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Abstract

High-order quadratures for singular functions
and their applications to the evaluation of Fourier

and Hankel transforms.

Sharad Kapur
Yale University
1995

Evaluation of integrals plays an important role in the numerical solution of many problems
in physics, engineering, and other areas; hence the interest in the study and design of
rapidly convergent quadrature rules. For example, the discrete Fourier transform (DFT)
is a popular numerical tool since it provides an excellent approximation to the continuous
Fourier transform of a periodic function. The reason for the accuracy of the approximation
is that the trapezoidal rule, which the DFT implements, is superalgebraically convergent
for periodic functions.

Numerical quadrature schemes for smooth functions are a well understood subject (see,
(11], (3], [28]). When a function is singular, the need for a high order quadrature scheme is
met by Gaussian quadrature. Unfortunately, the nodes at which a function is tabulated are
often non-Gaussian (such as equispaced nodes, Chebyshev nodes, etc.), for which existing
quadrature schemes are inadequate.

In this thesis we introduce a class of quadrature formulae applicable to both non-singular
and singular functions, generalizing the classical end-point corrected trapezoidal quadrature
rules. While the standard end-point corrected trapezoidal rules are usually derived by means
of the Euler Maclaurin formula, their generalizations are obtained as solutions of certajn

systems of linear algebraic equations. A procedure is developed for the construction of very



high-order quadrature rules, applicable to functions with apriori specified singularities, and
relaxing the requirements on the distribution of nodes. ‘

We also present two applications based on these high-order quadratures. An algorithm
is developed for the rapid evaluation of the Fourier transform of functions with singular-
ities. The algorithm is based on a combination of the fast Fourier transform (FFT) with
a quadrature scheme tailored to the singularity. A related algorithm for the fast Hankel
transform is also presented. The algorithm decomposes the Hankel transform into a product
of two integral operators, the first of which is evaluated rapidly by a combination of the fast
cosine transform with a quadrature formula of the type developed in this thesis. The second
operator is evaluated rapidly by a combination of a version of the fast multipole method
with yet another quadrature formula derived in this thesis. All calculations are performed
to full double precision accuracy.

Numerical experiments are presented demonstrating the practical usefulness and ef-
ficiency of all the algorithms developed. Tables of quadrature weights are included for

singularities of the form s(z) = |z|* for a variety of values of A, and s(z) = log(|z)).
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Chapter 1

Introduction

The evaluation of integrals of singular functions plays an important role in the study of
many physical systems. For example, the need for accurate numerical evaluation of in-
tegrals of singular functions is found in areas such as computational fluid dynamics [8],
potential theory for the Laplace equation [16], crystal growth [15], integral equations [1],
and many others; hence the interest in the design of high-order quadrature rules. When a
function is singular, the need for a rapidly convergent scheme is met by Gaussian quadra-
ture. Unfortunately, the nodes at which the function is tabulated are often non-Gaussian
(such as equispaced nodes, Chebyshev nodes, etc.), and alternate quadrature schemes have
to be devised. In recent years, various quadrature schemes have been developed (see for
example, [1], [14], [26]) for the integration of singular functions. Many of these procedures
provide satisfactory low order quadratures; for higher orders, the quadrature weights grow
rapidly, rendering the schemes useless.

In this thesis we introduce a class of quadrature formulae applicable to both non-singular
and singular functions, generalizing the classical end-point corrected trapezoidal quadrature
rules. While the standard end-point corrected trapezoidal rules are usually derived by means
of the Euler Maclaurin formula, their generalizations are obtained as solutions of certain
systems of linear algebraic equations. A procedure is developed for the construction of very
high-order quadrature rules, applicable to functions with apriori specified singularities, and

relaxing the requirements on the distribution of nodes.
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1.1 High-order quadrature rules for singular functions

In Chapter 2, a group of quadrature formulae is presented applicable to functions with sin-
gularities, generalizing the classical end-point corrected trapezoidal quadrature rules. More
specifically, high-order corrected trapezoidal quadrature rules are developed to approximate

definite integrals of singular functions f : [a,b] — R of the form

f(z) = ¢(z)s(z) + ¢¥(z), (1.1)

and
f(z) = ¢(z)s(2), (1.2)

where ¢(z), () € c*[a, b], and s is an integrable function with a singularity on the interval
[a,0].

Remark 1.1 The one drawback of the approach is the fact that in order to obtain a set
of weights for a given singularity, a system of linear algebraic equations has to be solved,
whose matrix can be extremely ill-conditioned. For example, in order to obtain quadrature
rules of order 12, we had to solve 12X 12 systems of equations; the condition number was of
the order 102°. Fortunately, for each singularity, such a system has to be solved only once,
after which the weights are tabulated; we used MAPLE to perform such calculations using

60 significant digits.

In this thesis we also present two applications based on these high-order quadratures.
The first application is an algorithm for the rapid evaluation of the Fourier transform of

functions with singularities.

1.2 Applications of quadratures to Fourier analysis

Fourier techniques have been an extremely important and popular analytical tool in math-
ematics and physics for more than two centuries. The introduction of the fast Fourier
transform (FFT) algorithm in the 1960s has greatly broadened the scope of application of

the Fourier transform to data handling, and has also brought prominence to the discrete
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Fourier transform (DFT). The DFT is often used as a quadrature rule for the evaluation of
integrals of the form
27 .
f(z)e"da, (1.3)
0

for various values of w. It is well known that the DFT is an extremely effective numerical
tool of applied analysis, for the approximation of integrals of the form (1.3), when the
function f is periodic. However, when the function has a jump discontinuity, or is singular,
the accuracy of the DFT is significantly reduced. This loss of accuracy is due to the fact
that the DF'T, which implements the trapezoidal rule, is slowly convergent for non-smooth
functions; the numerical error that results from the discontinuity is on the order of % for a
problem of size n. Such errors make even single precision calculations, especially in higher
dimensions, prohibitively expensive. Richardson extrapolation alleviates the situation, but
double precision calculations are still virtually impossible.

In Chapter 3, we present an algorithm for the rapid evaluation of the Fourier transform
of functions with singularities. The algorithm is based on a combination of the fast Fourier
transform (FFT) with a quadrature scheme tailored to the singularity. More specifically,
we observe that the quadrature scheme derived for singular functions can be applied, in a
simple and straightforward manner, to numerically integrate singular functions of the form
f(z)-€e™. In this case resulting systems of linear algebraic equations are well-conditioned,
and in fact can be solved rapidly by means of the FFT; thus, the correction weights do not
need to be precomputed and tabulated.

