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Abstract

Many algorithms have been found that can identify in the limit any objects in a class of
objects, given examples of the object. Automata, grammars, LISP and Prolog programs
are among the syntactic expressions that have been used to represent the objects and
their examples. A common strategy of most of these algorithms is to take as an initial
hypothesis the most general (the least general) expression possible, and to make it less
(more} general as counterexamples are obtained.

In his thesis, Ehud Shapiro devised algorithms of this form that infer first-order axioms
for theories. He introduced the notion of refinement operators to implement the task of
making hypotheses less general. In this report the concept of a refinement is generalized
and treated more formally. We view a refinement as a recursively enumerable relation on
the syntactic algebra that is consistent with the “more general than” ordering. Refinements
can be upward (generalizing) or downward (specializing); they can be complete or partial,
and can have a number of other properties which algorithms can utilize to make the
inference procedure more efficient. With these definitions, we obtain general algorithm
schemas for inductive inference over domains with a suitable ordering relationship between
the syntactic and semantic objects. Several specific examples are given, including regular
expressions and Boolean functions.

For the particular domain of first-order clause-form sentences, Shapiro’s procedures for
inferring an Herbrand model are generalized to allow the inference of incomplete theories.
By representing refinements as axioms, we can refine the refinements, and thereby obtain
a characterization of all refinements over a domain. This notion of meta-refinements may
render less mysterious the task of designing an efficient refinement for a particular domain.

Finally, we obtain inference techniques which take advantage of “normal form” prop-
erties of an algebra, and apply these results to Shapiro’s algorithm and others.

This work was partially funded by the National Science Foundation, under grants MCS
8002447 and DCS 8404226.
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Inductive Inference by Refinement
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Inductive inference can be described as the process of forming generalizations from
partial information. For example, we hear unfamiliar words in context and form hy-
potheses about their meanings. The subject has been studied from many viewpoints (see
{Angluin-83] for an overview); in this report, we consider a class of techniques in which
hypotheses are strengthened or weakened in response to examples and counterexamples.

Objectives of the study of inductive inference include making this inductive process
effective and identifying those aspects common to all domains over which inferences can
be made. To date, studies have focused mainly on domains that can be defined precisely:
finite-state automata, grammars, sets, logic, LISP programs, etc. Ultimately, however,
we hope to abstract the essential properties of inductive inference in order to apply them
to more complex domains, such as natural language.

This report describes work in progress toward this goal. We shall find that many
of the clever inference techniques invented for particular domains can be understood
as directed searches that take advantage of an order-preserving relationship between
the semantic entities and the syntactic representations of these entities. Conversely, we
can extend this idea to obtain inference techniques on any domain which enjoys these
properties.

*Copyright ©1985 by P. D. Laird.



4 1 BACKGROUND

1 Background

The model for inductive inference that we shall use is the following. An Inductive In-
ference Machine (I.I.M.) is trying to infer an object (“rule”) from a given class of rules.
It adopts a hypothesis language in which every rule is represented at least once. It also
agrees with an oracle about what constitutes a set of examples, and how those exam-
ples are to be presented. Acceptability of the example set entails that any incorrect
hypothesis will disagree with some finite initial portion of the presentation.

After all of these details have been resolved, the inference process begins. The L.I.M.
calls upon the oracle for an example, computes and outputs its next hypothesis, and
returns to the oracle for another example. In some cases the ..M. may also be allowed
to ask questions of the oracle (such as, “Is  an example of the rule?”). The LIM. is said
to (EX-)identify R in the limit if, in the (infinite) sequence of hypotheses H, Ha,...,
there is an n such that H, denotes R, and H,.; is the same as H, for all i > 0. More
generally, the I.LLM. identifies a class of rules in the limit if it can identify each rule in
the class, given any acceptable presentation of the rule.

Identification in the limit, originally suggested by Gold {Gold-67], is not very practical
as a convergence criterion for inductive inference. It serves roughly the same purpose in
inductive inference as the recursive property does in the study of algorithms: it guarantees
that the process “terminates” (stops changing its mind) with a correct answer, but does
not account for its complexity.

A very simple algorithm for identification in the limit is that of identification by
enumeration ([Gold-67]). Let H;, Ha,... be an effective enumeration of the possible
hypotheses. When examples e,,..., ¢x have been presented, the L.L.M. offers as its next
hypothesis the first in the sequence H; that is compatible with all k examples. Provided
the oracle never presents faulty examples, this method will converge in the limit.

Often, however, the domain enjoys a partial order, >, with the property that, if
hypothesis H is incorrect for an example e, then for any hypothesis H' > H, H’' is also
incorrect for e. We can take advantage of this property to speed up the convergence by
eliminating from the hypothesis space any related by > to a failed hypothesis.

For example, let the object be sets of strings over a fixed alphabet X, and suppose
the hypotheses are regular expressions. As examples, we may take all “signed” regular
expressions of the form £(¢; ‘02-...-0x), wherek >0 and oy € Eforeach 1 <i < k. A
positive sign indicates that the example denotes a string in the target language L, and a
negative sign, that the string is not in L. For the examples {+10, +100, -0}, compatible
hypotheses would include 10%, 100*, 1(1 + 0)*, and (10 + 100), but not 1*0* or (1 + 0)*.
An acceptable presentation of the examples is one in which every string occurs at least
once. (Of course, each time it must have the same sign.) ‘A presentation in which only

positive examples occur is not sufficient to ensure identification in the limit (as shown in
[Gold-67]).

Straightforward identification in the limit could proceed by enumerating all regular
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expressions over ¥ in order of increasing length. There are well-known algorithms for
testing whether a regular expression R denotes a language that includes a string w
({Aho-74]). The L.LM. outputs the first expression in the enumeration which includes all
positive examples of +w but no negative examples ~w. Since every string is eventually
presented, an incorrect hypothesis will eventually be shown a counterexample. And since
a correct hypothesis is included in the enumeration, the L.I.M. will converge in the limit
to a correct expression — in fact, one of least size.

Languages, being sets of strings, can be partially ordered by inclusion (C). If a
hypothesis R includes a string w, and w is presented as a negative example, then R is
too general. We can then discard, not only R, but any expression more general than or
equivalent to R, such as R+ R, R+ S, R*, etc.. Likewise, if R fails to include a string
w given as a positive example, then R is too special, and we can discard along with R
any expressions less general than or equivalent to R. Of course, in order to take full
advantage of this efficiency, we need to be able to enumerate expressions no more general

or no less general than a given expression (or set of expressions).

Mitchell ([Mitchell-82]) describes a class of algorithms which search a space according
to a partial order. With his approach, lists are kept of the most general hypotheses
which agree with no negative examples, and the least general hypotheses which agree
with all positive example, subject to the additional constraint that the most general
hypotheses are all more general than the least general hypotheses. At any time, the
two lists define the information we have so far from all the examples. In principle, we
can select from these hypotheses one which meets other criteria (e.g., , least size) as
our preferred hypothesis. With sufficient examples, the two lists should converge to the
same single hypothesis, or set of equivalent hypotheses. This version-space approach
requires that the search space be bounded in both breadth and depth for convergence to
be assured.

Shapiro ([Shapiro-81,Shapiro-82]) extends this idea to the (infinite) domain of first-
order logic, and devises a program that infers sentences from examples of their logical
consequences. The expressive power of first-order logic makes this technique very pow-
erful indeed. He restricts the form of his sentences to those in clause form (prenex
conjunctive normal form with no existential quantifiers), primarily to take advantage of
standard resolution proof procedures. The symbols of the first-order language are fixed.
The target of the inference is an Herbrand model, a set of atoms of the form p(t;,...,t,),
where p is a predicate symbol and the ¢;’s are variable-free terms. Examples of the model
are atoms of this form, signed + or — according to whether they belong to the model
or not. A sentence is correct for the examples if it logically implies all positive and no
negative examples.

Shapiro’s inference algorithm entails a search for a sentence that characterizes the
model. When a sentence disagrees with an example, an algorithm is invoked that identi-
fies a portion of the sentence that is erroneous - e.g., , implies too much or not enough.
If it implies too little, a new clause is added to the sentence. If it implies too much, a
clause of the sentence is refined: a list of related clauses is computed with the property
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6 1 BACKGROUND

that these new clauses are no more general than the erroneous clause. These new clauses
are then available as replacements for the original clause. The refinement operation helps
direct the search by eliminating from consideration clauses that are more general than
the one already recognized as too general. And together with a set of algorithms for
identifying the false clause or clauses in the sentence, the refinement makes the search
algorithm adapiive in response to the examples.

A more detailed description of Shapiro’s work is presented in the appendix. We shall
refer to these ideas several times in the rest of this report.

Shapiro’s method is capable of making inductive inferences over many domains for
which ad hoc algorithms had been devised previously (formal languages, functional pro-
grams, etc.), and extends to first-order expressible domains where other algorithms do
not apply. But the syntactical form of Shapiro’s inferences is limited to first-order sen-
tences. Oftentimes, first-order syntax is not the most convenient and intuitive language
for representing objects. For example, regular sets can be defined using clause-form
sentences, but regular expressions and finite-state diagrams are usually more useful rep-
resentations for these sets. The motivating question for the research in this report was
whether Shapiro’s ideas could be extended or modified for inference over syntactical
structures other than first-order logic. In the next chapter, we show how to infer regular
expressions using refinements to guide the search. This section serves as an introductory
example for the more general ideas which follow, including algorithms which apply to a
large class of domains of inference.
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2 Inferring Regular Expressions by Refinement

As motivation for the more general results, we consider the problem of inferring regular
sets by finding regular expressions denoting them. In [Shapiro-81] regular sets are inferred
by finding a first-order axiomatization of the set. It turns out that, with a one-place
predicate symbol L(z) denoting membership in the language and a two-place function
symbol “” denoting concatenation, a regular language can be axiomatized using only
Horn sentences of the form L{a) and L(e - z) — L{8 - z), where o and 3 are ground
strings and z is a variable (denoting an arbitrary string). Furthermore, it can be shown
that any such axiomatizaton defines a regular language, and that the number of axioms
required may be exponential in the number of states of the minimal deterministic finite
automaton that accepts the language. These facts are not obvious, however; and for most
people, this syntax is less meaningful than the more conventional regular expressions or
state-machine diagrams.

Instead, we prefer to find a regular expression from examples of strings in and out of
the corresponding regular language. So let us adapt Shapiro’s algorithm to handle the
new syntax. We need to specify:

a most-general expression;

a refinement p for regular expressions;

a syntactic form for our examples; and

an algorithm for deciding whether a regular expression denotes a set which includes
the example string.

Let £ = {1,...,0k} be the fixed alphabet over which the regular sets are defined.
The language of regular expressions uses + and - to denote union and concatenation
operations, with ¢ and ¢* as the corresponding identities, and * to denote the Kleene
closure. The set £* is the most general regular set since it includes all others over the
same alphabet. There are infinitely many regular expressions denoting £*; we arbitrarily
select (o + ...+ 0%)* and abbreviate it T.

The refinement p should have the following properties:

1. p is a relation on regular expressions. Equivalently, it can be viewed as a function

p:&— 25, where £ is the class of all regular expressions. In addition, we want p
to be locally finite: {E'|E’ € p(E)} is finite for all E.

2. For all E;, E; € £, whenever E; € p(E,), then the regular set |E;| denoted by E,
is a (proper or improper) subset of the set |E;| denoted by E;.
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8 2 INFERRING REGULAR EXPRESSIONS BY REFINEMENT

3. p is complete for the most general expression T in this sense: The set p*(T) of all
expressions obtainable in a finite number of refinement steps from T includes at
least one expression for every regular set.

A refinement p; with these properties is as follows. Let E, E}, E3,... be regular
expressions over £. Write E; — E» to denote the relation E; € r(Er).

1. E— (E+E)

E* — (E*)*

E* — (E* - E*)

. E*—F

.op—¢,for1<i<n

YE, —E then Ey+E;—~E+E;and B+ E; - E2+ E
If E, — E, then E," — E* \

If Ey, = E,then E;-E; — E-E; and E;- E; — E;- E

I T I

It is easy to see that p; is locally finite, since p(¢) is {¢ + 8}, p(c:) is {¢, 04 +0:} for
all 7, and inductively if E is of the form Ey + E3, E} - Ez, or E1*, then §6 - §8 generate a
finite set of reductions, and §1 — §4 each generate at most one. A similar induction can
be used to show that every expression in p(E) denotes a regular subset of E' (property 2
above).

Likewise, we can show that p; is complete for T = *. (Let =+ denote one application
of rule § n, and = denote zero or more applications of any of rules § 1 —5.)

(¢) = Lol (G1+...+0k—1+¢) = (¢+...+¢) = ¢. Thus (an expression equivalent
to) ¢ € p*(T).

(o:) = N SN (6+...4+0+0;+é+...+9¢) =0y, for each i. Thus (an expression
equivalent to) o; € p*(T).

Inductively, if E; and E; are in p*(T), then

(union) * L (Z* +£*) = (Ey + E3) (using §6).
(star) T 2 (T*)* = (E1)* (using §7).
(concatenation) L* 3, (s*-=*) & (B, - E;) (using §8).
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As “examples” we may take regular expressions denoting sets with a single string, in
the form e = oy, -...-0y,, with association implicitly to the right. The oracle eventually
presents every string (at least once) in the form of a signed example: +¢ indicates that
the string is in the target set, —e that it is not. As noted earlier, deciding whether a
given expression E includes a string w can be done efficiently. We shall write £ = w
whenever this holds; otherwise, we write £ % w.

Finally, we have the following algorithm for inferring regular expressions from exam-
ples.

Algorithm 2.1 Inference of Regular Expressions

Procedure: Initialize:
H — T. (H is the current hypothesis.)
Q — emptyqueue. (Q contains possible future hypotheses.)
ezamples — emptyset. (Store all examples.)

do forever:

Call for the next example and add it to the set ezamples.
repeat
if H = ~w for some negative example w, then
Append py(H) to the tail of Q.
H «— nezt(Q). (nezt removes the front element of
the queue, or fails if the queue is empty.)
else if H $# +w for some positive example w, then
H — nezt(Q).
until H is correct for all words in ezamples.
Output H as the current guess. &

The algorithm maintains a current hypothesis, H, and a queue Q of potential hy-
potheses. Initially, Q@ is empty, and H contains the most general hypothesis, T. The
current hypothesis is tested against all examples seen so far. If H covers an example it
should not, it is too general; its refinements p;(H) are added to the queue of possible
hypotheses, and a new hypothesis is taken from the front of the queue. If H fails to
cover an example it should, H is too specific and is therefore discarded. (Property 2
above implies that all refinements of H are likewise too specific). Note that T contains
all strings, so that the first negative example causes p; (T) to be enqueued.

