An important restriction in Stickville is that the data groupings are not dynamic; they
are precomputed. Thus ina;; is a constant and not a dynamic variable. In Stickville,
the ina matrix is defined so that ¢na;; = 1 if data sticks ¢ and j are connected and zero
otherwise. Also, our input data was restricted to consist of a set of trees, i.e., each stick
in a connected assemblage of sticks (except for one root stick) had the property that one

of its ends abutted the side of one other stick. Figure 5a shows the stick figure of a plane
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and its ¢na links, and 5b shows a model representation for a plane and its INA links. The
tree structure may be observed in figure 5a.

Another important restriction involves parameters on the data side. Like ina links, pa-
rameter checks are also precomputed; hence there are no dynamic variables corresponding
to frame slots. For Stickville, three quantities are precomputed for each pair of connected
sticks 7 and j. These parameters, illustrated in figure 5c are: r;;, the size of stick j relative
to i, 6;;, the relative angle, and y;;, the location of the attach point of stick j to stick 2
in a coordinate system whose y-axis (0 < y < 1) is coincident with stick ¢ [Gindi-86]. If
stick ¢ abuts stick j, then y;; = 0 (e.g., y14 = 0 in figure 5¢). Thus in place of a frame
with slots, a vector of fixed parameters is associated with each connected (ina;; = 1) pair

of data nodes.
A specialization hierarchy is included in Stickville. Figure 6 shows a model-base typical

of the ones used in our simulations. In Stickville, specialization is achieved by the inclusion
of new parts and by the restriction of allowed parameter ranges on pairs of other parts.
For example, in order to specialize “plane” to “jet”, four new parts (two engines, two
tails) must be found, and the angle of the wing relative to fuselage must fall within a
subset of the allowed wing-fuselage angle for plane, i.e the wings must be swept back. The
specialization hierarchy is encoded in a binary matrix I%4,s as described earlier.

The rectangle rule for Stickville becomes

E(M) = — Y INAagina;M,Mg;H**(J;;)
a,i,ﬂ,j
Jii = (ri,65,vi5)- (17)

Note that the only dynamic variables are the match neurons M. Unlike Equation 17
where the parameters Fj, depend on one frame 7 and a slot number s, the precomputed
parameters J;; here depend on two data sticks 7 and j. The parameter check term H is
a stored function that evaluates the vector J and returns a large number if the data side
parameters satisfy conditions specified by H*? on the model side. (H*P is a sum of three
quadratics, one for each of r, 8, and y). The choose rule, Equation 8, retains its form.
Because the number of INA links to a model @ may not equal the number of ina links

to a stick ¢, a match between a and ¢ cannot require a strict one-to-one match between the
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Figure 5: Definitions in Stickville. (a) A stick figure of a plane, and its representation
as a graph with ina links (which are symmetric in Stickville). (b) A plane model and its
representation as a graph with asymmetric INA links. (c) Parameters characterizing the
relationship between two data sticks.

19




(-== -
, ROOT
1T ~ T _
/ \ ~
/ \ S
/ \ ~
NE ! /\ T~
PLA /
/1\ ’ MAMHMAL /\
\ AN HORSE HEAD
! \ / \

/ \ /
-A—Jl'—L \__, .o
1\ [\

PROP.PLANE  JET GIRAFFE  HORSE

Figure 6: Typical specialization hierarchy for Stickville.
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parts of model a and parts of stick ¢ (i.e., those sticks connected to it). Thus in Stickville,
where the data-side ina links are fixed a priori, Equations 6 and 7 cannot both be exactly

satisfied.
Although a higher-order term can be used to solve this problem, we were interested in

finding a quadratic term for reasons of economy. Therefore, for the present implementation,

we used the following three constraints which can be exactly satisfied.

ZIMQﬁinaijMﬁj—CaiMai =0 (18)
B3
> tnaiMaM,; = 0 (19)
1,5
> INAsMuiMg; = 0 (20)
a,8

where

Coi = min(Z INA,p, Z ina;;)
B8 J

and ina is the transitive closure of ina. Since INA is not symmetric, IVA is defined as the
transitive closure of INA + INAT.

Equations 19 and 20 express the notion that a model must uniquely match to one
element of a connected assemblage of sticks and vice versa. We used Equation 19 despite
the undesirable consequence that it prohibits multiple occurrances of the same model
within a connected assemblage of sticks. Equation 18 enforces the requirement that the
number of matches between parts of a and parts of ¢ should be as expected.

We used the Hopfield neural net model, Equations 13, as an optimization method in
our Stickville simulation. The constraints were expressed as additive penalty terms and a
nonlinearity was applied to nodes M,; in order to keep the values of the match neurons
within range. We used the forward Euler method to simulate the differential equations as
a sequence of discrete time steps.