The second application of our quadrature rules is a fast Hankel transform.

1.3 Applications of quadratures to the fast Hankel trans-

form

Hankel transforms are frequently encountered in applied mathematics and computational
physics. Their applications include vibrations of a circular membrane, flow of heat in
a circular cylinder, wave propagation in a three-dimensional medium and many others.
However, attempts to use Hankel transforms as a numerical tool (as opposed to analytical

apparatus) tend to meet with a serious difficulty: given a function f : [0, A] — R, tabulated
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at N nodes, it takes O(N?) operations to obtain the numerical Hankel transform

A
/0 f(z)Jo(a - z)dz, (1.4)

for N values of a. In other words, unlike the Fourier series, the Chebyshev expansion or the
Legendre series, the Bessel functions do not have a fast transform associated with them.
Therefore, whenever possible, the Hankel transform is avoided in favor of an expansion for
which a fast transform exists.

In chapter 4, we develop a procedure for the rapid evaluation of integrals of the form
(1.4), to any degree of precision, requiring CPU time proportional to N log N. More specif-
ically, suppose that h = '1\%1’ z; = th, a; = (N_tﬁ’ and f : [0,4] — R is a function

tabulated at N equispaced nodes zq, zy,...,2x—7. Then the integrals

(0= [ f()ofase)dz, (15)

are computed for all j = 0,1,2...,N — 1, in O(N log N) operations.

Our algorithm for the Hankel transform is based on several well known facts from
classical analysis. The algorithm decomposes the Hankel transform into a product two
integral operators, the first of which is evaluated rapidly by a combination of the fast cosine
transform with quadrature formula of the type developed in this thesis. The second operator
is evaluated rapidly by a combination of a version of the fast multipole method with yet
another quadrature formula derived in this thesis. All calculations are performed to full

double precision accuracy.



Chapter 2

Corrected trapezoidal rules for

singular functions

2.1 Introduction

The trapezoidal rule is known to be an easy and numerically stable means for numerical
integration. If a function is periodic and analytic on the interval of integration, the trape-
zoidal rule converges exponentially fast (see, for example, [11]). However, for non-periodic
functions the trapezoidal rule is second order convergent, and end-point corrections are of-
ten used to improve the convergence rate. A standard end-point corrected tra.pezoidél rule

is fourth order convergent, and is given by the formula

b = o Tn—1
[ @t =3 steg + L) L h g4 ) + fon) - S,

(2.1)

where, h = (b—a)/(n—1) and z; = a+ ih for i = 0,1,2,....,n — 1 (see, for example [2]).

More recently, the Euler-Maclaurin formula is used in [1] to obtain a high-order end-point

corrected trapezoidal rule of the form

n—-2 m
Tif) = 3 fe)+ T @) S ey - s, )

i=1



CHAPTER 2. CORRECTED TRAPEZOIDAL RULES FOR SINGULAR FUNCTIONS6

where a = (aj, ay, ..., ) are coefficients such that

1T20) - [ fedde < (2.9)

for some ¢ > 0.

The scheme of [1] provides satisfactory quadratures upto order 12; for higher orders, the
coefficients o grow rapidly, rendering the scheme useless. In this chapter we develop a
different class of end-point corrected trapezoidal rules, whereby the growth of correction
weights is suppressed, enabling the construction of end-point corrected trapezoidal rules of

arbitrarily high order for non-singular functions.

In [26], end-point corrected quadrature formulae are developed to approximate definite

integrals of singular functions f : [a,b] — R! of the form

f(z) = ¢(2)s(z) + ¥(z), (2.4)

and
f(z) = ¢(z)s(z), (2.5)

where @ < 0 < b, ¢(z),9(z) € c*[a,d], and s(z) € ¢[a,d] is an integrable function with a
singularity at 0. The procedure developed in [26] provides satisfactory quadratures only upto
order 4; for higher orders, the quadrature weights grow rapidly, also rendering the scheme
useless. In this chapter we construct a different class of end-point corrected trapezoidal
rules, whereby the growth of quadrature weights is partially suppressed for functions of the
form (2.4), obtaining useful quadratures of order upto 12; and completely suppressed for
functions of the form (2.5), providing quadratures of arbitrarily high order. Moreover, we
obviate the programming inconvenience associated with the procedure developed in [26],
which requires that functional information be tabulated on a grid finer than that required

for the uncorrected trapezoidal rule.

Remark 2.1 The approach of this chapter is somewhat related to that of [14]. However,
(14] constructs quadratures in higher dimensions, and these quadratures are of relatively

low order. In this thesis, we construct one-dimesional rules of very high order. Furthermore,
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most rules of this thesis are “standard” in the sense that the correction coefficients do not
depend on the number of nodes in the trapezoidal rule being corrected, or on the sampling

interval.

2.2 Mathematical Preliminaries

In this section we summarize some well-known results to be used in the reminder of the

thesis. Lemmas 2.1, 2.2 and 2.3 can be found, for example, in [2].

Definition 2.1 Suppose that a,b are a pair of real numbers such that a < b, and that n > 2
is an integer. For a function f : [a,b] — R!, we define the n-point trapezoidal rule T,(f)
by the formula

To(0) = WY o+ in) - (LSO, (26)
1=0
with
=(b-a)/(n-1). (2.7)

The following lemma provides an error estimate for the approximation to the integral given

by the trapezoidal rule. Along with Lemma 2.2, it can be found, for example in [2].

Lemma 2.1 (Euler-Maclaurin formula) Suppose that a,b are a pair of real numbers such

that a < b, and that m > 1 is an integer. Further, let By denote the Bernoulli numbers

- 1
B _—1B6=—

1
By = = =
2 6, 4 303

(2.8)

If f € *™*2[a,b] (i.e., f has 2m+ 2 continuous derivatives on (a,b]), then there ezists a

real number £, with a < £ < b, such that

h* By

(21-1) (21-1) W2 Bomis ramya
/ f(z)dz—T(f>+Z T U0 = £ @) - S s (2.)
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The following well-known lemma provides an error estimate for Lagrange interpolation.