Let us now demonstrate the following straightforward result.
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10 2 INFERRING REGULAR EXPRESSIONS BY REFINEMENT

Proposition 2.2 For any regular set R and any acceptable presentation of R, Algorithm
2.1 identifies R in the limit.

Proof: If some hypothesis H is never refuted by any counterexample, then H must
represent R, since every string is eventually presented, and H thus contains all and only
strings in R. So Algorithm 2.1 will neither converge to an incorrect hypothesis nor discard
a correct one, and we need only show that it eventually finds a correct hypothesis.

From the completeness property of p; we know that there is a chain of refinement
steps Eg — ... — E,, with Eg = T and E, representing R. When n = 0 we have the
trivial case where R is £*. So assume n is greater than zero and as small as possible
for the given R. Property (2) of p;, together with the minimality of n, ensures that
|Eo] 2 [E1| 2 ... 2 |Eal, and that |E;| 2 |E,| for each 0 < i < n. Thus there are
strings w; for 0 € i < n) such that w; is a negative example for E;; and for every positive
example +w of R, E; = w (for all 0 < 7 < n).

We assume the algorithm diverges, and derive a contradiction. Below, we shall argue
that divergence implies that E, must become the hypothesis H at some point in the
execution of the algorithm. Divergence also implies that every hypothesis is eventually
discarded as a result of a counterexample. But E, is correct for all examples and will
never be discarded. Thus we are forced to conclude that the algorithm converges.

So assume that every hypothesis is eventually discarded. We argue, by induction on
n, that E, eventually becomes the hypothesis. Ej is the initial hypothesis. Suppose
H = E;, for ¢ < n. Since |E; | 2 | R |, the only counterexample for E; is a string
presented as a negative example which is included in the set E; but not in the set R.
There is such a string (w;). So E; will be discarded and its refinements added to the
end of the @. Since @ is always finite, and the algorithm diverges, the finite number
of expression preceding E;,; will all be tried as hypotheses and discarded. Thus E;;,
eventually becomes the current hypothesis.

And from earlier comments, we conclude that the algorithm converges. a

Algorithm 2.1 differs from that of [Shapiro-82] in two significant ways. Shapiro’s
system discards and refines clauses, not entire sentences. In his case “the current hy-
pothesis” is a set of clauses which, taken together, imply all positive examples and no
negative ones. Refining the entire expression, instead of just one clause, degrades the
efficiency considerably. Also, Shapiro’s algorithm is incremental: once a hypothesis is
discarded, it is never retried (even if there is another refinement path to it). It is possible
to modify Algorithm 2.1 to be incremental, but even with this improvement it remains
too inefficient to be practical.

“Efficient” has to be interpreted in a relative sense, since refinements typically suffer
from explosive growth in the number of hypotheses at each level. Consider, for example,
the refinement p; above, over the alphabet & = {o}. Expressions of the form o™ occur at
depths 2n—1 and more in the graph: £* = Z*.Z* = ... = (Z*)* = o(Z*)* ! — ... —
o™ is a path of least length. It is also easy to verify that the number of distinct expressions
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at each level that are equivalent to £* at least doubles. Since these expressions are all
strictly too general, the algorithm will continue refining them instead of simply discarding
them. Hence with this refinement, the algorithm will be forced to consider an exponential
number of hypotheses before finding an expression equivalent to o®. (Of course, another
refinement might allow regular expressions to be found more quickly.)

Two questions arise from the above discussions.

1. Can we find more/better refinements than p, for regular expressions?

2. Could this approach be turned around so that it starts with a least general ex-
pression (say, ¢), and uses a generalizing refinement ~ instead of a specializing
refinement p?

In fact we can do both of these. Later we shall see that there is an enumerable class of
refinements varying in their completeness and other properties. We present here, without
proof, a generalizing refinement ~; complete for ¢ and an algorithm which infers regular
expressions in the limit “bottom up” - that is, starting from an initial hypothesis of the
empty regular set, represented by ¢.

Let E, Ey, Ea,... be regular expressions over . Write E; — E5 to denote the relation
Eg € '71(E1).

1. E—~(E+FE)

2.6—(¢-9)

3. E— (E)*

4. p > o, for1<i<n

5. fEy— FE,then £y + E; = E+ E;and E;+ Ey — E;+ F
6. If £, — F, then E\* — E*

7. HfE,—FE, then Ey -Ey~FE -Eyand E;-E, — E;-FE

Note that the reductions that comprise v; are of two types: those which increase the
size of the expression without changing its meaning (equivalence reductions), and those
which generalize the expression to a larger set {generalizing reductions). The latter are
the inverse of the specializing reductions for the downward refinement p;.

The “bottom-up” equivalent of Algorithm 2.1 is shown below. Given the striking
duality between the top-down and bottom-up cases, in both the refinements and the
algorithms, we should expect that there is something fundamental going on that we
should explore. Indeed, this observation was the primary motivation for much of this
research.
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12 2 INFERRING REGULAR EXPRESSIONS BY REFINEMENT

Algorithm 2.3 Inference of Regular Expressions

Procedure: Initialize:

H « ¢. (H is the current hypothesis.)
Q — emptyqueue. (Q contains possible future hypotheses.)
ezamples «— emptysel. (Store all examples.)

do forever:

Call for the next example and add it to the set ezamples.
repeat
if H # +w for some negative example w, then
Append v, (H) to the tail of Q.
H « nezt(Q). (fails if the queue is empty)
else if A = —w for some positive example w, then
H « néxt(Q).
until H is correct for all words in ezamples.
Output H as the current guess. &
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3 Properties and Uses of Refinements

In this section we examine refinements more abstractly as recursively enumerable binary
relations on a domain of expressions, which preserve an underlying semantic ordering. In
addition to generalizing the ideas we have already seen, we develop several new examples
illustrating how the concepts can be applied.

3.1 Search Problems

We step back briefly from inductive inference to define the “search problem” in such a
way as to clarify the relationship between search and inference.

Definition 3.1 An abstract search problem is a 5-tuple (D,do, £,h,0), where

e D is a finite or countable set, called the semantic domain of objects.
e dy is a designated element of D, (the target object).

o & s a countable set of expressions.

® h: £ — D is a surjective mapping from ezpressions to objects.

e O is an oracle for the characteristic function of the set h™1(do) = {e € £ | h(e) =
do}. Specifically, O(e) =1 if h(e) = do, and O(e) = O otherwise.

Provided the set & is recursively enumerable, there is an obvious search algorithm
that finds dp in the limit.

Algorithm 3.2 Erhaustive Search

Input: A recursively enumerable set £ of expressions.
An oracle O for h~(do)

Output: An expression eg such that h(eg) = do.
Procedure:
Let ey, e2,... be an enumeration of €.
i1
while O(e;) # 1, i —1+1.
Output ;. ¢
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14 3 PROPERTIES AND USES OF REFINEMENTS

This simple algorithm illustrates several things. First, search can be viewed as a
special case of inference in which “examples” are expressions labeled + if they represent
the target and — if they don’t. The amount of information in a negative example is
usually very small. Furthermore, the search algorithm determines the order in which
the “examples” are considered, whereas in inductive inference algorithms examples are
typically presented by an external source. Finally, the oracle O above serves to remove
from consideration the complexity of deciding whether an expression has a particular
property. In practice, this is often a hard problem; here we are electing to ignore this
aspect.

The function A: & =+ D defines the relation between the syntax and the semantics.
A well-known theorem of algebra states that h induces an equivalence relation on £:
e1 ~ eg iff h(e1) = h(ez). We shall write 5 to denote the complementary relation of a.

The ability to compute the relation a3 offers the potential for improving Algorithm 3.2.
Instead of enumerating £, we enumerate the equivalence classes of £ and select a single
representative from each class for presentation to the oracle 0. In practice, however, this
may not be feasible. ~ may be recursive (as in the case of regular expressions); ~ may
be recursively enumerable (expressions for strings in a free semi-group); % may be r.e.
(context-free grammars); or none of these (LISP programs).

Example 3.3 Let D be the set N of natural numbers. Let £ be strings in {0, 1}*. Let
h: & — D interpret each string b,_;...bo as a binary number, E::ol b;2'. An effective
search procedure is to enumerate the strings of 0’s and 1’s and ask the oracle about them.
Since ~ is decidable in this case, we need ask only about the string 0 and about strings

beginning with 1. A

Even if ~ is not decidable, some non-trivial subset of it usually is. Let a5; be any
decidable equivalence relation contained in . With ~; we can improve Algorithm 3.2
with respect to the number of oracle queries, at the cost of additional computation to
determine instances of ~.

Algorithm 3.4 Ezhaustive Search modulo ~;

Input: A recursive equivalence relation a;
An oracle O for h~1(dp)

Output: An expression ¢g such that h(eg) = do.
Procedure:
Let e;1,€2,... be an enumeration of £.
1+ 1.

while O(e;) #1
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3 PROPERTIES AND USES OF REFINEMENTS

commutativity ey Nex ez Ney
egUeg MeaUe
associativity cl N{eaNeg) ~ (1 Nez)Neg
U(egUes)~ (e1Uez)Ueg
absorption c1 N{erUez) = e
Ufe1Neg) ~e
distributivity e; N(eaUes) ~ (€1 Nez) U (e Nes)
erU(e2Nes) ~ (ex Uez) N ey Ues)
bounds etNFaF
e, U T~T
complement egN~e  ~F
eglU~e T
reflexivity e N e
symmetry (e1 ~ e3) — (e2 ™ ;)
transitivity (e1 ~ eg) N(e2 ~ e3) — (€1 ~ e3)
substitution (ex ~e)) — (e1 Neg) ™ (e] Neg)
(e1~e]) = (e1Uez) = (e} Uea)
(1~ e)) = ~ey n~e)

Figure 1: Axioms
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3.1 Search Problems 15

{e—1{+1.
while e~ ¢; for some 7 such that 0 < j <4, 7 — i+ 1.
Output e¢;. <

Any equivalence as; which is a subset of ~ is complete in the sense that Algorithm
3.2 will converge to a correct expression. By contrast, an equivalence relation as2 which
properly includes ~s is tncomplete in that Algorithm 3.4, finding that e;~vze2, may not
query Ofez) when in fact h(ez) # h(ey). If h{e2) = do then the algorithm may fail
to converge. But it is also possible that ~g reduces the number of equivalence classes
without affecting the convergence; for example, we might know in advance that certain
expressions do not represent do, and if the equivalence classes for some of these were
merged by a2 the search would still work correctly. In this case it might pay to use
the relation even if it were incomplete. We shall see that this property has an analog
with refinement relations, in that incomplete relations may nevertheless be useful in
algorithms for inductive inference by refinement.

Any effectively enumerable relation = is finitely axiomatizable in a first-order system.
The proof system we shall employ is one in which all axioms are sentences in clause form,
with resolution as the only rule of inference.

Example 3.8 Let D be P(P({X1,...,Xn})), the sets of subsets of n objects. For ex-
pressions denoting elements of D, we can use Boolean expressions over the propositional
symbols #1,...,zn. That is, £ is the set of well-formed expressions using the constants
T, F, and z, (for 1 <4 < n); the one-place symbol ~ (denoting complementation); and
the two-place symbols U and N (denoting union and intersection, resp.). The expres-
sion T denotes all subsets; F represents the empty set; and z,;1\ ~ zo denotes subsets
containing X; but not Xb.

The algebra of Boolean expressions is well known. In Figure 1 we exhibit an axiom-
atization based on the equational presentation given in [Birkhoff-77], in a form suitable
for resolution proofs of equivalence. Each clause is implicitly preceded by universal quan-
tification over its variables.

If for two well-formed Boolean expressions e; and e; we can prove from these axioms
that e; =~ eg, then e; and e; denote the same class of subsets. For example, z,1 ~ z;
and F both denote the empty set.

In general, finitely presented algebras axiomatize the equivalence {~) of expressions
in the algebra. A

Example 3.6 Let D be the class of regular subsets of some finite alphabet £. Let £
be the regular expressions over the alphabet X. Unlike Boolean expressions, there is no
finite set of equations that completely characterizes equivalence of regular expressions
([Red’ko-64]). Salomaa ([Salomaa-66]) defines two non-equational finite axiom schemes
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3.2 Inductive Inference Problems 17

for regular expressions which are consistent and complete for ground expressions (i.e.,
expressions without variables). A clause-form axiomatization corresponding to his F}
system is given in Figure 2. This system can be used to prove, for example, that (1(110+
0110)*)* = ((1((0 + ¢*)110)*)*)*, but not that e;* = ¢;*" for all expressions ¢,. But our
interest will be confined to refinements, for which all expressions are ground expressions.

The language in Figure 2 uses two predicate symbols: a for equivalence, and newp
for “not-having-the-empty-word-property”. The symbols +, -, and * are as usual, except
that - is often implicit (as in af3). A

3.2 Inductive Inference Problems

We could turn a search problem into an inference problem by replacing the query oracle
(“Is h(e) = do?”) with an example oracle EX, which returns a signed expression e such
that “+¢” means h(e) = do and “—e” means h(e) # do. There is no strategy for such an
inference problem, unless it is to smoke a cigar while waiting for the oracle to return a
positive example. '

A much more interesting way to define an abstract inference problem is to utilize
the services of an oracle for examples that returns only partial information about the
relationship between an expression e and the target do.

Definition 3.7 An abstract inference problem s a 6-tuple (D,dq, £, h, ASK, EX), where

o D is a finite or countable set partially ordered by >.
o do 13 a designated target element of D.
o & 13 a countable set of expressions.

e h: & — D is a surjective mapping from ezxpressions to objects.

ASK 1s an oracle for > such that ASK (e, e2) =1 if h(ey) 2> h(ez2), and O otherwise.

e EX is an oracle for ezamples of do, such that if EX() = +e then do > h(e), and if
EX() = —e then do 2 h(e).