Results are displayed in Figures 7 and 8 in the form of the match matrix. Here, each
circle is a match neuron M,; and its value is proportional to the radius of the shaded

portion. The rows are labelled with symbols corresponding to model parts (e.g. jet, jet-

left-wing, right-tail, mammal, foreleg, etc.), and each column corresponds to a single data
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Figure 7: Stickville match matrix after 28 time steps. The circles represent the
dynamic variables whose value is encoded by the radius of the shaded portion. The differ-
ent columns represent the different data sticks, and the different rows represent different
models. The model-base consists of plane, jet, mammal and their parts, and a root model.

The data consists of two jets.
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stick. For the results shown, the input consisted of 10 sticks comprising two separate jets,
and the model base consisted of a subset of that shown in Figure 6.

Figure 7 shows the state of the system after 28 time steps and Figure 8 shows the
system after it has stabilized at about 70 time steps. Both jets are recognized. Note that
multiple instances of the same model are recognized and that the network recognized both

the plane model and its specialization, the jet model.

4.2 FLville, A Frameville Implementation of a Compositional
Hierarchy.

Experiments were conducted in a Frameville implementation of FLville, a domain consti-
tuting a two-level compositional hierarchy. Figure 9 illustrates the domain on the data
side. At the lowest level are unit-length line segments parameterized by location z,y and
orientation 6, corresponding respectively to slots (Fis, s = 1,2,3). We allow only horizontal
(6 = 0) and vertical (§ = 7/2) orientations. There are two high-level models, “F” and
“L”, composed of appropriate sets of four low-level segments. The figure illustrates an “F”
(darkened segments) in the center of the array, and an “L” at the top right. Also shown
are extraneous “noise” segments. To simplify matters, we designated one group of frames
as “high level” in that they could possibly match only to high-level models, and a separate
group as correspondingly “low-level” frames. The simple task here is to use the Frameville
methodology to recognize instances of “F”, “L”, and their parts. The high-level models
are parameterized by the parameters of a designated main part, in this case, the upper
vertical segment of an “F” or “L”.

On the model side, there are seven low-level models as shown in Figure 10. These
correspond to seven possible positional roles that a segment may assume in the context
of a composite figure. These positions are illustrated iconically inside the model nodes in
Figure 10 and correspond to the positions of segments in the familiar seven-segment LED
display. The high-level models “F” and “L” are then specified by the set of INA links.
Shown in the Figure are INA links for an “F”.

The rectangle rule for FLville is just that of Equation 5, where the parameter check
term H>? checks location and orientation of a given part relative to those of a main part.

For example, if Frame 3 is matched to model 5 ,“middle horizontal”, then its parameters
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Figure 9: Input data for FLville. The rectangular grid of positions for unit length
segments oriented horizontally or vertically. The task is to recognize four segments forming
an “L” (upper right) and four segments forming an “F” (center) in the presence of noise
sticks. The shaded sticks form the input data for the run described in later figures

25



Figure 10: Structure for FLville. Models (represented by ovals) occur at two levels,
segments and letters. The INA links for the letter “F” are shown. Each frame (represented

by a triangle) has three slots: two position coordinates and one orientation coordinate.
The bold lines highlight a possible consistency rectangle.
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(F35,1, Fs2, F33 = 3,Y3, 63) must differ from those of a “upper vertical” mainpart by quan-
tities +1,-1, and 7 /2, respectively. If Frame 7 is currently matched to model 9, an “F”,
and contains the parameters of the main part, then an appropriate parameter check term
is:

T
H9’5(7, 3)=(Fr1— F31— 1)2 + (Fra— F32+ 1)2 + (Fr3— Fs33 — 5)2 (21)

The quantitities 1,-1, and 7/2 are thus model information that is stored in the objective
function. A similar objective function (replace 1, -1 and x/2 by 0) is used to copy the
parameters of a low-level frame matched to a main part into a high-level frame. Note here
that a limited form of invariance is achieved by analog computation of relative coordinates;

instances “F” and “L” are recognized in a manner invariant to translation.
The other constraints in FLville follow those in generic Frameville with the exception
of the syntactic constraints in Equations 6 and 7. In FLville we used a less restrictive form
DY MyMay =0. (22)

o it

Also included is a term that demands that the fanout of ina links from high level to

low-level frames equal the corresponding fanout of INA links:
Z Mai(z z'na,-j - Z I]\Malg)z = 0. (23)
o,i J B

As in Stickville, we used the Hopfield dynamics as an optimization technique. Unlike
Stickville, the objective function is not quadratic but of order 5, because the rectangle rule
for FLville is of order 5. Figure 11 shows results. Each dynamic variable is displayed as a
circle. The large match matrix indicates matches between models and frames at the low
level while the smaller one indicates matches between the high-level models and candidate

frames. The tna matrix indicates matches between the six low-level frames and the three
high-level frames. The slots of the three high-level frames are displayed in the 3x3 array

of analog neurons. The slots of the low-level frames that represent the parameters for the
input data were held fixed and are not displayed. For the match matrices, rows correspond

to models and columns to frames.