Lemma 2.2 (Lagrange interpolation formula) Suppose that a,b are a pair of real numbers
such that a < b, m > 3 be an odd integer, and f € c™[a,b]. Furthermore, let h be defined
in (2.7), and f be tabulated at equispaced points, zj, = b—?— + kh. Then for any real number

p there exists a real number £, —mh < £ < mh, such that

)
flotph)= 3  AF®)f(zk) + R, (2.10)
k===
with met .
_ (-1)= jfcm m—1
v (p) = B T L Bl —F) L P+ —5—-1) (2.11)
and o
Rmoi=— I (=W f0E). (2.12)
o m=1

Lemma 2.3 If f : [a,b] — R! is a function satisfying the conditions of Lemma 2.2, and

the coefficients D7y, are given by the formula

m o(2i-1) m -0
Di,k = ap(Zi—l)(Ak (p)) Ip— s (213)
then .
(2i-1) < Dn m
fE o) = 30 flee) + O™, (2.14)
k=—m=1

2

for any m, i such that -251 < k < ml and 1<k < el

Proof. The proof is as an immediate consequence of (2.10) and (2.13). O
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Lemma 2.4 Suppose that m,l,k are integers, and the coefficients aj, are defined by the

recurrence relation

a:13,1 = 1,

a:13,2 = 17
gt = (k- Kaiih + at T + ey
a;:ﬁ = api_o -~ Ti)%ﬂl,

2

with a}c’fl =0, for allk <0, or1 <0, or m< 1. Then

m—1
AT (p) (- 3 o
k = — m— k¥
(mzl +k)!( 21 - k)! =1 l

foranyoddm>3,1<k< 2=l and AP(p) is defined by (2.11).
Proof. Due to (2.11),

—1)5R 4k
F0) = G e =R

where )
1 5 m-—1
)= —=[[(p+ ——-1).
(p_k) t=0 2

Thus it is sufficient to show that

m=1
2
CE(p) =) afup'.
=1

This will be shown by induction. Indeed, if m = 3 then, due to (2.18),

Ci(p) = p* + p,

which is equivalent to (15-a),(15-b).

Assume now that for some m, k such that —&2'-1 <k<L mT_l,

m—1

7z
Cr(p) = Z GZ,LIPI-

=1

(15-a)
(15-b)
(15-c)
(15-d)

(16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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Combining (2.18) and (2.21), we have

m—1

m m+1 m+1l & .,
CP) = (+—5—)p~ 5—) 2 b’
=1

= (& —(M))Zw

m=1
m +1.,<
= 2 afyp't? — > ——)? > ol (2.22)
=1
which is equivalent to (15-d).
Now, assume that for some k
k
CEl(p) = 3 afktipl, (2.23)
=1

Combining (2.23) and (2.18), we have

s

k
CH(p) = (p-k)p-(k+1)Y adkt1p
=1

k
= (P +p- (4 )Y
=1

=~

—_ 2k+41_ 142 2k+1 I+l 2 2k+1 1
= D aptiplt +Z%,:+P (k +k)2“ Ty,
=1 =1

(2.24)

which is equivalent to (15-c). O
Lemma 2.5 Suppose that m > 3 is odd. Then,
1)+

m o ()= (2i — 1)1, (2.25)

DR =
t,k (_—1+k)|(m2— k),ak% -1

for any k,1 such that —1”2;1 <k < m;—l, and 1< 1

IA

=
with the coefficients ay’) defined by the recurrence relation in Lemma 2.4.
Proof. Substituting (16) into (2.13), we immediately obtain

m (_1)ﬂ;—l+k §(2i-1) m=1 P
’i,k = mo— - 1_ y
(51 + R - k) pD T
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(D
Ay o,
(25 + R)2ph — ) h e

(2i — 1)L, (2.26)

O

The following six lemmas provide identities which are used in the proof of Theorem 2.13.
Lemma 2.6 Ifk > 2 is an integer and ay; is defined in Lemma 2.4.

|- < (42 a2, (2.27)
foralll=1,2,...,2k - 3.

Proof.
If k=2,and I =1then |(1)!-a},[=2, | (3)!-a5 3 |= 12, and therefore (2.27) is obviously
true.

Now, assume that

[()-afkH ] < [+ 2)-ait (2.28)

for some k >2and alll =1,2,...,2k - 3.
Now, due to (15-a), (15-b), (15-¢), and (15-d),

(D' agi5% = (k1) = (k+ 1)))afht + aZbt) 1+ o254 (1), (2.29)
and
(+2)8 afft, = (k1) = (k+ 1)Pafith + a5t + o254y (1 4 2)1. (2.30)
Finally, combining (2.28), (2.29), and (2.30) we easily obtain
|- a3 < U+ et |, (2.31)

forall | =1,2,..,2k— 1. o

Lemma 2.7 Ifk > 2 is an integer, and ap is defined in Lemma 2.4 then

O eyl < [(0+2)! e, (2.32)

forallm>2k+1andl=1,2,...,2k— 3.
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Proof. Lemma (2.6) establishes the base case, i.e., that (2.32) is true when m = 2k + 1.

Now, assume that

[(D-agy ] < 10+2)!afy, |, (2.33)
for some odd m > 2k + 1,and all I = 1,2,...,2k - 3.
Now, due to (15-a), (15-b), (15-c), and (15-d),

m+1
2

(Dt af* = (afy_y = ( agy) - (1Y), (2.34)

and

(l + 2)! - akj;_% = (ak’l _ ( 2 )2ak’1+2) M (l + 2)!. (2.35)

Finally, combining (2.33), (2.34), and (2.35) we easily obtain
O agt? | < 10+ 2! e, ), (2.36)

foralll=1,2,...,2k - 3. m]

Lemma 2.8 If m,k are integers such that m > 3 is odd, and —m—;-l- <k< ﬂ;—l-, then
| (D) afy <] (3)!- ap’s |<| (B) - a5 |< o <] (m —2)! - Qm—2 | - (2.37)

Proof. This Lemma follows directly from Lemma 2.6 and Lemma 2.7 : O

Lemma 2.9 If m > 3 is odd, then

(m=1)(m=-2)! (2r)™1

PE=NE i (23%)
Proof. If m = 3 then obviously 1 < @—:ﬁ.
Now, assume that for some odd m > 3,

(m—1)(m-2) (2r)™!