Note that the inverse relation < is also a partial order, and induces a dual abstract
inference problem, including an oracle EX for examples of expressions ¢ such that do <
h(e) or do € h(e). Note also that h(e;) > h(ez) and h(ez) > h(ey) imply h(e;) = h(e2)
and therefore e, ~ eg. Finally, the oracle ASK, like its counterpart in the search problem,
serves mainly to remove from consideration the complexity of deciding h(e1) > h(e2).
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Ao

An

Ar2
reflexivity
symmetry
transitivity

substitution

newp

3 PROPERTIES AND USES OF REFINEMENTS

e1+ (e2 +es) ™ (e1 +e2) +es
e1(ezes) ~ (e1e2)es
e1+exex+e
e1{ex +e3) ~ erea +ere3
(e1 +e2)es ~ eres + ezes
e +ey e
Prey ey
pe1~ @
e1t+omNe
e1* NPT +e1%e;

~ (9" +e1)"

e1 & e1e2 + eg A newp(ea) — €; = egex”

€] ey

(e1 ~ e3) — (e2 ~ e1)

(ex ~ e2) N (eg ~ e3) — (&1 ~ €3)
(ex ~ e (e1 +e3) ~ (e} +e¢3)
(e1 ~ €} (e1e2) ~ (e} e2)
(er~e)) —er”~el”

e1) A newp(ez) — newp(ey + e2)

1) -
) —
o;) (for all o; € X)
)
)

— newp(e1ez)

e1) — newp(eze;)

Figure 2: Axioms for Equivalence (a) of Regular Expressions
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3.2 Inductive Inference Problems 19

In our notation, we shall write z ~ y to indicate that z and y are comparable with
respect to >. By z + y we shall mean that  and y are incomparable: neither z > y

nor y > z. Also, let us adopt the more mnemonic form ASK(e; 2 e2?) in preference to
ASK(Cl, 62).

So far, our only access to information about the partial order on D is via the oracles.
In particular, we know nothing about how (or even if} the syntactic structure of the
expressions relates to the partial order on D.

Definition 3.8 The oracle EX() gives a complete presentation of do #f for everye € £
such that do > h(e), EX() eventually returns “+e” at least once, and for every ¢’ € £
such that do 2 h(e'), EX() eventually returns “—e’” at least once.

The following algorithm is the counterpart to Algorithm 3.4.
Algorithm 3.9 Identification by Enumeration

Input: A recursively enumerable set £ of expressions.
An oracle ASK(e; 2 e2?) for h(e1) 2 h(ez)?
An oracle EX() for a complete presentation of do
Output: A sequence of expressions Hy, Ho,... such that A, is correct for the
first n examples.
Procedure:
Let €1, €2,... be an enumeration of £.
1~ 1
ezamples — emptyset.
do forever:

examples — ezamples U EX() (get next example)

while ASK (¢; 2 €?) = 1 for some negative example —¢ or

ASK (e; 2 €?) = 0 for some positive example +e,
f—i+1

Output ¢; as the next hypothesis.

Note that ASK is used only to relate an arbitrary expression e; to an example ex-
pression; the full power of the oracle to relate two arbitrary expressions is never required.
This will always be the case for the ASK oracles in this paper. If we wished, we could
have defined the oracle with this restriction.
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20 3 PROPERTIES AND USES OF REFINEMENTS .

Theorem 3.10 Algorithm 3.9 identifies dg tn the limit.

Proof: Suppose the algorithm outputs some expression ¢; infinitely often. Then
h(es) 2 do, since if e is any expression with the property h(eg) = do, then +eg is
a positive example which must be presented at least once, and the while condition
ensures that ASK(e; > e9?) = 1. Also, h(e;) < do: otherwise, —e¢; would be presented
as a negative example, and ASK(e; > ¢;7) would be 0. Hence h(e;) = do, showing that
the algorithm cannot converge to an incorrect expression.

Furthermore, the algorithm must converge to some expression; for among the positive
examples is an expression eg for dg which occurs somewhere in the enumeration of &. O

We observe that the enumeration of £ in Algorithm 3.9 is not needed if the algorithm
does not have to issue a guess after every example. Instead, it can simply wait until
there is some expression ¢; among the positive examples such that ASK(ex > ¢;?) = 1
for all positive examples ¢;; it then outputs ex as its guess. In effect, it lets the oracle
EX do the enumeration for it.

In practice, a complete presentation of the target do is not always needed. With
regular expressions, for example, we have seen that EX need give as examples only
expressions denoting singleton regular sets. In other domains, however, the entire set of
examples may be required.

Definition 3.11 Let dy be the target object of an abstract inference problem. A sufficient
set of examples for do ts a signed subset S of & such that the set £s = {e € € | h(e) >
all positive ezamples and h(e) } any negative ezamples in S} is precisely the set of
ezpressions e for which h(e) = do. In other words, S determines do up to equivalence
(modulo ).

Example 3.12 Let @ be the set of non-negative rational numbers partially ordered
by < in the usual sense. The designated element is some rational number gqo > O.
As expressions we use integer ratios p/q. Examples take the forms “p/q < ¢o” and
“p/q £ q0”. As a sufficient set S of examples for g9, we may take {r | r < go and r is in
lowest terms } as positive examples, and {s | s > go and s is in lowest terms } as negative
examples. The set & is then the set of ratios equal to go. A sparser set of examples
could be formed from two sets of ratios: one which approaches gg as a limit from below
(positive examples), one approaching it from above (negative). A

Example 3.13 Let D be a subclass of the partial recursive functions on N, partially
ordered by: fi 2 f2 iff, for all z € N, f1(z) = f2(z) whenever f2(z) is defined. £ can be
any enumerable representation (such as Turing machines) for which every function in D
has at least one representation. Fix a total function fo € D. A sufficient set of examples
for fo is the class of functions f; such that f;({) = fo(¢), and f;(J) is undefined for j # 1.
A presentation usually takes the form of pairs (7, f;(¢)). Clearly, fo 2 f; for all ¢, and
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fo is uniquely determined (up to equivalence modulo k) by the values f;. Only positive
examples are necessary in this case.

Inference of functions using this model has been the subject of many studies, including
[Blum-75}, [Pitt-84], and {Summers-77]. Of course, much of the difficulty associated with
this type of inference problem lies within the oracle ASK. FAN

It is not necessary to define examples such that the target expression dominates (>)
its positive examples: we could just as well take as positive examples those that dominate
the target. The definition of a sufficient set then applies to the dual partial order <. In
general it will depend upon the domain as to whether it is more convenient for examples
to be smaller or larger than the object they exemplify, and we shall encounter both
situations. During the exposition, however, we shall proceed as if the examples are
below the target.

Corollary 3.14 Algorithm 3.9 identifies do in the limit when EX {s an oracle for a
sufficient set of examples.

(For, the while clause ensures that the algorithm converges to the first expression in
the enumeration that also belongs to the set £s.) [

At the risk of exhausting the reader’s patience, we have cast inductive inference prob-
lems in a general form which includes a large class of particular problems as instances.
Gold’s “identification by enumeration” algorithm is a natural outgrowth of the defini-
tions, as perhaps the simplest possible procedure for identification in the limit. The close
relationship between inductive inference problems and search problems is also brought
out when presented in this way. To some extent, conventional search algorithms, such as
binary search, can be viewed as special case of a more general inductive search problem
on a partially ordered set. While we will not pursue this idea further in this report, it
probably merits further study.

3.3 Refinements

Sometimes the syntax of the expressions in £ bears little or no relation to the algebraic
structure of D. (For example, £ could be integers written as Roman numerals.) But
in most cases of interest, there is a partial ordering or a quasi-ordering ! of £ that is
closely related to that of . For example, if regular expression R; denotes a set |Ry|
and R, denotes |R;|, then R; + R denotes |R;|U|R2|. Let = be an ordering on regular
expressions with the property that Ry + Rz > R; and R; + R2 = R, for any expressions
R;, Ry. Then the map h from regular expressions to regular sets preserves this aspect of
the ordering: h(R; + Rz) 2 h(R1) and h(R, + R2) 2 h(R2).

LA quasi-ordering is a binary relation that is reflexive and transitive but not antisymmetric. We shall
use the term ordering ambiguously to designate either a quasi-ordering or a partial ordering.
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Definition 3.15 Let > be an ordering of £, 2> a partial ordering of D, and h a mapping
from & to D. Then h is said to be an order homomorphism if h(ey) > h(ez) whenever
e1 = eg. If in addition ey > ex whenever h(e,) > h(ez), then h is called an order
quasi-isomorphism.

Example 8.16 The algebra of Boolean expressions was defined in Example 3.5. A quasi-
ordering on the expressions is obtained by defining ¢; > ez iff ¢; Ney 3 eg. It is easily
shown that > is indeed a quasi-ordering, and that an equivalent characterization is to
define e; > ep iff 1 Ueg ~5 €;.

We can also show that k is an order homomorphism: If e; > eg, then ¢; Nes = eq,
i.e., , h(ey Nez) = h(ez). But h(eg Ne2) = h(er) N’ h(ez) (where N’ is set intersection on
D). Hence h(ey) 2 h(eq).

This argument can be reversed to show that h(e;) 2 h(ez2) implies e; > e2. Thus we
can show that A is also an order quasi-isomorphism. FAN

Just as the relation ~ on £ enables us to speed up searches by eliminating an entire
class of expressions with a single test, a suitable relation > on £ can speed up inference
by allowing us to eliminate from consideration the class of expressions related to another
expression by >. If ¢ is found to be too general, i.e., ASK(e > —z?) = 1 for some
negative example —~z, then all expressions ¢’ > ¢ can be eliminated. Similarly, if ¢ is not
general enough — ASK{e > +2?) = 0 — then all expressions ¢/ < ¢ can be skipped.
And as with the ~ relation, we need a finite representation of > in order to work with
it.

Henceforth, we assume (unless stated otherwise) that h: & — D is an order homo-

morphism.

Definition 3.17 A downward refinement of £ is a finitely aziomatizable subset p of
& x € such that ey peq implies h(e;1) 2 h(e2).

We also have the dual definition:

Definition 3.18 An upward refinement of £ 13 a finitely aziomatizable subset p of £ x €
such that ey vy eq tmplies h(ey) < h(ez).

We denote by p(e) the set {e’ | epe’}. p(e) can be recursively enumerated by listing
the pairs e; pe; and selecting those for which e, = e. p* represents the reflexive-transitive
closure of p. Similar remarks apply to ~(e) and to +*.

Definition 3.19 Let e be any ezpression tn £. A downward refinement p 1is complete for

e if h(p*(e)) = {d | d < h(e)}. Likewise, v is complete for e if h(v*(e)) = {d | d 2 h(e)}.
A refinement that i3 complete for every expression in £ 1s stmply termed complete.
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Intuitively, p is complete for e if we can obtain at least one representation of every
semantic item d < h{e) by repeatedly refining e.

Finally, a refinement p {or v) induces a natural ordering > on & as follows.

Definition 3.20 If p (v) is a downward (upward) refinement on £, then the associated
ordering > (<) is p* (v*).

Several easy observations follow from these definitions. First, h is an order homomor-
phism: if e; = ez then e; p* ez and hence h{e;) 2 h(ez); similarly for <. Also, if e; < e
and e; > ez then h(e;) < h{ez) and h(e1) 2 h(e2), so that e; ~ e2. Note, however, that
€1 > eg does not imply that e; < e;, since these two orderings may be associated with
unrelated refinements p and «, respectively. Given a downward refinement, its inverse
p~! is an upward refinement, and similarly for v~!. From an axiomatization of p we
obtain an axiomatization of ¥ = p~! by conjoining the axiom: :

€1 pe2 —+€e279¢€)

(and dually). Is the inverse of a complete refinement is also complete? Not in general:
let & = {e1, €21, €22, €31, €32}, With e3; ~ €22 and eg; ~ egz; then if p(e;) = €21, p(e21) =
es1,p(e22) = es2, p~! is not complete. However, we have the following:

Lemma 3.21 If p s ¢ downward refinement and h is an order quasi-tsomorphism for
>, then p and p~1 are complete refinements. (And dually).

Proof: Given any e; € £, we let d be any object in D such that h(e;) = d. Since h
is onto, there exists eq € £ such that h(ez) = d. Since h is an order quasi-isomorphism,
h(e1) 2 h(ez) implies e; > eq, so that ez € p*(e1). Hence p is complete.

Now let v = p~1. Suppose d' > h(e;1). If h(eh) = d’, then we have shown that p*(e})
contains e;. Thus 4*(e;) contains 5. Hence « is also complete. O

Example 3.22 We obtain refinements for Boolean expressions by adding to the axioms
in Figure 1 the following:

epNex s ex — e peg
eyNex ey —+exve)
Having already noted that h is an order quasi-isomorphism for the ordering e; > es
iff e; N ey = ez, we conclude from the preceding lemma that p and 4 are complete.

Similarly, we obtain complete refinements for Regular expressions by adding to the
axioms in Figure 2 the following:
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e1t+ez ez —eLpeg

e1+ex ey —+exvey

3.4 Inference Algorithms Using Refinements

Let us now formulate inference algorithms that take advantage of a complete refinement
to improve the basic identification-by-enumeration approach. With the ordering comes
the notion of upward and downward directions, so algorithms for both directions are
given. Note that, unlike the regular-expression example given above, no assumptions
are made about the syntactic domain beyond those necessary for the refinement. This
generality leads to more complex algorithms. Subsequently we shall add new definitions
and assumptions and thereby obtain simpler, more useful, algorithms.

There are two principal difficulties to be overcome. First, although the sets v(e) and
p(e) are r.e. for any fixed e, they may not be finite sets. So instead of computing all
refinements of e and adding them to the queue, the algorithm dovetails the computation
of 4(e) or p(e) with the other iterations. Later we shall assume finiteness properties of
refinements and simplify the general algorithm, but for the present we are retaining as
much generality as possible.

" Second, the existence of an ordering does not imply the existence of largest or smallest
elements in the domain £. So instead of selecting a minimal (or maximal) element as the
initial hypothesis, as was done above for regular expressions, the algorithm still relies on
some arbitrary enumeration of the expressions to generate hypotheses until such time as
it is able, using the information about the ordering given in the examples, to locate an
expression above (or below) the target. Thereafter it can refine its way up (or down) as
for regular expressions. Later we shall assume the existence of bounding elements and
simplify the algorithm.