In experiments to date, correct final states are indeed stable, but these correct states

can be reliably reached from random start states only when a single high-level model is
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Figure 11: Match network for FLville. Each dynamic variable is displayed as a circle.
The large match matrix indicates matches between models and frames at the low level while
the smaller one indicates matches between the high level models and candidate frames.
The ina matrix indicates matches between the six low-level frames and the three high-level
frames. The slots of the three high-level frames are displayed in the 3x3 array of analog
neurons. The slots of the low-level frames that represent the parameters for the input data
were held fixed and are not displayed. For the match matrices, rows correspond to models
and columns to frames.
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present. Convergence to the correct state with two high-level models occurs less than half
the time. The display shows a successful match for the input data consisting of the five
dark sticks in Figure 9. Four of the five sticks are grouped as an “F”. The analog values
of the slots all stabilize at a value 0.5, the correct value in this case. (It turns out that
slots of other unallocated frames reach 0.5 also, but this is a non-detrimental side effect.)

Experimentation with FLville continues.

4.3 Line Grouping

Our third example is the problem of grouping line segments into lines, and further grouping
such lines into longer lines, etc. This has generally been recognized as an important
example of grouping in early vision, and grouping principles have been identified [Lowe-85,
Boldt-87]. Algorithmic solutions to this problem also exist [Boldt-87]. Here we present
the formulation of this problem in terms of optimization. We have not yet performed any
experimental simulations on this problem, hence no results are available at present.

The set of models which are necessary to do line grouping and their relationships are
shown in Figure 12. There are models representing lines, lines at various “levels”, and
what we call “right” and “left” lines at various levels. The line model represents a line in
the image. The lines at different levels are defined recursively as follows: An Lg line is a
short line segment which is directly obtained from the input image via some edge-detection
process. An L; line is is composed of two lines at level I — 1. The two lines at level [ — 1
which form parts of the line at level [ are called “left” and “right” lines at level [ — 1
(LLi—y and RL;_;). The IS4 and the INA relationships between the various line models
are indicated in Figure 12.

Each line frame contains six two-dimensional vector-valued parameters and three scalars.
Although two points are sufficient to completely specify the line, the use of the additional
parameters allows us to simplify the parameter-check terms in the objective function. In
the description of the parameters below, we use vectors e; = (z;,y;) to represent locations
of points on the line. The meaning of the parameters and the constraints between them
are illustrated by the spring-stick model shown in Figure 13. Four of the vector-valued
parameters correspond to the four points marked ey, e;, 3, e4 on the higher level (longer)

line in Figure 13. In addition, the end points e; and e, are also copied into slots ez, and
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Figure 12: The models for the line grouping problem. These models include a
line model, its specialization to three levels of a compositional hierarchy, and right and

left versions of some of the line models. _Each frame has slots for six two-dimensional
vectors and three scalars, which are described in the text. The match and ina variables

are represented by circles.
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Figure 13: The spring-stick mechanical model. Each stick has two end-point vectors.
In addition, the longer stick has two intermediate points constrained to lie on it. The outer
end points of the small sticks attract the end points of the longer stick. The intermediate
points on the longer stick move along that stick to be close to the inner end points of the
smaller sticks, and close to each other. The resulting spring energies contribute to the
objective function.

eg, although possibly in the reverse order. This redundant representation is useful to allow
the same line-frame to match to either the LL model or the RL model as necessary, i.e., a
particular line segment may dynamically group with another line segment on either side of
it. The points e3 and e4 are required to lie on the line joining e; and e,. This is specified
by hard constraints (described below). The scalar parameters €, and €3 measure the dis-
tance along line of the points e; and e, from the end point e;. Finally, the binary-valued
parameter z allows ey, and eg to switch between e; and ey.

For simplicity, we have chosen to combine the rectangle rule with the associated sibling

competition constraints as the following terms in the ob jective function

> (Mg, =Y ina; My, _, ;)? (24)
7

il

> (Mpi — Y inai; Mgy, _, ). (25)
] 7

These constraints, together with the requirement that the dynamic variables M attain
binary values, can be interpreted as “penalty” terms enforcing the following rule: If Frame
¢ matches to a line at level /, then there should be just one Frame j which both matches
to the left-line (right-line) model at level I — 1 and is a part of Frame i. There are two

types of specializations to consider: the specialization of the generic line model to the line
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models at the various levels, and the specialization of the line model at level ! to the left
and right line models at the same level. These are also expressed in the form of penalty

terms as

Z(Z ML,'l ML[ ,z

> (Mrr,i + Mpp,i — Mp,:)°. (26)
il
The parameter-checks correspond to the energies associated with the springs shown in

Figure 13, gated by the appropriate M and ina variables. Specifically, these are

> aina My, iMpr,_, j(lewi — ep;|® + |es: — erjl?)