(=T (239)

Obviously,
1 4
(mEDm) __4m__ o (2.40)

(2flye — (m+1)
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and combining (2.39) and (2.40) we obtain

- — 9\ m—1
which is equivalent to . ' —_—
Now, the conclusion of the lemma is an immediate consequence of (2.39) and (2.42). O
Lemma 2.10 If m > 3 is odd then
| DT | (%im_l, (2.43)

for any k,i such that —’—"7"—1- <k< ’l,;—l, and1<i< m—,;l

Proof. Combining Lemmas 2.5, 2.6, 2.7, and 2.8, it is easy to see that

| DT | < | DFy| <. <| DB, | (2.44)

2

Consequently, it is sufficient to show that

m (2m)m1
ID'—"z;‘,k | < YR (2.45)
First we observe that (obviously) for any k such that -l <k < mel
k(m - 2)! (m —1)(m - 2)!
m— m— < e 2.46
A (=S i (249
Then, we combine (15-a), (15-b), (15-c), (15-d), and (2.25) to obtain
k(m - 2)!
| DB 2 (2.47)

= =

Now, (2.45) follows immediately from the combination of (2.46), (2.47), and Lemma 2.9. O

Lemma 2.11 For any ! > 1 the Bernoulli number By satisfies the inequality

By 4

2! < o

(2.48)
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Proof. As is well known (see for example, [2]), for any I > 1

_ (=Dent X 1

=7 2.4
BZI (271_)21 P k2l ( 9)
and
1
> 1 < 2 (2.50)
k=1
Now, the conclusion of the lemma is an immediate consequence of (2.49) and (2.50). O

The proof of the following lemma can be found in [26].

Lemma 2.12 Suppose that m > 1, s € ¢™(0,1] possesses a finite integral on the interval
[0,1], and that s'™)(z) is monotonic in some neighborhood of 0. Then the product z - s(z)
is bounded on [0,1]. Suppose further that w € ¢™[0,1] is such that w(0) = w'(0) = w"(0) =
.. = w™(0) = 0. Then the function Y(z) = s(z) - w(z) is defined on the closed interval
[0,1], and $(0) = ¢'(0) = $"(0) = ... = »(™(0) = 0.

2.3 End-point Corrections for Non-singular Functions

2.3.1 End-point corrected trapezoidal rules

While the authors have failed to find the contents of this section in the literature, it is an
immediate consequence of well-known facts from classical analysis. We present it here for
completeness, and because we found the resulting high-order quadrature rules quite useful

(see Section 5.1.1).

Suppose that n,m, are a pair of integers with m 2> 3 and odd, and n > 2. Further,
suppose that a,b are a pair of real numbers such that ¢ < b, h = (b—-a)/(n—-1), and
f:la—mh,b+ mh] — R!is an integrable function. We define the corrected trapezoidal

rule 7%, for non-singular functions by the formula

m-1

Ton(H) = Tulf)+h S (f(b+kh) = fla+ kh))P. (2.51)

k= m=—1

2
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The real coefficients B are given by the formula

m—1

s = § Gnr (2.52)

where D7} are defined in (2.13) (also, see (2.25)) and By, are the Bernoulli numbers.

We will say that the rule Tgm is of order m if for any f € ¢™[a — mh,b + mh], there

exists a real number ¢ > 0 such that

b c
| Tn() = [ Sz < = (2.53)
Theorem 2.13 Ifm > 3 is an odd integer then for any k such that -1 < k < 2‘—2“—1,
m-—1
| B I< (2.54)

where the coefficients B are defined in (2.52).

Proof. Combining Lemma 2.10 and Lemma 2.11 we immediately observe that

DB
: 1 2.5
and hence
D1 szl m-—1
= . 2.
|

Remark 2.2 A somewhat more involved argument shows that in fact 16| < 1for all k, m;
empirically this can also be seen from the tables in Section 5.1.1 below. However, for the

purposes of this thesis (2.56) is sufficient.

Theorem 2.14 Suppose that m,n are a pair of integers with m > 3 and odd, and n > 2.
Further, suppose that a,b are a pair of real numbers such that a < b. Then, the end-point
corrected trapezoidal rule T3 is of order m, i.e., for any f : [a — mh,b + mh] — RY such

that fla — mh,b+ mh] € c™[a — mh,b+ mh), there ezists a real number ¢ > 0 such that

b [
| Thn( )= [ S(@)dz < = (2.57)
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Proof. Combining (2.52) and (2.51), we obtain

Ton(f) = Tu(f)+h Z (F(b+ kh) = f(a+ kB)) (‘;,),2‘
k:—-2—1 =1
2l ey b+ kh) — f(a+ kh
- T+ Y Py, SRCHER ORI, G
l:l k=_m—1

Combining (2.14) and (2.58), we have

Thn(f) = Tu(f) + Z h(Qﬁ?‘(f G-N@p) - fBD(e) —2RED). (2.59)

Finally, combining (2.59) with Lemma 2.1, we observe that for some a < £ < b,

Tin(5) = [ fe)da 420250 4 20 e (2.60)

and the theorem immediately follows from (2.60). O

Remark 2.3 It is easy to see that for m > 3 and odd, and any & such that —ﬂ‘—l <k<
mel i—k = — D[}, and D]y = 0 (due to (2.13)), and hence ™, = —87 and 85" = 0 (due
to 2.52). Now, instead of (2.51) one could define the end-point corrected trapezoidal rule
by the formula

m-—1

Thn(£) = TulF) 4 b 3 (S(b+ k) = f(b~ k) — f(a + k) + fla— KR)SE.  (261)
k=1

2.4 End-point Corrections for Singular Functions

In this section we construct a group of quadrature formulae for end-point singular func-
tions, generalizing the classical end-point corrected trapezoidal rules. The actual values of
end-point corrections are obtained for each singularity as a solution of a system of linear
algebraic equations. All the rules developed in this section are simple extensions of the

corrected trapezoidal rule TZm developed in the preceding section.
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A right-end corrected trapezoidal rule TRpm is defined by the formula

n—2 m—z—l‘
Tin(H = WZ) L 5™ 1) + B S (Fb4kh) = S kRSP, (262)
k=1

2 i=1
where f(0,b+ mh] — R! is an integrable function, n,m are a pair of natural numbers with
m > 3 and odd, the coefficients 8* are given by (2.52), and
b

n—-1’
5 = ih. (2.63)

h =

We will say that the rule T}%ﬂm is of right-end order m > 3 if for any f € ¢™t10,b + mh]
such that f(0) = f’(0) = ... = f(™)(0) = 0, there exists ¢ > 0 such that

b [
| Tham(£) = [ S(a)de < = (2.64)

It easily follows from Theorem 2.14 that Tggm is of right-end order m.