The upward and downward cases are inherently different. The examples tell us ex-
pressions e such that h(e) < do, but not expressions e’ such that h(e’) > do. Hence, in the
upward direction, the first positive example is an expression that bounds the target from
below and enables the algorithm to ignore all hypotheses but upward refinements of that
example. In the downward direction, however, the negative examples may include both
expressions which bound the target from above and those which are incomparable to it.
The algorithm cannot be sure that there is even one upper bound among the negative
examples, and even if there is an upper bound, it cannot identify which examples are
upper bounds. Hence it refines downward every expression not known to be too small.
There are three enumerations being dovetailed in this algorithm: the enumeration of all
expressions £; the enumeration of p(e) for particular expressions e; and the succession
of refinements p(e), p(p(e)),... for these expressions. Of course, the algorithm would
converge with only the first of these (it then is just identification by enumeration), but
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3.4 Inference Algorithms Using Refinements 25

with the refinements we expect it to converge more quickly. In summary, the upward
direction seems to be more interesting than the downward for the fully general case,
when examples lie below (<) the target.

In the algorithms to follow, the notations v(e, n) and p(e,n) are used to denote the
expressions, if any, in 7(e) and p(e) obtained in exactly n computation steps 2. Although
~(e, n) may not yield any expression for a particular value of n, every expression in ~(e)
is 4(e,n) for some n (and likewise for p(e,n)). In the downward case, we extend the
notation so that p(e,0) =e.

Algorithm 3.23 Inference by Upward Refinement

Input: An enumeration £ = ey,... of the expressions.
A complete upward refinement, v
An oracle ASK(e; > e2?) for =
An oracle EX() for a sufficient set of examples of do

Output: A sequence of expressions Hy, Ho,..., such that H; is correct for the
first 1 examples.

Procedure: Q — emptyqueue(). (Queue elements are pairs, [e, n], where ¢ € £ and
n >0)
ezamples — emptyset()
11
H «— ¢; (current hypothesis initialized to first expression in
the enumeration)
repeat
Call EX() for a new example, z
Add z to ezamples.
if z is a negative example, then

comment (so far we have gotten only negative examples)

while ASK(H 2> ¢?) = 1 for any example e
T—1+1

until z is a positive example.

comment (at last we have a lower bound z for the target and we can
start refining our way upward)

2A computation step is any suitable discrete measure of computational work, such as a resolution
operation on a set of sentences or a single application of the state-transition relation for Turing machines.
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He—rz

Output H.

do forever
Add an example EX() to ezamples
while H disagrees with some example

if too.specific(H) and not too_general(H)

then add [H, 1] to Q. (commence dovetailing the
refinement ~(H))

H — nezt_hypothesis()
Output H

where
next_hypothesis() is:
repeat

Remove the next entry from the head of Q. Let it be [e, n]
(representing (e, n)).
Add [e,n + 1] to Q (to continue the dovetailing)
H — ~(e,n) (this may or may not yield an expression)
until H has a new value

too_specific(H) is:
if ASK(H > e?) = 0 for some positive example +¢ € ezamples,
then return true else return false

too_general{H) is:
if ASK(H > e?) =1 for some negative example —e € ezamples,
then return true else return false &

Theorem 3.24 Algorithm 3.23 identifies do in the limit.

Proof: The argument combines elements from the proofs of Theorems 2.2 and 3.10.
The algorithm tests every hypothesis against every example; with our assumptions about

the sufficiency of the examples, we can conclude that eventually any incorrect hypothesis
will be discarded.

Suppose the target object do is minimal with respect to >, so that there may be no
positive examples. Then the algorithm will never escape from the repeat loop. But

this loop coincides with that of Algorithm 3.9, which we already have shown to converge
correctly.
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Otherwise, a positive example does occur, and becomes the first hypothesis. All
subsequent hypotheses are ~4-refinements of this expression, which we label Ey. Com-
pleteness of 4 ensures that there is a smallest integer n > 0, and a chain of expressions
Eo,...,Ey, such that h(E,) = do, and for all 0 < i < n, E; € v(E;~1). Recalling that
the computation of ~ is dovetailed, we know there are integers ky, ..., k, (assumed to
be as small as possible) such that E;yy = v(E;, ki+1) for 0 <1 < n. k4, represents the
number of computation steps required to compute E;; from E; using .

As we did in the proof of Theorem 2.2, we assume the algorithm diverges and argue
that E, must eventually become the current hypothesis. This leads to the contradiction
that E,, a correct hypothesis, must be discarded.

We argue, again by induction, that E; eventually becomes the hypothesis H, for
0 <1 < n. For Ep this is clear. Assume E; is the hypothesis ( < n). Since E; < E,,
the only counterexample for which it fails is a positive example (for which E; will be
too specific). Thus [E, 1] is added to Q. Q is finite; and since, by assumption, every
hypothesis is ultimately discarded, the routine nezt_hypothesis is called infinitely often.
Hence [E;, 1] will reach the front of the queue, and [E;,2] will be placed on the end.
Continuing the argument in this fashion, we conclude that [Ei, 7] will be enqueued for
all ;7 > 1 and will make its way to the front of the queue, to be considered as the next
hypothesis. In particular, [Ey, k;41] will be at the front, and the next hypothesis will be
~(E;, ki41), which is just E, ;.

We conclude that E, will become the next hypothesis. O
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Algorithm 3.25 Inference by Downward Refinement

Input:

Output:

Procedure:

An enumeration £ = ¢;,... of the expressions.

A complete downward refinement, p

An oracle ASK (e; 2 e3?) for >

An oracle EX() for a sufficient set of examples of dg

A sequence of expressions Hjy, Hs,..., such that H; is correct for the
first 1 examples.

Q — emptyqueue(). (Queue elements are pairs, (e, n], where e € £ and
n>0.)

ezamples — emptyset().
§e=1
H — ¢; (current hypothesis)
do forever
Add an example EX() to ezamples
while H disagrees with some example
te—1+1
Add [e;, 0] to @ (dovetail the enumeration with the
refinements)
if too_general(H) and not too_specific(H)
then add [H, 1] to Q (begin refining H)
H — nexzt_hypothesis()
Output H

where
nezt_hypotheais() is:
repeat
Remove the next entry from the head of Q. Let it be [e, n].
if n > 0 then add [e,n + 1] to @ (continue dovetailing)
H «~ p(e,n) (this may or may not yield an expression)
until A has a new value

too_specific(H) is:
if ASK(H 2 e?) =0 for some positive example +¢ € ezamples,
then return true else return false

too_general(H) is:
if ASK(H > e?) = 1 for some negative example —¢ € ezamples,
then return true else return false &
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Theorem 3.28 Algorithm 8.25 identifies do tn the limit.

Proof: The proof follows closely that for Theorem 3.24, with the following differences.
Since we are refining downward, we need an expression representing an upper bound for
do. But positive examples provide us with only lower bounds, and negative examples do
not distinguish the upper bounds from the incomparable expressions. So this particular
algorithm relies on the enumeration of £ to produce a bound for do.

We are never sure that Q contains an upper bound for dgy, so each iteration of the
while loop adds another expression from the enumeration of £ to the queue. (This also
prevents the queue from being exhausted during the search for a replacement hypothesis.)
At some time, therefore, an expression Ej is placed on Q with the property that p" (Ep)
contains a correct hypothesis for dg, for some n. From this point on, the argument of the
preceding theorem applies to show that convergence to a correct hypothesis is necessary.

O

3.5 Improvements

While the above algorithms for inference by refinement are not practical, they are (in
a very weak sense, due to [Gold-67]) as good as possible in that no other deterministic
inference algorithm is uniformly faster. (An algorithm is deterministic if its output is a
function only of its input.)

Definition 3.27 If A and A’ are deterministic inference algorithms over the same do-
matn and depend upon the same class of oracles EX for ezamples, we say that A is
uniformly faster than A’ if: (i) for any target dy and any presentation, A requires no
more ezamples than A’ before it converges to a correct hypothesis; and (i) for some do
and some presentation, A requires strictly fewer examples than A’ to converge to a correct
hypothests.

Theorem 3.28 (Gold) There is no deterministic algorithm for identification in the limit
that is uniformly faster than Algorithm 3.9. (The same holds for Algorithms $.28 and
3.25).

Proof: Let A be an inference algorithm such that, for a target do and a presentation
EX(), A is faster than Algorithm 3.9. Then if A converges after the n’th example,
Algorithm 3.9 converges after the n + k’th example, for some k > 0. Following the n’th
example, Algorithm 3.9 outputs as its guess some expression e such that h(e) = dp, and
the presentation of dy agrees with that of EX() for the first n examples. This is clearly
possible since Algorithm 3.9 outputs hypotheses that are consistent with all examples it
has seen. Since both algorithms are deterministic, their input/output behavior will be
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identical. But Algorithm 3.9 will converge correctly after the n’th example, and A4 will
converge only after more examples. d

The above result shows that we cannot improve the basic Identification-by-
Enumeration algorithm in the worst case, insofar as the number of examples is concerned.
Other quality factors, however, can be improved: the number of tests ASK(e; > e;7),
the size of the queue, and so on. Complexity analysis is not within the scope of this work,
but we wish to show how to take advantage of specific properties of the refinements and
the ordering to simplify and improve the basic algorithms given above. Ultimately we
shall obtain inference algorithms that look very much like the ones for regular expres-
sions. The conclusion of all this, then, is that with a few simple assumptions about
the structure of the syntactic representation language £, we obtain both upward and
downward inductive inference algorithms, similar to the ones for regular expressions.

In the following, where there is no need to distinguish upward and downward refine-
ments, we shall simply use the term refinement generically and denote it by p. And
where specific examples or algorithms are given, we shall use a specific direction, with
the understanding that a similar discussion holds for the other direction.

3.5.1 Separating » and ~

The ordering > typically includes at least some elements of the relation ~. Thus the
refinement p(e) will in general produce new expressions that are semantically equivalent
to e. It would be desirable to recognize these, so that algorithms would not have to
propose them as hypotheses. For example, suppose the regular expression (10* + 01*)
is too general, and its refinements include ((10* + 01*) + (10* + 01*)) and 10*. The
former is equivalent to the original expression and, like its parent, is too general, so we
need not consider it as a hypothesis. It does need to be enqueued, however, because
its refinements are needed to maintain the completeness property of p. But the latter
expression is strictly less general than its parent and is therefore a suitable hypothesis.

Definition 3.29 A refinement p i3 said to be completely separable if it can be decom-
posed into two disjotnt refinements ps and p= such that

e1 € p5(e2) = h(e2) > h(e1)
e1 € p=(e2) = h(eq) = h(ey)

Stmilarly, for v the corresponding decomposition is v and .

In practice, such a decomposition may be difficult, but an approximate decomposition
is often nearly as good.
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Definition 3.30 A refinement p 1s said to be partially separable tf it can be expressed
as the union of two (not necessarily disjoint) refinements p> and p= such that

e1 € px(e2) = h(e2) 2 h(e1)

e1 € p=(e2) = h(ez) = h(e1)

Similarly, for 4 the corresponding decomposition is v< and ~=.

Example 3.31 If ~ is a decidable relation, then any refinement is completely separable:
e1 € p>(e2) if e; € p(ez) and e; % ez. Such is the case with both Boolean and regular
expressions. A

Algorithm 3.32 (in the figure below) illustrates the use of the separability of the
refinement. It follows the procedure of Algorithm 3.25 with these modifications:

1. Queue entries are triples {Z, ¢, n], where Z is either “>” or “~”, € is an expression,
and n is a non-negative integer. [, e, n] represents the expression (if any) obtained
in exactly n computation steps of pa(e). [>, ¢, n] is similar for p5.

2. Whenever H is found to be too general, add both {~, H, 1] and [>, H, 1] to the
queue. This schedules the (dovetailed) enumeration of both ps and ps.

3. The procedure next_hypothesis is replaced by one which checks the first component
(Z) of the triple, and if it is ~, it refines and requeues it without using it as a
hypothesis.

3.5.2 Locally Finite Refinements

The complications of the algorithms in the previous sections have resulted in large part
from the need to dovetail the calculations of p(e) for expressions e with the rest of the
inference procedure. If we can find a refinement p(e) which yields a finite set for every
expression e, and if we can construct a recursive procedure to enumerate that finite set
(and halt), then the dovetailing can be eliminated.

Definition 3.33 A refinement p is said to be locally finite if, for all e € £, the set
ple) ={e’' | epe'} is finite.

Example 3.34 The refinement for Boolean expressions shown in Example 3.22 is not
locally finite. For instance, according to the axiom e; Neg A e2 — €3 p ez, the infinite set
e,eNe,eN (eNe), etc. are all in p(e). In Figure 4 we exhibit a different refinement p

for Boolean expressions. By inspection, p is partially separable into 2 and =, and =
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Algorithm 3.32 Downward Inference with a Separable Refinement

Input: A recursively enumerable set £ = ey, ... of expressions.
A complete, downward, separable refinement, p = pay U p>..
An oracle ASK (e; 2 ea?) for >
An oracle EX() for a sufficient set of examples of dy

Output: A sequence of expressions Hy, Ha,..., such that H; is correct for the
first 1 examples.

Procedure: Q «— emptyqueue(). (Queue elements are triples, [Z, ¢, n].
See text discussion. [>, e, 0] represents e.)
ezamples — emptyset().
i—1
H — ¢y (current hypothesis)
do forever
Add an example EX(} to ezamples
while H disagrees with some example
T—1i+1
add [>,e;,0] to Q (dovetail the enumeration)
if too_general(H) and not too_specific(H)
then add [~, H,1] and [>, H, 1] to Q (refine H)
H — nezt_hypothesis()
Output H

where
nezt_hypothesis() is:

repeat
[Z,e,n] — nezt(Q)
Add {Z,e,n + 1] to Q (to continue dovetailing)
if Z is “~”
then add [>, px(e, n), 1] and {=, px(e, n), 1] to @, provided

p~(e,n) is an expression (continue refining)

else (Z is “>”) H «— p5(e,n)

until H has a new value

too_specific and too_general are as in Algorithm 3.25. ¢

Figure 3: Downward Inference with Separable Refinement
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is a subset of ~ shown in Figure 1. The relation 2 includes some elements of =, since
z; M false = false M false, even though these two expressions are equivalent (~).
It is tedious but not difficult to check that the two refinements in Figures 1 and 4

give rise to the same ordering >. One must show that every rule in one figure can be
proved in the other, and conversely.