Liyg

> ar inai;Mr, iMrz,_, j(les; — er;|* + lesi — er,j|%)
i

D b Mpi(es; — €3;)’ (27)

18

where a; and b; are scale-dependent spring coefficients (they decrease as I increases, which
means a greater tolerance is allowed).

As mentioned above the requirement that e, and e3 should lie on the line joining e; and
e, is expressed as a hard constraints. These are expressed by following equations which

specify that the intermediate points should be an interpolation of the two end points.

€i—e1;—€i(es1—e;) = 0

€3; — €1, — 63,i(e4,1 - el,i) =0 (28)

where €; and €3 measure the distance of e; and es from the end point e;. Similarly, the

switching of er, and er between e; and e, are expressed by the following equations.

er;—ziei—(l—z)eqs = 0
er; —(l—z)e1; —zies; = 0
Z,'(l — Z,‘) =0 (29)
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where the binary-valued parameter z encodes the switching mechanism. Besides these, the
usual constraints expressing the fact that M and ina are binary valued are also included.

Thus, we have cast the line grouping problem as a constrained optimization problem.
We intend to use either Platt’s [Platt-87,Arrow-58] method or a method similar to it to

solve this problem.

5 Discussion and Conclusion

The design of the Frameville objective function and constraints raises difficult questions
of efficiency and functionality, some of which are addressed here. Full answers must await
analysis and extensive experimentation with many particular cases such those outlined in

section 4.

Optimization is easier when an objective function is quadratic or “second order” in its
independent variables, but our objective functions are third and higher orders. Evaluation
of such objective functions or its derivatives is expensive unless the interaction terms
are very sparse or highly structured. Often, the high-order objective function may have

a structure which allows it to be reduced to a lower order function with a reasonable
number of additional dynamical variables. The expense also crucially depends on the

sparseness of the dynamic M and ¢na matrices. If one enforces sparseness constraints
during minimization, as well as at the final minimum, then large savings may result from
using “virtual” matrix element variables which are created and destroyed dynamically.
Such virtual neurons may be governed by objective functions and are related to “windows”
of attention [Mjolsness-87].

Order reduction can also be achieved by setting subsets dynamical variables to constant
values and simplifying the objective functions accordingly. Large gains in efficiency can
result, at the expense of computational flexibility. For example, a frame F;, whose match
neurons M,; are all fixed at definite binary values, is said to be “pre-typed”. Likewise if
its ina;; variables are fixed then the frame is is “pre-allocated” to a particular position
in the compositional hierarchy. Constant M and ina matrices may express efficient data
structures for the recognition problem at hand.

Turning to questions of functionality one might wonder whether Frameville-style ob-

jective functions are restricted to high-level vision problems. But the inclusion of analog
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arithmetic for frame parameters means that one can construct low-level models such as
fixed convolution filters, whose kernel is part of the model-specific objective function. Pre-
typed and preallocated pixel-frames and filter-frames may allow efficiency to approach
that of an ordinary convolution. The Frameville version, however, could be integrated
with intermediate-level vision.

It was noted in section 1 that various optimization techniques (e.g., regularization,
relaxation labeling, graph matching) have been used to solve problems at single levels
of visual abstraction, and it was argued that there should be cooperation between the
processes operating at different levels. We have described how to express examples of high-
level model matching problems (Stickville and FLville) and intermediate-level grouping
problems (line grouping) uniformly in Frameville. Also, we have discussed the possibility
of a Frameville version of low-level feature detection. The uniformity with which we have
expressed these problems at different levels of abstraction immediately suggests a technique
for integrating diverse visual processes. For instance, FLville and line grouping could be
integrated simply by identifying the high-level line models as the low-level stick models in
FLville. With minor modifications the objective functions for FLville and line grouping
can simply be added.

Finally, the optimization paradigm within which we work may itself be questioned,
especially when the objective functions are of high order in which case there will generally
be many local minima. Of course our objective functions are not “general”; rather, the
model-based objective functions are hand-designed and hand-evolved to favor unique cor-
rect image interpretations whenever the input data permits. It is not possible, yet, to say
whether or not good design disciplines exist for the model base and its objective function
which avoid introducing spurious local minima.

In defense of objective functions, one may also say that they form a notation, bordering
on a language, of remarkable conciseness and perspicuity for many computations involving

mixtures of quantitative and symbolic processing.
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