Similarly, a left-end corrected trapezoidal rule T7sm is defined by the formula

m—1

z . n—2 =z
T (1) = W LS 0 ) 4 S (b4 k)4 F(—b— k)R, (2.65)
i=1 k=1 .

where f[—b — mh,0) — R! is an integrable function, n,m are a pair of natural numbers
with m > 3 and odd, the coefficients 87 are given by (2.52), and &, z; are defined by (2.63).
We will say that the rule Tfsm is of left-end order m > 3 if for any f € ™t —b ~ mh,0)
such that f(0) = f'(0) = ... = f(™)(0) = 0, there exists ¢ > 0 such that

0 c
| Tign(1) = [ F@)dz 1< = (2.66)
It also easily follows from Theorem 2.14 that TT4m is of left-end order m.

Suppose now that the function f(—kh,b+ mh] — R! is of the form

f(z) = (z)s(z) + ¥(2), (2.67)
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with ¢, ¢ € c*(—kh,b+mh],and s € ¢(—kh, b4+ mh] an integrable function with a singularity
at 0. For a finite sequence a = (a—x,a_(k_1),@_1,01,...,a,) and Thpm defined in (2.62),

we define the end-point corrected rule T’sm by the formula

k
Togm(f) = Them(H) +h D ;f(z)), (2.68)

J==k,j#0
with A = b/(n — 1), z; = jh.
We will use the expression wpm With appropriately chosen o as quadrature formulae for
functions of the form (2.67), and the following construction provides a tool for finding «
once 8™ = (B7%, BT, ..., ﬂ%ﬂ) is given, so that the rule is of order k, i.e., there exists a ¢ > 0

such that
b C
| Tign(£)— [ f(a)ds |< 5. (2.69)

For a pair of natural numbers k,m, with £ > 1 and m > 3 and odd, we will consider
the following system of linear algebraic equations with respect to the unknowns o™, with

J’
j=0,+1,42, ..., +k:

k b
i1 n_ 1 i- n o oie
Z 5 laj = E/(; T} ld(L'—TRﬁm((L' h, (2.70)
==k, j#0
fori=1,2,...,k, and
k . 1 fb . .
2. o s(zj)a] = ¢ /0 i s(2)de — Tham(z" ™ 1s(2)),  (2.71)
j=_k,j¢0

fori=k+1,k+2,...,2k,with h = b/(n~1), z; = jh and Thsm defined by (2.62). We denote
the matrix of the system (2.70), (2.71) by A7*, its right-hand side by Y** and its solution
by a, = (a'_‘k,a’_‘(k_l),...,a’_‘l,ai‘,...,a’g). The use of expressions angm as quadrature

formulae for functions of the form (2.67) is based on the following theorem.

Theorem 2.15 Suppose that a function s : (—kh,b+mh] — R! is such that s € c*(—kh,b+
mh)] and s* is monotonic on either side of 0. Suppose further that the systems (2.70), (2.71)

have solutions (o™, aﬁ(k_l), aly,at,...,a) for all sufficiently large n, and that the sums

k
Y (eh)? (2.72)

.7=_k1.7¢0
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are bounded uniformly with respect to n. Finally, suppose that the function f : (—kh,b +

mh] — R is defined by (2.67). Then, there ezists a real ¢ > 0 such that

| Tiegn(7) = [ Sladde 1< &
for all sufficiently large n.

Proof. Applying the Taylor expansion to the function f at £ = 0 we obtain

f(e) = P(f)(z) + Ri(8)(z)s(z) + Ri(),
where i ) "
P(f)(2) = s(z) Z 4y 20

=0 1=0 b

and Ry(¢), Rr() are such functions [—-kh, + mh] — R! that
Ri(6)(0) = Ry($)(0) = ... = RP(4)(0) = 0,
R (¥)(0) = By (¥)(0) = ... = R ($)(0) = 0.
Substituting (2.74) into (2.73), we obtain _
b 1
| Tiegn(5)= [ S| < | T2 (PO~ [ PPz |+
b
| Ting, (RK($) - ) + Ri(®)) - / ((Rx(8(2))s(2))(z) + Re(t(=)))dz | .
Due to (2.70), (2.71) .
Tingn (PN = [ P2z =0,
and we have
b
| Ting(£) = [ Fada <
| RT} (s Ri(9)) = fo (s - Ri(9))(z)dz |
+ | BTG ((Ri(%)) - [3(Rk(%))(z)dz |

+ | ZE(RRO)(R)s(iR)o}) + (Re()(jR)al) | .

Due to (2.77) and (2.64), there exists ¢; > 0 such that

b o
| RIS u(Re() ~ [ (Bu(9))(@)dz |< &

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)
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Combining (2.76), (2.64), and Lemma 2.12 we conclude that for some ¢; > 0

b co
| RT3 (s Bi6)) - [ (s R@))(w)da |< 2. (282

Finally, combining (2.76), (2.77) and Lemma 2.12 we conclude that for some ¢z > 0,

k
|2 (Bu(®)(Fh)s(Gh)e}) + (Ru(¥)(jh)af) |< z—i (2.83)

Now, the conclusion of the theorem follows from the combination of (2.81), (2.82), and

(2.83). : o

2.4.1 Convergence Rates for Singularites of the forms |z|* and log(|z])

For the remainder of the chapter, ¢, ¢, ..., ¢2x will denote functions (=kh,b+ mh] - R!
defined by the formulae

$i(z) = ', (2.84)

fort=1,2,...,k, and :
¢i(z) = 2" (), (2.85)

fori=k+1,k+2,..,2k. The following lemma is a particular case of a well-known general

fact proven, for example, in [20].

Lemma 2.16 If s(z) = z* with A a real number such that 0 < |A| < 1, then the functions
P15 P2, ..., P2k constitute a Chebyshev system on the interval (=kh,b+ mh] (i.e., the deter-
minant of the 2k x 2k matriz B;; defined by the formula Bi; = ¢i(t;) is non-zero for any
2k distinct points on the interval (—kh,b+ mh]).

Theorem 2.17 Ifs(z) = |z|* with 0 < [A| < 1, then the convergence rate of the quadrature

rule Tg,,ﬁm is at least k.