The proof that p is locally finite consists in showing that both = and 2 are locally
finite. This in turn is a mostly straightforward induction on the size of the expression

being refined. The finiteness of 2 for expressions of the form ~e presents the only
difficulty. We assume that e is of size k and inductively that ps (e) is finite. (p>(e) is the

> .
set {¢’ | e = ¢'}.) From the axiom
> g r >
€] =€) — ~eE) = ~ey

the set ps (~e) consists of all expressions ~e’ such that ¢’ = ¢. But with the observation
that each refinement rule for = preserves the size of the expression, we know that ¢’

and e are the same size. Thus the number of expressions ~¢’ such that e 2 ¢ must be
finite.” A

Henceforth, when we say that a refinement is ”locally finite,” we shall implicitly
include the condition that there is an algorithm to compute p(e) for any expression e.

Algorithm 3.35 (below) follows the procedure of Algorithm 3.32 with these modifica-
tions:

1. Queue entries are simply expressions ¢ € £.
Instead of adding [e;, 0] to Q, simply add e;.

. Instead of adding [e;, 1] to @, add each expression in the (finite) set p(e;) to Q.

N O

. The procedure next_hypothesis is now simply: Remove the front expression from Q
and make it the current hypothesis, H.

3.5.3 Bounding Expressions

As noted above, another major source of complication in the basic Algorithms 3.23 and
3.25 is the need to find an expression which bounds the target: h(e) < dp in the former
case, h(e) 2 dop in the latter. Having done so, the algorithm proceeds to refine e and test
the resulting expressions in sequence against the examples.

Oftentimes one can write down an expression which is most (least) general: for exam-
ple, true or false, in the case of Boolean expressions. If we begin with such an expression
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Note: The refinement p is the union of 2 and S — isa logical symbol of the ax-
iomatization denoting implication. N, U, ~ are the Boolean operations. z;,..., z,, true
and false are the Boolean constants. e;,e}, etc. are variables of the axiomatization

representing arbitrary Boolean expressions.

>
ey = ez —

p €1pe2
€L = €2 - e1pez
> > .
= true S z; (for 1 €7 < n)
>
z; = false
> 4 >
e1 = e — e1MNex = e Neg
> >
ey ey — epUer = e Uey
> ;) >
ey = e - ~el = ~eyp
= C]_n&zsegncl ey Uey = ea Uey

e N (61 U true) = ey
e N (61 U 2‘,‘) s €1
e1 N (e; U false) = ¢,

e N (62 U 63) = (61 n 62) u (61 n 63)

true n false = false
z; Nfalse = false
false N false = false
true N ~true = false
z; N ~z; = false

false N ~false = false
€1 6'1 5 €1

e1Nez =€ Nez
ey Ueog = 6'1 Ueq
~ey 5 ~e’1

€1
€1

I

= e
e1 > ¢}
= e
S é

ep U (61 n false) = ey
er U (61 N CL',') = €1
ey U (61 n true) = (31

e1U(ezNes) = (e1 Ueg) N'(eg Ues)

true U true = true
z; Utrue = true
false U true = true
true U ~true = true
z; U~z = true

false U ~false = true

Figure 4: Locally finite refinement for Boolean expressions
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Algorithm 3.85 Downward Inference with a Locally Finite, Separable Refinement

Input: A recursively enumerable set £ = e, ... of expressions.
A complete, downward, locally finite refinement, p = pay U p>.
An oracle ASK (e) 2 e2?) for 2
An oracle EX() for a sufficient set of examples of do

Output: A sequence of expressions H, Ha, ..., such that H; is correct for the
first { examples.

Procedure: Q — emptyqueue(). (Queue elements are expressions.)
ezamples — emptyset().
t—1
H «— ¢, (current hypothesis)
do forever

Add an example EX() to ezamples
while H disagrees with some example
t—1+1
add ¢; to Q. (continue the enumeration)
if too.general(H) and not too_specific(H)"
then add the expressions p(H) to Q.
H — nest(Q).
Output H

where

too_general and too_specific are as in Algorithm 3.25. $

Figure 5: Downward Inference with Locally Finite Refinement
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as the current hypothesis, the algorithm can proceed without having to enumerate £.
The refinement can also be simplified, since it need be complete only for the starting
expression, not all expressions.

Definition 3.38 An expression & is said to be maximal if there is no e € £ for which
h(e) > h(&). & is said to be a top element of £ if h(g) = h(e) for alle € £.

Dual definitions apply to minimal and bottom ezpressions.

Example 3.37 Let L and V be finite, disjoint alphabets. V will be interpreted as a set
of string variables. We define the class of pattern languages over (L, V) ([Angluin-80}) as
follows. A pattern is a string in (EUV')*. The language L(p) generated by the pattern p
is the set of strings derived from p by non-erasing homomorphisms from V to L*. The
class of pattern languages over (X, V) is the class of languages generated by patterns over
those alphabets.

Let £ be the set of patterns, and D the languages they generate, ordered by inclusion.
Any single-variable pattern v is a top element for 0, since it generates £*. By contrast
there is no bottom element: indeed, there is no finite set of minimal elements, since all
strings in £+ are minimal. A

The following is a slight generalization of Definition 3.19.

Definition 3.38 Let M = {&y,...,8,} be a finite set of mazimal ezpressions, The re-
finement p is said to be complete for M if h({, p*(&)) = D. That is, |J; p*(&) includes
at least one ezpression for everyd € D.

Algorithm 3.40 (below) follows the procedure of Algorithm 3.32 with these modifica-
tions:

1. Initially H — 2; and Q — {&2,...,&}.

2. Steps concerned with the enumeration of £ are unnecessary.

Note that this algorithm is essentially that of Algorithm 2.3.

Example 3.39 The regular expression refinements used in Section 2 are both locally
finite and complete (modulo equivalence) for ¢ upward and £* downward. They can be
partially separated if the rules E* — E and o; — ¢ are made into a separate relation Z.
The algorithms of that section take advantage of all three of these properties and can be
viewed as a fusion of Algorithms 3.32, 3.35, and 3.40. A
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Algorithm 3.40 Downward Inference, given a “Top” Ezpression

Input: A recursively enumerable set £ =¢,,... of expressions.

A locally finite, downward refinement complete (modulo ~) for a set
M =g,,...,& of maximal expressions.

An oracle ASK (ey 2 e3?) for >
An oracle EX() for a sufficient set of examples of dp
Output: A sequence of expressions H,, Ha,..., such that H; is correct for the
first ¢ examples.
Procedure: Q—~22,...,8
examples — emptyset().
H « & (current hypothesis)
do forever

Add an example EX() to examples
while H disagrees with some example
if too.general(H) and not too_specific(H)
then add the expressions p(H) to Q.
H — nezt(Q).
Output H

where

too.general and too_specific are as in Algorithm 3.25. &

Figure 6: Downward Inference with Bounding Expressions
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Finally, let us take note of the kinship between refinements and the class of axiom
schemes known as Term Rewriting Systems (TRS). ([Huet-80] presents a good overview
of this topic.) TRS’s have been applied to such problems as code optimization, automatic
theorem proving, and the implementation of abstract data types.

A TRS consists of a set of rewrite rules of the form o = 3, representing the substi-
tution of an occurrence of 4 for one of « in an expression (“term”). In its most general
form, a TRS is a type-0 grammar ([Hopcroft-79]), but the interesting results occur when
restrictions are imposed upon the reductions. Among the desirable properties of such
systems are those of being Noetherian and confluent. A relation = is Noetherian if there
are no infinite chains z; = --- = z, = ---, and confluent if, for all z, if y; and ¥
exist so that £ = y; and = = yg, then there is a term z such that y; = z and y; = =.
Relations with both properties have the Church-Rosser property: for every z there is
unique £ such that z = # and # is irreducible with respect to =. Among the interesting
problems associated with TRS’s is that of determining when a system has the Church-
Rosser property, for then there is a decision procedure to decide whether two terms are
interconvertible. Knuth and Bendix ([Knuth-70]) gave a partial decision procedure for
deriving a confluent reduction system from equational axioms. When it converges, the
procedure yields an effective decision procedure for equational theories.

A refinement p is also a form of rewrite system in which one expression is replaced
by another in p(e). Most refinements are not Noetherian, for most expressions have an
infinite chain of reductions (e.g., ¢ = e+e = e+e+e = etc.). But when p~! is Noetherian,
there is a complete set of maximal expressions, from which any other expression can be
derived. And when p~! has the Church-Rosser property and the (graph of the) relation
p is connected, it is easily shown that there is a unique top element.

Viewing p as a TRS raises a number of interesting questions. Given a complete,
separable refinement p = ps U pa, can we use the Knuth-Bendix procedure on p to
obtain a decision algorithm for >=? If so, then the oracle ASK(e; 2 e2?) can be replaced
by such an algorithm. Even if not, the procedure might suggest ways to obtain partial
refinements for maximal expressions which are more efficient. In practice, we find that
p3! U pa is an upward refinement (assuming p is a downward refinement), but it may
not be complete, even if p is. An interesting problem would be to characterize the
types of reductions for which completeness and other properties (e.g., local finiteness)
are preserved by this transformation.
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4 Applications to Logic

The definitions and the algorithms described heretofore apply generally to structures
with a suitable relationship between the syntax and the semantics. We now specialize
the development to the domain of first-order logic. In the bargain, we shall

® re-interpret and generalize Shapiro’s model-inference algorithm.
o characterize all possible refinements over a given first-order domain.

e obtain an inference algorithm that takes advantage of normal-form properties.

4.1 Inferring Classes of Propositional Models

We adopt a standard notation for the symbols of our first-order languages; this usage
supersedes that of preceding chapters. Predicate symbols will be denoted p, p1, p2, ... and
¢, 491,92, .. .. Non-constant function symbols are drawn from f, fi, f2,...and g, 41, g2, .- ..
Constants will be indicated by ¢, ¢1,¢2,.... We consider only first-order languages with
at least one constant and at least one predicate symbol. Predicate symbols of zero arity
(propositions) are equivalent to the “Boolean variables” we used before. Logical variables
will be drawn from z,2z;,22,... and y, y1,y2,.... We use the symbols A,V,~ —, and
+~ to denote the connectives for conjunction, disjunction, negation, implication, and
equivalence, respectively. Sometimes the A will be implicit in a juxtaposition, especially
in DNF expressions such as p;p2 V ¢1¢2. The traditional rules for operator precedence
are assumed. Finally, clauses of the form a3 V.-V a, V~8; V.-V ~f, will usually be
written ay,...,ap — B1,...,Fa.

Consider anew the problem of inferring a propositional formula (Boolean expression).
Fix a language ~ in this case, a finite set of propositions P = {p1,...,pt} - and take
as the semantic domain D the class of all sets of assignments A : P — {true, false},
22' in number. The syntactic domain & is that of well-formed logical formulas using
the propositions P and the connectives. The meaning h(¢) of a formula ¢ is the set of
assignments which satisfy it. A~1(8) is the set of contradictory (logically false) formulas,
and if § is the set of all assignments to the variables, then A~1(S) is the set of tautologies.
D is partially ordered by set inclusion. The refinement of Example 3.22, rewritten in the
current notation, is: e¢; € 4(e) iff  (e; A e} — e. Equivalently, e; € y(e) iff F (e — ;).
Logical implication is reflexive and transitive, so < is precisely the implication relation,
and h is an order quasi-isomorphism.

Let do be a set of assignments to . Examples of dg usually take the form of minterms
(conjunctions of ¢ literals , one for each propositional symbol, such as py A~pa A---Ap; ),
or maxterms (disjunctions of t literals). Minterms are precisely the formulas denoting a
single assignment; maxterms are those satisfied by all but one assignment. Consequently
the set of minterms (resp. maxterms) are a complete set of examples for any dy. More
formally:
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Proposition 4.1 Let ey and e; be propositional expressions such that, for any minterm
m, ey — m 13 valid iff e; — m 13 valid. Then e, and ez are logically equivalent.

Proof: Let my,...,m; be the finite set of minterms implied by e, and e;. Then e;
and e; are both logically equivalent to the DNF expression m; V - - -V m; and hence to
each other. a

Similarly,

Proposition 4.2 Let ey and e3 be propositional expressions such that, for any mazterm
M, M — e, is valid iff M — e3 is valid. Then e; and eg are logically equivalent.

4.2 Inferring Classes of First-Order Models

These ideas generalize to first-order languages. A sentence @ in a language £ can be
thought of as denoting a set of Herbrand models which satisfy it. If © is contradictory,
it has no models; if tautologically valid, it is satisfied in every (Herbrand) model 3. If
H is the set of ground (variable-free) atomic formulas constructible from the non-logical
symbols of £, then the semantic domain of inference D is the class 22" of classes of
subsets of H. For example, the sentence ¢ = Vz;p(z,) A Vza~q(f(z3)) denotes those
subsets of H which, for every ground term ¢, contain p(t) and do not contain q(f(t)). In
general D may be uncountable, and most subsets of H have no first-order representation
in £. The mapping h : & — D carries a sentence to the set of models in which it is
satisfied.

As with propositional logic, D is partially ordered by set inclusion. With the refine-
ment ey € y(e) iff F ¢ — ¢;, & is ordered by implication. (More useful refinements are
considered below.) As in the propositional case, A is an order homomorphism.

Let do be a class of models. How do we present examples of dy? Following the
propositional analogy, we could present sentences which have exactly one model; if that
model is in dg the sentence is a positive example, and a negative example otherwise. Or
the dual approach is possible: present sentences satisfied by all but one model, with the
example being negative iff that model is in dp. But the sentences with unique models
are those which are minimal with respect to X, i.e., , for which there is no inequivalent
sentence 1 such that ¢ — . It can be shown, by reduction from Church’s Theorem,
that this set is not recursively enumerable. And whether this set constitutes a complete
set of examples for a class of models is not clear. So this approach to examples for classes
of models is not very promising.

Fortunately, there is another way. Following Shapiro, we assume that the language £
is expressive enough that we need consider only sentences in clause form: conjunctions of

3Henceforth whenever we refer to a model, we shall implicitly mean a Herbrand model.
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universally quantified clauses. * This restriction to clause-form sentences is convenient
for the use of formal resolution proofs. The following theorem then shows that the ground
clauses are a sufficient set of ezamples for any (definable) dp € D.