Proof. It immediately follows from Lemma 2.16 that the matrix of the system (2.70),
(2.71) is non-singular. We rescale the system (2.70), (2.71) by multiplying its ith equation
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by F;l_—l, fori=1,2,...,k, and by h.‘Tl-HT, for i =k +1,k+2,...,2k, obtaining the system

of equations
k

i—1,.n 1 b - n i—
S jilap = F(/o 2~1dg — Thym(2"1)), (2.86)
J==~k,j#0
1=1,2,....,k, and
k : 1 b, 1o
Z FiR AR = W(./o AL Y . TRam(z' ™ 11, (2.87)
j=‘k1j¢o

fori=k+1,k+2,...,2k.

We will denote the matrix of the system (2.86), (2.87) by By, and its right hand side by Zp.
Obviously, By is independent of n, and using Theorem 2.14 we observe that if m > k then
|Z%| is bounded uniformly with respect to n. Now, due to Theorem 2.15, the convergence

rate of Tg,,ﬁm is at least k. O

The proof of Theorem 2.17 can be repeated almost verbatim with s(z) = log(|z|), instead

of s(z) = ||, resulting in the following theorem.

Theorem 2.18 If s(z) = log(|z|) then the convergence rate of the quadrature rule T3np,,

s at least k.

2.4.2 Asymptotic behaviour of correction coefficients as n — oo

An obvious drawback of the expressions Tgﬁm as practical quadrature rules is the fact that
the weights a™ = (a’jk,...,a’jl,a’f,...,aZ) have to be determined for each value of n by
solving a system of linear algebraic equations. For singularities of the form s(z) = log(|z)),
s(z) = |z|* we eliminate this problem by constructing a new set of quadrature weights
v = (‘7—1:,7—(1:—1), cees¥=1,Y1y ---» Yk), independent of n, and such that the quadrature rules

T_;’”k gm are still of order not less than k.

Lemma 2.19 Suppose that § = (BT, B3, ..., Bm_y ) is such that the right-hand order of the
2
guadrature formula Thgm is m. Further, let z > 0 be some real number. Then for any

integers p, q such that p < g,

1 z b z 1 z b 2z m—z=—
[W(Tgﬁm(ag )—/0 7dz) = s (T )—/O 2*de) [= O(A™=*"1),  (2.88)
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where hy, = b/(p— 1), and hy = b/(g - 1).

Proof. Due to Theorem 2.14, there exist real c¢;,c; > 0 such that

b k
(T8 gm(2*) - /0 27dz) = cth = hy 3 (), (2.89)
=k
and
b k
(Tfsm(2?) - /0 2*de) = b — hy 3 (hg)". (2.90)
=k

Now, combining (2.89), (2.90) we obtain

| S (Thom(2?) = f§ 2*dz) = 4 (Thom(2”) - [E 27de) |
hP hq

1 m k . z 1 m k g z
= _hzzJH (Clhp ~hyp Z (Ghp)?) = ——hg—-}.] (C2hq — hy Z (7he)™)
j:—-k ]:—k

k k
= (ahy™ ™ = 3 (G)) — (ehPT = 3 (6)%)

i=—k i=—k

_ m—z—1 _ m—z—1
= abhy c2hy

= O(hp—"1). (2.91)

Theorem 2.20 Suppose that k,m are two natural numbers such that k < m — 1 and
that 8 = (BT, B3, ..., fm-1) is such that the right-hand order of the quadrature Trpm
is m. Suppose further t;mt s(z) = |e]* with 0 <| X |< 1, and that the coefficients
(o7, o _qpaly, of, ,a}c‘) are the solutions of the system (2.70),(2.71). Then

1) There ezists a limit
limy oo = 7;, (2.92)

for each i =1,2,...,2k.
2) For alli=1,2,...,2k,

1_k)- (2.93)

|af - % |= O(,
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3) vi do not depend on m, as long as m > k + 1.
4) The quadrature formulae T7sm are of order at least k.

Proof. Suppose that p, ¢ are two natural numbers, and p < g. Obviously,

of = (By)'ZE,

af (Bx)™' 2},

of —~a? = (By)YZE - Z}). (2.94)

Due to Lemma 2.19, there exists ¢ > 0 such that

c
ZF - Z{ll < e 2 (2.95)
and by combining (2.94), (2.95), we see that for some d > 0
lla? — a?]] < e (2.96)
Since the weights a™ constitute a Cauchy sequence, they converge to some limit
v = ('y_k,'y_(k_l), sy ¥=15715 -+, Tk)> Which proves 1, and 2, 3, 4 follow easily. O

The proof of the following theorem is a repetition, almost verbatim, of the proofs of the

Lemma 2.19 and Theorem 2.20

Theorem 2.21 If under the conditions of Theorem 2.20 we replace s(z) = |z|* with s(z) =

log(|z|), conclusions 1-4 remain correct.

For singularities of the form |z|* and log(|x]), Theorem 2.20 and 2.21 reduce the quadratures

TZng to the more “conventional” form

b k
/0 f@)dz & Thou(f) = Them(f)+h S 41(z;). (2.97)

==k A0
Remark 2.4 The whole theory in sections 4.1-4.2 has been constructed for functions with
a singularity at the left end of the interval. Obviously, an identical theory holds for functions

with a singularity at the right end of the interval. However, in all formulae the expression

TRsm has to be replaced with T7sm (see (2.62), (2.65)).
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2.4.3 Central Corrections for Singular Functions

In this section, we will be considering functions f{—b — mh,0) U (0,5 + mh] — R! of the

form
f(z) = ¢(z)s(z) + 9P(z), (2.98)

with ¢, € ¢/[-b— mh,b+ mh], and s € c[~b— mh,0) U (0,b+ mh] an integrable function

with a singularity at 0. We will define the central-point corrected trapezoidal rule

l
Tingm (f) = Thm(f) + Tigm(£) + h Y 1} (f(25) + f(2-5)), (2.99)

i=1
with h, z; defined by(2.63), 8" defined by (2.52), Tfzm, 17 4m defined by (2.62) and (2.65)
respectively, and u™ = (u¥, u3, ..., u}') an arbitrary sequence of length .
We will use the expression T 3m with appropriately chosen p” as quadrature formulae for
functions of the form (2.98), and the following construction provides a tool for finding p*

once 3™ is given, so that the rule is of order 2I, i.e., there exists some ¢ > 0 such that

b
| T2 g () — /_b f@)ds 1< <. (2.100)

For a pair of natural numbers I, m, we will consider the following system of linear algebraic

equations with respect to the unknowns [T

Z $§1_2uy - / 1‘21_2(1.’8 _ Tﬁﬁm($2l—2) _ TEgm($2z_2), (2‘101)
i=1 -t

XI: x?i_z'zls(xj)u;‘ _ /bb 2222 () 4 — T3 (2522 g(2)) = TP gm (22722 5(2)),
(2.102)

fori=1+1,142,..,2[,with h=b/(n - 1), z; = jh.