Definition 4.3 Let ¢ be a sentence in clause form. The ground implicands of ¢ are
the set C§[p] of ground clauses implied by p. We denote the complement of Cg[p] by
Co el

Example 4.4 The ground implicands of Vz(p(¢, z) vV ~p(z, ¢c)) Ag(c) are g(c) and clauses
of the form p(e,t) V ~p(t, c), where t is a ground term in H. A

Theorem 4.5 In a first-order language L, let o, and 3 be clause-form sentences. And
for any sentence o in L, let hy (@) be the class of models in which o i3 satisfied. Then
hm(p1) 2 hm(p2) iff CFlp1] € CFlw2]. (Roughly, the number of models of a sentence
has an inverse relationship with the number of ground implicands.)

Proof: Assuming that any model of w2 is a model of o;, suppose ¢; + ¢ where
cE C{,*’[qpl]. Let m be any model of w;. Then m is a model of ¢; and hence verifies c.
Thus 2 F c.

In the other direction, suppose Cy [¢1] 2 CF [2]. We show below that k= w3 — ;.
It then follows that any model of ¢ is a model of ¢y, i.e., , Am(®2) € Am(p1)-

To see the claim, suppose that ¢, # ©;. ¢, is in clause form, so we can write
p1 = VECy A -+ AVZc,. Let m be a model in which 7 is true but not ;. Then some
VZe; is false in m. If ¢; contains any of the variables z, then there is a ground instance c?
of ¢; which is false in m; else, ¢; is a ground clause, and we take ¢? = ¢;. In either case,
p1 F c?. Clearly g I ¢2, since then m |= ¢?. But with c¢? we have a counterexample to
the assumption that the ground implicands of ¢, include those of w2. This proves the
claim, and the lemma. O

Corollary 4.6 A first-order clause-form formula {s determined, up to equivalence, by
its ground implicands. That is, for any two clause-form formulas o, and oy, C[p1] =

Csler] i = (o1 ~ ©2) A (2 — 01).

This theorem and its corollary tell us that we can use either the class of models
satisfying  or the set of ground implicands as the semantic interpretation of the clause-
form sentence . With the former, the ordering ¢; X 2 says that ¢, — ¢o; with the
latter, w2 — 1; so the two interpretations are duals. The class of models is perhaps
more intuitive, but it suffers one disadvantage: by using ground clauses as examples,
we are inferring sentences that are less general (<) than the examples (ground clauses

4Recall that a dause is a formula {; V.-V I,, where n 2 1 and each {; is an atomic formula or the
negation of an atomic formula.
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1. Define relatives relative(father(z), z)
relative(mother(z), z)
relative(z, y) — relative(y, z)
relative(z, y) — relative(z, z), relative(z, y)
relative(z, z)

2. Define inlaws inlaw(spouse(z), z)
inlaw(z,y) — inlaw(y, z)
inlaw(z, y) — relative(z, 2), inlaw(z,y)

3. No inlaws are relatives — inlaw(z, y), relative(z, y)

4. Relatives are wrong if George wrong(z) — loser(George), relative(z, George)
is a loser ‘

5. Inlaws are wrong if George wrong(z), loser(George) « inlaw(z, George)
is a loser

6. No relative is a loser except George  z=George « relative(z, George), loser(z)

7. No inlaw is a loser — inlaw(z, George), loser(z)
Figure 7: Example Axioms

have more models). In adapting the algorithms from the preceding sections, in which
the examples are smaller than the expressions they represent, we would have to use the
dual ordering relation (z =’ y iff z < y) and switch the roles of top and bottom, upward
and downward, etc. To avoid this confusion, we shall instead adopt the interpretation

h(p) = Cle), so that [cpl = o iff o1 — 2. l

Example 4.7 Consider the following situation. George has a problem in inter-familial
politics. His inlaws think he is a born loser, while his relatives disagree. For our part,
as neutral observers, we neither know nor care about George’s inherent worth; we do,
however, want to account axiomatically for the situation. So we define a sentence whose
models include both the possibility that George is a born loser and that he is not; in the
former, his relatives are wrong, and in the latter, his inlaws.

One set of axioms is given in Figure 7. The predicate relative(z,y) is intended to
mean that z is a relative of y. The predicate inlaw is read similarly. The predicate =
indicates equality. The other predicates and function symbols are easy to interpret. The
sentence axiomatizing the class of models is, of course, the conjunction of the clauses
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given.

Supposing that these axioms represent our hypothesis about George’s predicament,
we should seek some examples to test it. One confirming example would be the fact that
either George’s mother or his mother-in-law is wrong, since the ground clause

wrong(mother(George)) V wrong(mother(spouse(George)))

is a consequence of the axioms (as the reader can easily verify).

We would not expect to enounter loser(George) or ~loser(George) as an example,
since our axioms allow models in which the former is true and models in which the latter
is true.

Another consequence of our axioms is that George does not believe he is a loser;
specifically, the ground clause

wrong(George) «~ loser(George)

is provable from the axioms. Thus models in which George is a loser but not wrong
(presumably because he is aware of his own limitations) are excluded. If we find we
need to include such models, then the above clause is a negative example, and we would
change the axioms accordingly. Possible changes include revising relative(z, z) so that
George is not a relative of himself, or adding the possible conclusion, £ = George, to the
fourth axiom. A

4.3 Inferring Theories: Comparison with Shapiro’s Approach

In the results to follow, we shall obtain refinements for clause-form sentences and combine
them with the preceding results to obtain an algorithm that infers classes of models from
examples of their ground implicands. Before jumping into this, however, let us compare
the approach in [Shapiro-81}, which differs in several significant ways. Most important is
that Shapiro’s domain of inference is the set 2 of Herbrand models, whereas our domain
is classes of models, 22" .

In Shapiro’s system, there is a single Herbrand model M; the task of the algorithm
is to infer a clause-form sentence ¢ such that M is the unique smallest model of . Such
a sentence has the property that the set of ground atoms a such that ¢ I a is precisely
the set of elements of the Herbrand base H that are in M. Thus the ground atoms form
a complete set of examples. (Note that M is not necessarily the unique model of . For
example, any model that includes the atom p(a) is a model of the sentence p(a). The
model {p(a)} is merely the smallest one.)

We can view this in another way. A theory is a set of sentences in £ that is closed
under logical deduction. A theory T is complete iff, for every sentence o in £, either
@ €T or~p&T. If Misamodel, the theory of M, denoted Th(M), is the set of
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sentences true in M. More generally, the theory of a set of models happens to be the
set of sentences true in all models in the set. The theory of a single model is obviously
complete. The theory of a set of models may or may not be complete; but if the set of
models is closed under intersection, its theory is the theory of the smallest model in the
set, which is complete. This is the case for Shapiro’s system: it infers axiomatizations
for complete theories only.

The problem of inferring a more general class of models can also be viewed as a
process of inferring an axiomatization for a theory, but the theory need not be complete.
Positive examples are ground clauses in the theory, and negative examples are ground
clauses not in the theory. Incomplete theories are useful when one does is unable or
unwilling to specify the truth value of every ground atom in H.

The principal application of Shapiro’s system is to the inference of programs. Often
the meaning of a program is well specified, to the point that one can state whether the
output of a program for a given input is right or wrong. So-program inference is a good
paradigm for the inference of complete theories.

But many situations call for predicates with “don’t-care” outputs. Or, we may care
about the output of a program only for a restricted range of inputs. In this situation, an
incomplete theory may be more appropriate. Another situation where incomplete theo-
ries may be more useful is in incorporating theoretical terms. These are concepts based
on predicates that are not directly observable. For example, the theory of elementary
particles currently depends on the concept of quarks, particles which are not directly
observable but whose assumed properties have implications for quantities which are ob-
servable. Ideally, theoretical physicists are content with any set of axioms that correctly
implies all known observables; whether quarks or zorks are part of that axiomatization
is immaterial. So the class of models which validate the examples is the class of interest.
Generalizing Shapiro’s algorithms to incomplete theories is perhaps a necessary step to-
ward the incorporation of theoretical terms into the inference process, but it is not by
itself sufficient because the first-order language must already contain the predicates to
express these concepts, and the algorithms axiomatize a specific class of models, not any
model in an admissible class.

4.4 A Refinement for Clause-Form Sentences

Definition 4.8 For a given first-order language L, the set of most-general terms conststs
of the constants and the terms of the form f(zy,...,zn), where f is an n-place function

symbol. The set of most-general literals consists of literals of the form p(z1,...,z,) and
~p(Ty,...,2n), where p is an n-place predicate symbol (forn > 0).
Definition 4.9 Let x = ay,---ap — (1, -, 8n be a clause in a language L, where the

a’s and B’s are positive literals and the clause x is, implicitly, universally quantified over
its variables. Then p.(k{L) is the set of clauses in L derived from k by exactly one of
the following operations:
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pc(1):  unifying two distinct variables z and y occurring in % (i.e., , replacing all oc-
currences of y in & by z).

pe(2):  substituting for all occurrences of a variable z occurring in £ a most-general
term ¢ such that no variable in ¢ occurs elsewhere in «.

pc(3):  disjoining a most-general literal, ap4y or ~Br41, to &, such that no variable in
the new literal occurs elsewhere in «.

Example 4.10 Let & = p(zy, f(v1)) — p(f(x1),¥1)- In a language £ which includes the
two-place function symbol g and a one-place predicate symbol ¢, p.(x|L) includes the
clauses:

"‘P(f(l'l),l'l)
— p(f(9(x2,%2))s41)
z2) — p(f(z1),91)
p(z1, f(y1)) = p(f(21), 1), 9(22)-
A

Note that p.(x|L) is finite if we do not distinguish clauses differing only in the order in
which the literals occur, in having multiple occurrences of the same literal, or in bijectively
renaming the variables. Indeed, we shall consider such variants as syntactically identical.

The relation p.{x]|L) is essentially the “most-general refinement operator p” as defined
in [Shapiro-81].

Lemma 4.11 Over the language L, p. 18 a downward refinement for clauses complete
for 0, the empty clause. That 3, for any clause x in L, there is a clause &' in p.*(0|L)
such that k' 1s a variant of k.

Proof: See [Shapiro-81].

Definition 4.12 Let ¢ = &1 A-- Ak, be a clause-form sentence in the language L, such
that no variable occurs in more than one clause. The set p(p|L) is the set of clause-form
sentences derived from © by ezactly one of the following operations:

A(1): deleting a clause x;.

p(2): conjoining a new clause k,4; {with new variables) which is a most-general
resolvent of two (not necessarily distinct) clauses in .

A(3): conjoining a new clause x,+; (with new variables) which is in p.(%,|L) for some
: 1<:<r.
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Example 4.13 Let © be the conjunction of the following two clauses:

k1: p(f(z1)) — q(z1)
k2 —p(f(f(c))a(9(n1))

Then 5(|L) includes the sentences &y, £, £, A K2 A K3, and &1 A k2 A K4, where

k3 i —q(f(c),a(g(y2))
&e i = p(f(£(e))), q(g(c))-

K3 is obtained by unifying p(f(z;)) in x; with p(f(f(e))) in k2 and resolving. Note
that we rename the variables so that each clause has a disjoint set of variable names. x,
is obtained from x5 by substituting the most-general term ¢ for the variable Y1- A

When the first-order language £ is clear from context, we shall use the simpler no-
tations p.(x) and p(p). And as with p., 5 is locally finite, provided 5(2) and A(3) are
suitably restricted from producing two sentences with the same set of clauses, modulo
variants. And as with clauses, we consider such sentences as variants of one another and
syntactically equivalent.

The main result of this section is the following.

Theorem 4.14 j is ¢ complete downward refinement for the class of clause-form sen-
tences in L.

Proof: The proof has two parts: to show that, if ¢; € A1), then h(pg) C h(py);
and to show that, if h(p3) C h(p;), then wg (or some variant) is in 5*(p1).

The first part is easy: if 3 € j(py), then F ®1 ~ 2. For, if we obtain ¢, by
deleting a clause in ¢;, then clearly, F ¢, — 9. Likewise, by the resolution principle
[Robinson-65], o, — @, when g is obtained from ®1 by conjoining a resolvent. Fi-
nally, it is shown in [Shapiro-81] that - x; — &5 if &, € pc(x1); hence if &, is a clause of
®1, then F o — ©; A kg, Finally, if - ©; — ¢, then h(v2) € h(p1).

For the second part, assume that h(e2) C h(p1), so that @, — g is provable. We
claim that @2 (or some equivalent) belongs to 5* (¢1). Assume that w; =Ky A--- Ak,
and that o3 is a logical consequence of ®1. There is a resolution proof ©; F g, and
hence @1 F x; for each 1 < ¢ < r. Our approach is to use the resolution proof of x; from
#1 to construct a p-refinement path from ¢; to ¢; Ak;. We can repeat this construction
for each 7 and thereby show inductively that ¢, A 2 € p*(1). By deleting in succession
the clauses of ¢, (via rule 5(1)) we can then refine 1 A 92 t0 g, demonstrating that
2 € p*(p1). So the proof reduces to the case that g is a clause .

We shall retain full generality if we assume that no clause of @2 is a tautology, and
that no two clauses of o5 are variants of each other (for we can always replace ¢, by an
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equivalent sentence such that these conditions hold). Suppose that ¢, is inconsistent;
then, for any clause & it is easy to derive ; Ak from ) by j-refinements: derive 3 AT
by resolution steps, then successively add literals to 0 and refine them using p. until o
becomes «. '

We assume, therefore, that ¢, is consistent. We also assume that every clause
in ©; and @2 has its own set of variables not found in any other clause. Let o
consist of a single clause x. There is a resolution proof ¢, + x; equivalently, there
is a derivation of the empty clause 0O from the clauses of ¢; and ~k. Suppose
Kk =VE(a1(2),...,0p(2) — B1(Z),--.,Pn(2)), where Z denotes the entire set of variables
bound in x. Then

~E= ~VE(ay(B) V-V ap(Z) V~BL(Z) V- -V ~f,(2))

A
32 (~or(2) A - - A~ap(2) A B (Z) A -+ A Ba(2))

This sentence is not in clause form. To eliminate the 3-quantifiers, we extend the
language £, for purposes of this proof, by introducing new “Skolem constants” 3, one for
each variable in 2. Thus

~K[8] = ~a1(B) A A~ap(3) ABL(3) A~ A Ba(3).