The proofs of Theorem 2.22, 2.23, and 2.24 are almost identical to those of Theorems 2.15,

2.17, and 2.20 respectively, and are thus stated below without proof.

Theorem 2.22 Suppose that a function s : [-b — mh,0) U (0,b+ mh] — R! is such that
s € c/[~b—mh,0)U(0,b+mh] and s is monotonic on either side of 0. Suppose further that
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the systems (2.101), (2.102) have solutions (,u'jl,,u'j(l__l),,u'll,,u?, vey UT) for all sufficiently
large n, and that the sums l
> (W) (2.103)
J==1,j#0
are bounded uniformly with respect to n. Finally, suppose that the function f : [-b—mh,0)U
(0,6 + mh] — R! is defined by (2.98). Then, there exists such ¢ > 0 that

| Tongm(£) - / J@)ds |< = (2.104)

for all sufficiently large n.

Theorem 2.23 If s(z) = |z|* with 0 < [\ < 1, or s(z) = log(|z|), then the convergence

rate of the quadrature rule T:"ﬁm is at least 21.

Theorem 2.24 Suppose that k,m are two natural numbers such that k < m ~1 and that

= (B, By, ,ﬂm_1) is such that the right-end order of the quadrature Trpgm is m, and the
left end order of the quadrature Trgm is m. Suppose further that s(z)=]z|*, 0 <l A< 1,
or s(z) = log(|z|), and that the coefficients (.p_k,u__(k_l),u_l,ul sy 1) are the solutions
of the system (2.70),(2.71). Then

1) There ezists a limit
limp ol = pi, (2.105)
for eachi=1,2,...,2k.
2) Foralli=1,2,...,2k,
| = i |= O ). (2.106)
3) pi do not depend on m, as long asm > 1 + 1.
4) The quadrature formulae T'sm are of order at least 21.

For singularities of the form [z]* and log(|z]), the Theorem 2.24 reduces the quadrature to

the more “conventional” form

b i
[ 1@ % o) = Tam(£) 4 Tgm(£) + Y is(fa) 4 S(es)). (2007

j=1
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2.4.4 Central Corrections for Singular Functions f(z) = ¢(z)s(z)

In this section we construct a quadrature formula specifically for the purpose of approxi-

mating definite integrals of functions of the form
f(z) = ¢(2)s(z), (2.108)

where ¢(z) : ¢’[~b — mh,b + mh] — R', and s € c[-b — mh,0) U (0,b + mh] an integrable
function with a singularity at 0. For a finite sequence p = (P05 P1, P25 vy Pp)s and Trgm, Tpgm
defined in (2.62) and (2.65) respectively, we define the corrected trapezoidal rule T sm by

the formula
onpm (f) = Trom(f) + Tham(f) + b D pF($(5h) + (= 7h))). (2.109)
=0

For integers n,m,p where n > 2, p > 1, m > 3 and odd, we will consider the following

system of equations with respect to the unknowns p™ = (p%, p2, P25 -+ Pp)-

~ 22 1Y g n i- n i
Ezf 2Pj = —};/b(:z:2 2s(z))dz — Thpm(a%2s(z)) - Tigm(z%2s(2)), (2.110)
J=0 -

where, h = b/(n—-1),2; = jh,and i = 1,2,...,p+ 1.
The proof of the following theorem is almost identical to the proof of Theorem 2.15.

Theorem 2.25 Suppose that n > 2 is an integer, and h, z; are defined by (2.63). Further,
suppose that f(z) = ¢(z)s(z) where ¢ : [-b — mh,b+ mh] — R, and s € c[~b— mh,0) U
(0,b+ mh] is an integrable function with a singularity at 0. Finally, suppose that the system
of equations (2.110) has a solution (p%, p7, s P3) for any sufficiently large n and that the
sums Y_5_o(p?)?) are bounded uniformly with respect to n. Then there ezists a real ¢ > 0

such that
b c
| Tj5) - [ fa)ds < . (2.111)
The proof of the following theorem is almost identical to that of Theorem 2.20, and is

omitted.

Theorem 2.26 Suppose that s(z) = log(|z|). Then for all n > 2p, the system (2.110) has

a solution p™ = (pg, pT, p3, ...y pPy), and

1 b ,
Po=15 /b log(|z|)dz — TRgmlog(|2]) = TEgmlog(|z]) = 3 p;. (2.112)
: )3
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Furthermore, there exist such real numbers py, ps, s pp and a real d > 0 such that

limn-—»oop? = Pj, (2.113)
and
| p} —pjl<d-hm7P (2.114)
for allj =1,2,...,p. Finally, there exists a real co such that
p
| 5 — (co+0.5log(h)~ > p; |< d-h™P (2.115)
i=1

for all n > 2p.

Remark 2.5 Formulae (2.114), (2.115) indicate that for sufficiently large m, the conver-
gence of p¥, p3, ..., pp t0 py, pa, ..., pp is virtually instantaneous, and that (2.115) is a nearly
perfect approximation to p2. The numerical values of P1, P2, ..., Pp can be found for various
values of p in Section 5.1.4. Also, note that ¢y does not depend on p, and its numerical

value (to 16 digits) is —.9189385332046727.
The proof of the following theorem is similar to the proof of Theorem 2.20.

Theorem 2.27 Suppose that s(z) = |z|*, with X a real number such that 0 < Al < 1, and
(2.110) has a solution p™ = (pZ, p}, p%, -y Pp)- Then for all n > 2p, the quadrature weights

PO PYs P35 -5 Py are independent of n.

2.4.5 Corrected trapezoidal rules for other singularities

In the preceding sections quadrature formulae are provided for singular functions of the

form

-
~—~
8
S
i

P(z)s(z) + (=), (2.116)
and

f(z) = ¢(z)s(), (2.117)
where the singularity s(z) is of the form log(|z]), or z* (0 < |A] < 1). Obviously the
procedure developed in the preceding sections can be applied to other singularities. As an

example, we construct a quadrature formula to approximate the definite integral,

/ " f(o)ds, (2.118)

-a
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where f is of the form (2.117),

-1 (2.119)

S(.’l?) - m7
with a > 0, and ¢(z) € c*[—a — kh,a + kh] and even (i.e., ¢(—2) = ¢(z)).