Each literal of ~«[3] is variable-free and functions as an independent clause in the
derivation of O from ¢; A ~k. Note that there is a bijection between the variables
2 occurring in (2] and the corresponding constants 3 € ~«[3]. We shall utilize this
correspondence later to restore uniquely the variables Z to a formula with constants 3.

Example 4.15 To illustrate the steps of this proof, we shall develop an extended exam-
ple. Let

p1(f1(21)) — pa(21) A
w1 = { pa(fa(z2)) A
p3(fa(z3)) — p1(z3), p2(f2(z3))

k[z] = ps(fs(f1(f1(2)))) = p2(f1(2)), ps(2, 2)
“To construct the resolution proof o + &, we determine

~«lz] = 3z(~p3(f3(/1(1(2)))) A p2(f1(2)) A pa(2, 2)).

To convert this to clause form, let s be a constant value for z (which exists, according to
the 3z). Then in the expanded language which contains the new constant s,

~p3(f3(f1(f1(3)))) A
~kl[s]= { p2(fi(s)) A
pa(s,3)
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The resolution proof tree is shown in Figure 8. Notice that the clause P4(8, 9) of ~xls]
does not appear in the tree. A

The proof proceeds by converting the resolution tree into a sequence of refinement
steps. We shall label each node of the tree with an additional clause. To distinguish the
two labels, let us call the label in the original resolution tree the r-clause, and denote the
r-clause at node N by r(N). The extra clause will be termed the z-clause and denoted
z(N). First, we give an algorithm to compute the z-clauses for the nodes of a resolution
tree. Then we prove some properties of the z-clause labels that imply that these labels
are clauses obtained from ; by j-refinements from the leaves. In particular, the z-clause
at the root node will be a subclause of x, and can be further refined to exactly by a
sequence of p.-refinements.

In the resolution proof tree, we say that a node N, is a predecessor of a non-leaf
node Ny if Ny # N and there is a path from a leaf to N; that includes N;. Nj is an
immediate predecessor of Ny if it is a predecessor and there is an edge joining Ny and
N3. (This terminology is inverted from the usual tree terminology because the resolution
tree, and our modifications to it, are constructed from the leaves toward the root.)

Algorithm for constructing z-clause labels:

The algorithm proceeds in two phases. First, clauses z(N)[3] are computed for
each node N in the tree. Then the constants 3 are changed back to variables z
using the bijection noted earlier, yielding z(N).

Phase 1: The following rules describing the computation of the z-clauses proceed
from the leaves to the root.

L. If N is a leaf node, then z(N) = #(N).

For example, in Figure 8 the node marked (4) is such a node, so z(4)[s] =
p1(f1(z1)) — pa(z1). (The fact that s does not appear explicitly means that
z(4)[s] = z(4) for this node.)

2. If N is a node such that exactly one of its immediate predecessors, Vi, is a leaf
whose r-label is a literal from ~«{3], and its other immediate predecessor N is
not a clause from ~«(3], then z(V)[s] = §[z(Nz)], where § is the substitution
used to resolve r(N;) and r(Nz).

For example, in Figure 8, the node marked (3) is such a node. The substitution
used to obtain r(3) is § = {z3 « f1(f1(s))}. Applying this substitution to
z(2) yields

z(3)[s] = ps(fs(f1(f1(9)))) = p1(£1(11(5))), P2(f2(f2(f1(9))))-

3. I N is a node neither of whose immediate predecessors Ny or N, is a literal
from ~«[3], then z(N)|3] is obtained by resolution from z(/V;)[] and z(N2)|3]
via the same resolution operation used to obtain r(N) from r(V1) and r(V,).
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— ps(fs(f1(f1(NNY ps(fs(23)) — p1(z3), p2(fa(zs))@

— p1(/1(/1(3))), p2(f2 (N1 (1())®) pr(s p2(z1)®

N

p2(f2(f1(£1(8)))), p2(f1(9))®)  pa(fa(z3)) —)

Figure 8: Resolution Proof Tree. Atoms resolved upon are underscored.
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This is always possible because, as we subsequently prove, every literal in (V)

occurs in z(N)[3].

For example, the node labeled (6) in Figure 8 is such a node. Literals

p1(f1(f1(s))) and p1(f1(z1)) were unified by the substitution {z; «~ f1(s)} in

the r-clauses. The same resolution operation applied to z(3){s] (above) and
4)[s] yields

(8)[s] = pa(fa(f1(/1(9)))) "—_P2(f2(f1(fl(s))))apz(fl(s))-

4. If N is a node botk of whose immediate predecessors N; and N: are leaves
whose r-clause labels are literals from ~x[3], then r(N) =g (since r(NV;) and
r(N3z) are ground literals). But this implies the « is a tautology since o has
been derived by resolution from ~x[3] alone. By assumption, ¢, contains no
tautological clauses, so this case will not arise.

Since every node of the resolution tree falls into one of the first three categories
above, we can apply this procedure to obtain an extra label for every node in the
tree.

Phase 2: To complete the derivation of z-clauses, apply the substitution fz—ys =
{z «~ 3}, substituting z’s for the corresponding s’s. See Figure 9 for the complete
set of labels in the tree of Example 4.15. &

We now make the following three claims:

CLAIM 1:  Every literal occurring in r(N) also occurs in z(N)[3].
CLAIM 2:  The z-clause at the root node is a non-empty subclause of x.

CLAIM 3:  Each rule for deriving z(/V)[3] from the z-clauses of its immediate prede-
cessors corresponds to a p-refinement operation that results in conjoining
the clause z(V) to the original clause.

Given these results, we complete the proof as follows. Starting with the sentence
®1, we can (using the third claim) add to the sentence each z-clause occurring on the
internal nodes , using j-refinement operations; we do so by adding first the z-clauses at
nodes whose immediate predecessors are leaves, then their successors, and so on, until
the z-clause for the root node z(R) has been added. By the second claim, this clause is
a non-empty subset of the literals of x; the remaining literals of s can be obtained by
applying rule 5(3), by Lemma 4.11. Finally, any extraneous clauses not in ¢; A & can be
removed using rule 5(1).

Example 4.15 (Continued) The z-clause at the root is x except for the missing literal
~ps(z,z). To obtain x, we add the most general literal ~ps(y1,y2) to the clause (rule
pc(3)). Applying rule p.(1), we add the same clause, but with the two variables unified:
~pa(y,y). Finally we apply the same rule to unify the variable y with the variable z
occurring elsewhere in the clause, and obtain the clause . A
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— ps(fa(f1(f1 (NP ps(fa(23)) — p1(zs), p2(f2(zs))(®
[—ps(fs(1(1(2))))]  [ps(fs(z3)) « pr(zs), p2(f2(zs))]

Pl(fl(l'l)) - P2(l'1)(4)
— p1(1(£1(9))), P2 f2(f1 (fa(s)))® [p1(/1(23)) — p2(1)]
[Pa(fs(fl(fl(l')))) At Pl(fl(fl(l')))a P2(f2(f1(f1(1'))))]

[pa(fa(/1(/1(2)))) — p2(f2(N1(/1(2))s p2(/1(2))] [p2(f2(22)) —]

— p2(fu(s))"

[ps(fa(/1(£1(2))) = p2(s(=))]  [p2(fi(2)) ]

n]

[ps(fs(/1(/1(2)))) — p2(f1(2))]

Figure 9: Resolution Proof Tree. The z-clauses are in square brackets.
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Proof of Clatm 1: by induction on the height of the node. For leave nodes N, r(N)
and z(N)[3] are identical, by Rule 1. Suppose that z(N)[3] is computed via the second
rule, with predecessor node N; a ground literal from ~x[3] and the other node N
inductively satisfying the claim. The resolution step that results in (V) consists in
unifying at least one literal in each of #(N;) and #(N3) via a substitution 4, combining
the clauses 8{r(N;)] and 8[r(N2)], and removing the unified literals. But r(N5) is a single
ground literal, so r(V) is #[r(NN2)] with at least one literal removed. On the other hand,
z(N)(3] = 8{z(N2)[3]] (no literals are removed), hence r(N) C z(N)|3].

Suppose that z(V)[3] is computed by Rule 3, and the two predecessors N} and N,
of N satisfy the inductive hypothesis. The same literals removed from (N, ) and r(Nz)
by the resolution step are unified and removed from z(N1)[s] and z(N2)[s] and the same
substitution is applied to the remaining literals. Hence the property is preserved at N.
This concludes the proof of the first claim.

Proof of Claim 2: We observe first that only literals from & will “survive” to reach the
z-clause at the root node, since the other literals, originating from the clauses of ¢,
are resolved away by Rule 3. Also note that, once a literal from « is “added to ” (more
precisely, unified with a literal of ) the z-clause of a node, it is present in the z-clauses
of all successor nodes in the tree, since no rules entail removing literals except those
occurring in r-clauses. Thus if z(R)[3] at the root R were empty, then the resolution
tree would represent a derivation of g using only clauses from ;. But then ¢; would
be inconsistent, contrary to hypothesis. This proves the second claim.

Proof of Clatm 8: Rule 2 results in the substitution of a term for variables, since one
of the two predecessors is a single literal from ~x[s]. Clearly, the same result can be
obtained using one or more applications of p.(2) (substituting a most-general term for
variables). For example, the substitution {z — f(g(y))} is effected by the p.-refinements:

z = f(z) = f(g(y)).
Rule 3 is a resolution operation, which corresponds directly to 5(2).
This completes the proof of the claim, and the theorem. O

Summarizing, we have defined an order homomorphism from clause-form sentences
to classes of models, or equivalently, to sets of ground implicands. The class of ground
clauses can be used to provide a complete set of examples. And we have obtained, in
5, a locally finite downward refinement for clause-form sentences. 5*(y) includes all
clause-form sentences (modulo variants) less general than ¢, with respect to the ordering
@ > 1 iff ¢ — 9. Consequently j is complete for any most-general sentence, including
the sentence {0} consisting of only the empty clause. Consequently we can use Algorithm
3.40 to infer classes of first-order models.
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4.5 Meta-Refinements

Even though we have not presented 4 in axiomatic form, we could have, since it is clearly
computable. The (meta-)language £ in which the axioms for § would be expressed is
different from £. L needs predicate symbols denoting such properties as “z is a clause-
form sentence in £L”, “sentence z > sentence y”, “w is the clause x with term y substituted
for variable 2”7, and so on. The logical and non-logical symbols of the language £ would
typically be represented by function symbols in the language L. For example, if p(-) is
a one-place predicate symbol in £ and “is-a-literal” and “is-gn-atom® are predicates in
ﬁ, then £ might include the axioms:

i3-g-literal(p(z)) — is-an-atom(p(z)) : (1)
is-a-literal(not(p(z))) — is-an-atom(p(z)) (2)

We are considering this “implementation detail” in order to make the following ob-
servation: sfnce j i3 a sentence in a first-order language, it can tn turn be refined. In
fact, every sub-refinement of § is obtainable by refining 3. A refinement which operates
on axioms to produce other refinements can be termed a meta-refinement.

To see what we mean, we have to be more careful about the languages in which the
various sentences are expressed. L is the language in which the target class of models is to
be denoted. (-, L) is a downward refinement for clause-form sentences in £; the language
£ in which A(:s L) is axiomatized might well include a two-place predicate “refines” such
that g F refines(pz, 1) (in L) iff w2 € p(41, L). We may, of course, assume that the
axioms for j are in clause form. j is a complete refinement (up to variants), so the
transitive closure of the refines relation is the > relation.

Let &(-, L) be a partial downward refinement with a clause-form axiomatization in £
like p. If & F refines(ipg, 1), then j - refines(2,¢1) (since p is complete). Again, all
these proofs are in the language .

Now consider £ to be the language with the same relationship to £ as £ has to
L. £ has the same predicates as £ but the function symbols specifying the allowable
non-logical symbols will reflect £ instead of £. This is the language in which the meta-

refinement A, L) is axiomatized. If 5 refines(dz, &) in £, then as a first-order sentence
(in £), &; = &2, and & logically implies &.

Conversely, 5 is complete (for ﬁ-sentences), so if &y > G&o, then a5 € ﬁ.(dl, £) - that
is, there is a chain of sentences in £ , starting with &, and ending with & (or variant
thereof), such that each sentence in the chain is a ﬁ-reﬁnement of the one before it. Note,
however, that not every clause-form sentence in £ is an L-refinement; for example, {0} is

not, because it proves refines(z, y) for any x and y. But the set ﬁ‘ (5, £) includes (modulo
variants) all partial L-refinements.

In summary, we have shown the
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Corollary 4.16 Let L be a first-order language, and p an aziomatization (m a lan-
guage £) for the complete doumward L-refinement used in Theorem 4.14. Let p be an

aziomatization (in language £) for the complete L- rcﬁncmcnt Then every downward
L-refinement, up to variants, is included in the set p (p, ) of refinements of p.

Here is a simpler way to obtain sub-refinements in such a way that we can visualize
more easily what is happening, without appealing to the details of the axiomatic repre-
sentation. A refinement p of £ is a recursively enumerable binary relation on & which
preserves the ordering: ap g only if h{a) > h(8). Another r.e. binary relation o' is a
subrefinement of p iff it is also order preserving and p’ C p*.

We observe that p’ is a sub-refinement of p iff p’ = r N p*, where r is any r.e. binary
relation, representing a restriction on p. To see this, note that any such p' is r.e. {since
r.e. sets are closed under N and #); that any sub-refinement p’ is of this form (let r = p');
and that p is order preserving (since, if a o’ 8 then a p* 3, hence a > B).

The meta-refinement generates sub-refinements in an order-preserving way, so that if
p3 is obtained by meta-refinement from p/, then pj is no more general a refinement than
p} (i.e., it will not be a larger subset of p*). But for sub-refinements obtained as r N P,
this will be the case only if restrictions are produced in an order preserving manner.

With the advantage of generating less general refinements, the meta-refinement has
the disadvantage of deriving relations which are not refinements. One way to avoid this is
to maintain the form r N p* for sub-refinements p’ by axiomatizing them in the following
way:

subrefines(p, ) «— @ p* ¢, restricts(p, ¥)

where p* is axiomatized by the clauses:
wpte
pp*v—ppe, oY
and initially “restricts” is the relation € x €&:
restricts(p, ¢} — true.

We then “meta-refine” only the axiomatization of restricts, leaving the axiomatization
of p* and of subrefines unchanged. This approach does not preserve the locally finite
property of the refinement p, whereas the pure meta-refinement of p does.

4.6 Bottom-Up Inference
Unlike the propositional case, where the upward and downward directions are duals,

the upward direction in inferring classes of first-order models is less satisfying than the
downward. The asymmetry arises during the construction of the terms: the sequence r,
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f(z), f(f(z)), ...is unbounded and increasingly restrictive for purposes of unification.
Whereas the downward refinement replaces a variable z by a more restrictive term, the
upward refinement goes the other way, and the absence of a most restrictive term makes
the upward direction inherently different.

Definition 4.17 Let k be a clause in the language L as in Definition {.9. ~(x, L) s
the set of clauses in L derived from k by ezactly one of the following operations:

Yc(1):  Replace some, but not all, occurrences of a variable z by a fresh variable y.
(This operation is called anti-unification of variables.)

7¢(2):  Let ¢t be a most general term, occurring at least once, such that no variable
of ¢ occurs in the sentence except in ¢. Replace all occurrences of ¢ by a fresh
variable y. (This operation is called anti-substitution of variables for terms.)

7:(3):  Delete a literal.

4.(4):  Disjoin a copy of a literal a which already occurs in the clause.

Example 4.18 Let « = p;(z), f(22)) « p2(f(z1)). Then ~.(x, £) includes the clauses:
p1(z1, f(z2)) — p2(f(z3))

p1(z1,24) = p2(f(21))
p1(z1, f(22))
p1(z1, f(22)), p1(21, f(22)) = p2(f(z1))
obtained from « using ~.(1) through ~.(4), respectively. A

Lemma 4.19 If k' € p.*(k), then k € 7.*(x').
Proof: By inspection, 4.(7) is p.~1(i) for 1 < 1<3. |
Observe, in passing, that ~. is locally finite and that v.(4) is the only rule which

always results in an equivalent clause. In general «, is not complete for any finite set of
clauses since no rule creates new literals or instances of literals already present.

Definition 4.20 Let o = k1 A-- Ak, be a clause-form sentence over L, with no variable
occurring in more than one clause. The set §(p|L) ts the set of clause-form sentences
dersved from o by ezactly one of the following operations:

4(1):  Conjoin a new ground clause K, .4;.
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4(2):  Replace a clause «; by a pair of clauses x; Va and &; V ~c, where a is any atom.
(This operation is called anti-resolution.)

4(3):  Replace a clause «; by a clause &} € v.(x;|£).

Note that < is not locally finite, since there are countably many clauses that could in
general be added in steps §(1) and (2).

Theorem 4.21 5 is an upward refinement for the class of clause-form sentences in L,
complete for the empty sentence 9.

Proof: This is not a big result, since 4 is, in essence, the inverse of 5. We need only
check that, if ¢ € j(¢’), then ¢’ € §%(p) for every sentence ©. The result then follows,
since the empty sentence @ is in 3*(yp) for every sentence .

CASE: ¢ is derived from ¢’ by rule 5(1), that is, by deleting a clause. Then ¢’ is
derived from ¢ by conjoining a ground-instance of the deleted clause and applying

4(3) as many times as necessary. Since all ground instances of a clause are derivable
by p.-refinements of the clause, Lemma 4.19 says we can reverse the process.

CASE: ¢ is derived from ¢’ by rule j(2) (resolution). The resolution operation has two
parts: applying a substitution, and combining two clauses into one while eliminat-
ing complementary literals. Anti-resolution is almost the inverse of the second part,
differeing only in that the unifying substitution can unify more than one literal in
each clause. But when more than one literal is eliminated from one clause, the lit-
erals are always copies of each other. Thus anti-resolution and ~¢(4) together can
reverse the second part of the resolution step. The substitution part can (appealing
again to Lemma 4.19) be reversed by ~, steps.

CASE: ¢ is derived from ¢’ by rule 5(3). Then Lemma 4.19 applies once more to derive
¢ from ¢ using ~.. O

A corollary of this theorem is that the bottom-up equivalent of Algorithm 3.40 can
be applied to the inference of model classes. Since 4 is not locally finite, a dovetailed
version must be used.

Is there a locally-finite upward refinement for clause-form sentences? Yes, but it is
somewhat artificial. Following [Reynolds-70] we can define a size-complexity measure on
atomic formulas as follows: the size of an atom 4 is the number of symbol occurrences in
A - including the predicate, variable, and function symbols but excluding punctuation
and parentheses - minus the number of distinct variables occurring in A. Thus p(f(z),y)
has size 2, while p(f(z), z) has size 3. We extend this to literals by defining the size of
the literal to be the size of its atom, regardless of sign. The principal properties of this
measure are that a most-general literal has size 1, and that instantiating a literal by
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unifying two variables or replacing a singly-occurring variable by a most-general term
increases the size by 1.

Let ¢ be a sentence. Define the size of ¢ to be the size of the largest literal in ¢,
or zero if ¢ is the empty sentence. For any fixed size S > 0, there is a finite number of
ground clauses of size S or less. If we modify rule 4(2) to conjoin a new ground clause to
o only if its size is at most one more than the size of ¢, then we impose a finite limit on
any single application of the rule. Similarly we can modify rule §(3) to introduce only
literals of size at most one greater than that of ¢.

Rev: May 29, 1986



58 4 APPLICATIONS TO LOGIC

4.7 Normal Forms and Monotonic Operations

General Properties. The existence of conjunctive and disjunctive normal forms is a
property of the algebra of logical expressions which leads to many important simplifica-
tions (among them, resolution). In this section we give an abstract inference algorithm
which takes advantage of normal form representations for expressions. We then consider
the propositional and first order implementations of this algorithm, leading to results
similar in flavor to those of Shapiro’s Model Inference System ({Shapiro-82]).

Definition 4.22 Let o be a binary operation, part of the algebra of the syntactic domain
Eof expressions. We say that o is h-monotonic upward if, for any ezpressions ¢y and e,
h(e1 o e2) 2 h(e;) (for i = 1,2). Similarly, we say that o is h-monotonic downward tf,
for any ezpressions e; and eq, h(e; o e2) < h(e;) (fori =1,2).

Example 4.23 Let £ be the domain of propositional logic, and A the map from proposi-
tional expressions to the assignments which satisfy them. Then V is h-monotonic upward
and A is h-monotonic downward. If the implication operation were part of the algebra,
it would not be monotonic.

Likewise, V and A are, respectively, h-monotonic upward and downward in the domain
of first-order sentences where h(e) is the class of models satisfying e. We have chosen,
however, the dual semantics where h(e) is the class of ground implicands of e; in this
case, V is downward and A non-decreasing. A

Definition 4.24 Let o be a binary, associative, and commutative operation in £. £ 1s
said to have a o-normal form property if, for every semantic object d € D, there exists
an expression e in h=1(d) in the form e = ¢, 0eq90---ce,, where e; € £ and the operation
o does not occur in any e;, for 1 <i < n. An expresston in which o does not occur ts
called a component ezpression.

The algorithm to follow uses a ®-normal form property, where & is h-monotonic
upward, to infer an expression in @-normal form. It assumes an additional oracle,
DIAGNOSE, which takes an expression in &-normal form and, if it is too general, iden-
tifies a component e; of e which is too general for the target object dg. That there exists
at least one such expression is a consequence of the following.

Definition 4.25 An ezpression e is said to be too general with respect to a target object
do if, for any ezpression eo denoting dg, h{eo ® e) > do. The ezpression is said to be
correct with respect to do if h(eq  €) = do.

Lemma 4.26 Let H =e; - - D e, be a ®-normal form ezpression and —z a negative
ezample of the target object do. If h(H) > h(z), then there ezists a component ¢; of H
that is too general with respect to d.
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Proof: Let e¢o be a ®-normal form expression for dy. If no component of H is too
general, then eg @ e; is a normal form expression such that either h(eg @ e1) < h(eg) or
(eo®e1) and e are incomparable. But monotonicity of & requires that h(eo®e1) > h(eo);
consequently, they cannot be incomparable, and it must follow that eg & e; is equivalent
to eg, modulo h. The same argument holds for e;, using eo & ¢, as an expression for do,
leading to the conclusion that o & ¢ & e2 is equivalent to do. And so on, until we have
shown that eo @ H & eo. But now we have eo ~ H ® ¢g > H > —z, which is clearly
contradictory. g

The problem of identifying a component that is too general evidently depends upon
the nature of the semantic function h, for we may have the situation where h(e; S ez) 2
h(z), e, is correct, e; is too general, and yet h(ez) 3 h(z).

Example 4.27 If we are inferring a set of ground atoms, the target might be the set
of ground instances of p(z). The hypothesis H = p(f(a)) A (g(z) «~ p(z)) denotes the
set {p(f(a)), q(f(a))}, which covers the negative example g(f(a)). The first clause of H
is correct, while the second is too general. But individually the clauses denote the sets
{p(f(a))} and @, respectively. So neither is, by itself, too general. A

For domains like that of this example, Shapiro gives a procedure that, with the aid
of the oracle ASK, identifies a clause which is too general. The net effect is that, for this
particular domain, DIAGNOSE is reducible to ASK. But this does not appear to hold
in general.

Suppose H is not general enough to cover a positive example +z. We need to add ()
a component or components to H. Let L be an enumeration of all component expressions.
One approach is to search L for a component e such that h(H @ e) 2 h(z). But this
may not work. For example, z may be covered only by expressions with two or more
components, and none of those components are currently among those in H. Or, even if
there is a single component which covers e, that component might be too general for the
target, and hence could have been eliminated earlier by a negative example. So, in the
general setting, with no information about the properties of the relation >, we can reject
a component expression only if it is too general, but we cannot pass over a component
expression simply because it currently does not cover any positive examples.

Let us now give an algorithm for inferring normal form expressions. As in the previous
sections, many different algorithms are possible, depending on the properties of the
refinement, the direction of inference, and the various dualities. We shall be content
with only one example after which others may be easily patterned.

Definition 4.28 Suppose £ enjoys a o-normal form property. p is said to be a downward
refinement for o-components if, for any two components ¢, and ez, e peg implies that
h(er) = h(ez2). In addition, we say that p is complete for M if: (i) M is a finite
set of mazimal components, {21,...,&}; and (it) h(Ui<, p* (&)) includes h(e) for every
component e in £. As before, > on components ts defined to be p*.
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Algorithm 4.29 for inferring expressions in normal form is given in Figure 10. It
assumes, among other things, that p is locally finite and complete for a finite set M of
maximal expressions. The hypothesis H is maintained as a set of components which
are implicitly joined by &-operations. -Initially H contains only the set M. A new
example starts up a whiie-loop that keeps modifying H as long as it disagrees with
some example. If H is too general (implies a negative example), an oracle is invoked
to pinpoint one of the components of H having excess generality. That component is
evicted, and its refinements are added to a queue. If H is too specific, we make it
more general by adding components to it. From the preceding discussion, we cannot
in general be very discriminating about what we add; in fact, the algorithm just grabs
components as they occur on the queue until its requirement to cover a particular positive
example has been satisfied. It appears there might be some risk that the queue could
be exhausted before the example has been covered, but in the proof we show that this
cannot happen. Eventually this process of grabbing new components, discarding and
refining old ones ends with the hypothesis correct for all the examples, whereupon a new
example is summoned, and the process begins anew.

Theorem 4.30 Algorithm 4.29 identifies do in the limit.

Proof: Assume that the algorithm eventually reads in every example and converges to
some hypothesis. Then it converges to a correct hypothesis, since the while-loop ensures
that every positive example and no negative examples are covered. Thus we need to show
that every example is eventually read - i.e., , that the while-loop terminates for every
finite set of examples - and that the algorithm will not keep modifying the hypothesis
forever.

Let do be the target object, and let ¢g = €91 - -Deok be a normal-form expression for
dg. We argue first that, without loss of generality, we can assume that for each eo; there
is a refinement path from an element of M to eg; along which ey, is the only component
that is not too general. Consider any component eg; of eg. Since p is complete for M, eg;
(or some equivalent) is derivable from some component 2 in M by p-refinement. Take
any such sequence 2% f; & ... & f, £ ¢4, and determine the first component ¢; in the
chain which is not too general for eg. This is clearly possible since eg; is not too general. If
¢; is not eg; then we can replace eqg; by ¢; in the expression eg = €91 D+ D eg; DD - - -Degx
and obtain efy = g1 ®- - -@®¢; - - -Degx as an equivalent expression for dg. And by repeating
this construction for each of the components of ¢g, we obtain an expression ¢; & -- - @ cx
for do with the property that each component has a refinement path from a maximal
element and that ¢; is the first component on the path not too general for do. Also,
replacing c¢; by any other component along the path yields an expression too general for

do.

Now let ¢g = ¢; & - - - @ cx be such an expression. Make the following observations:

1. Once a component ¢; of eg is added to H, it will never be refined (only components
that are too general are refined).
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Algorithm 4.29 Downward Inference of Normal Form Ezpressions

Input: oA r.e. set of expressions £ such that & is h-monotonic upward and a
@-normal form theorem applies.

oA finite set M = {&,,...,&,} of maximal &-components.
oA locally finite, downward component refinement p complete for M.
eAn oracle EX for a sufficient set of examples.

eAn oracle ASK(e; 2 e2?), where ¢; is a ®-normal form expression and
ez a component expression.

eAn oracle DIAGNOSE(e1,e2) that finds a component in the &-
normal form expression e; that is too general. (Applies when ey is
a negative example and h{e;) 2 h(ez).)

Output: A sequence H;, Hj, ...of &-normal form expressions such that H; is correct
: for the first 1 examples..

Procedure: H — emptyset(). (The hypothesis is represented as a set of components
implicitly connected by &.)

Q — (51,...,5,).

ezamples — emptyset().

do forever:
Get the next example from EX() and add it to the set ezamples.
while H disagrees with some example:

if ASK(H > z?) = 1 for some negative example —z:

Identify a component ¢ = DIAGNOSE(H,z) of H
that is too general.

Remove ¢ from H.
Add p(e) to (the tail of) Q.
if ASK(H 2 z7?) = 0 for some positive example +z
Remove a component ¢ from the front of Q. (The
algorithm fails if Q is empty).
H e~ Hu{e}.
Output H as the & of each component in H.

Figure 10: Downward Inference of Normal Form Expressions
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