Remark 2.6 The choice of the singularity (2.119)is dictated by the frequency with which it
is encountered in the numerical solution of partial differential equations, in signal processing,
and other areas. Otherwise, almost any integrable, monotone singularity could have been

chosen.

We define the corrected trapezoidal rule 7% by the formula

T(f) = Z f(wj)+h2v"fyz), (2.120)

j==(n-2)
where h = a/(n - 1), z; = jh,y; =a—hifor 1 <i < k/2,and y; = a + h(i — k/2) for
k/24+1 <1 < k. We will use the expression T/% with appropriately chosen v™ as quadrature
formulae for functions of the form (2.117), and the following construction provides a tool

for finding v™, so that the rule is of order 2k — 2, i.e., there exists a real ¢ > 0 such that

| T3 (f) = | fa)de < —. (2.121)

For an even integer k > 2, we will consider the following system of linear algebraic equations

with respect to the unknowns v, with 7 =1,2,..,k:

2(1-1) e p2(i-1) n—-2 2(1-1)

Z——ng vi = Y (e, (2.122)

Y _ 2
j=1Va z z l=—(n-2) 112"371

with h = 22, z; = jh,y; =a—-hjforall 1 < j < k/2 and y; = a+ h(j - k/2) for all
k/2+1 < j <k. It is easy to see that the linear system (2.122) is independent of the length
of the interval a, and the unknowns v}, v2,...,v} can be determined by solving the system

of equations
2(1-1) n—2 z?(z 1)

k 1 g20i-1)
Z: 1_z21"/_1md”3“ > (1_z2), (2.123)

I=—(n-2)
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with h = E%T’ z; = jh,y; =1-hjforall 1 <j <k/2 and y; = 1+ h(j — k/2) for all
k/24+1<j<k.
The proof of the following theorem is quite similar to the proof of Theorem 2.15, and is

omitted.

Theorem 2.28 Suppose that for somea > 0, f(z) = \—/-(:423_%)- with ¢ € c¥[—a—kh,a+kh).

Then there exists such ¢ > 0 that
a c
for all sufficiently large n.

The authors have been unable to construct a quadrature rule for singularities of the form
(2.119), which is independent of the number n of points used in the uncorrected trapezoidal
rule. However, this is a relatively minor deficiency since the weights in such cases can be

precomputed and stored.

2.5 Numerical Results

Algorithms have been implemented for the construction of the quadratures T, T:k gmo
:kﬁm, T:;ﬁm, and T7..
The correction coefficients 5™ are calculated using (2.25), and (2.52). In the tables in
Section 5.1.1 the correction coefficients for orders of convergence upto 43 are tabulated. In
Table 1, convergence results are presented for some of the rules I%m. Column 1 of this table
contains the number of nodes discretizing the interval [0,1] was discretized. In column 2
are the relative errors of the standard 1-sided 4th order corrected trapezoidal rule, given
here for comparison. Columns 3-9 contain the relative errors for the rule T gm for various

orders of convergence m. In all cases the integrand was of the form _
f(z) = sin(200z) + cos(201z). (2.125)

The quadrature weights for the rules T;"k gms T;]k gm T ;’; gm and T are all obtained as
solutions of linear systems, and it is easy to see that the linear systems used for determining

these weights (see, for example (2.70), (2.71)) are very ill-conditioned. In order to combat
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the high condition number, all systems were solved using the mathematical package MAPLE
using 200 significant digits.

In order to evaluate the coefficients ¥ for singularities of the form s(z) = |z|* or s(z) =
log(|z|), we start with the right-end corrected trapezoidal rule Tm of order 40. Under these
conditions,

1
o] — 7y |< O(W) (2.126)

for all —k < i < k,k # 0 (see Theorem 2.20) and for reasonable k, the convergence of ol to
7: is almost instantaneous. The construction of the quadrature weights p; is performed in
a similar manner. In Section 5.1.2 the coefficients «; are listed for the singularities log(|z}),
].7:|%, |z|_%, ]zlé, |z]_%, ]zl"% and for the same singularities, the quadrature weights y; are
listed in Section 5.1.3. In Table 2, convergence results are presented for some of the rules
T;ik gm for various singularities. Column 1 of this table contains the number of nodes in the
discretization of the interval [0,1]. In Table 3, convergence results are presented for some
of quadrature rules T:k gm for various singularities. Column 1 of this table contains the
number of nodes in the discretization of the interval [—1,1]. In all cases the integrand was
of the form

f(z) = (sin(20z) + cos(21z)) + (sin(23z) + cos(22z))s(z), (2.127)

and the order of convergence used was 10.
Finally, algorithms have been implemented for evaluating quadratures ophy TO integrate

functions of the form
f(z) = ¢(z)log(|z|). (2.128)

The quadrature weights are obtained by solving the linear system (2.110). Note that the
quadrature weights are independent of the discretization A, except for the first weight pg
which is calculated using the formula (2.115). Presented in Table 4 are convergence results

for integrating functions of the form (2.128) where,
#(z) = sin(200z) + cos(201z). (2.129)

Column 1 shows the number of nodes in the discretization of the interval [-1,1]. Columns

3-6 show the relative errors for the various orders of convergence m as shown.
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Table 2.1: Convergence of quadrature rules T, for non-singular functions

N k=4 m=3 m=9 m=15 m=21 m=27 m=33 m=39
20 .230E-01 .112E-01 .131E-01 .136E-01 .138E-01 .138E-01 .138E-01 .138E-01
40 J132E-01  .120E-01 .122E-01 .122E-01 .122E-01 .122E-01 .122E-01 .122E-01
80 .457E-02  .108E-02 .654E-03 .430E-03 .292E-03 .202E-03 .142E-03 .100E-03
160 .216E-03  .804E-04 .223E-05 .743E-07 .264E-08 .972E-10 .365E-11 .139E-12
320 .310E-05 .522E-05 .292E-08 .199E-11 .116E-14 .304E-15 .306E-15 .306E-15
640 .191E-06 .328E-06 .304E-11 .105E-15 .703E-16 .703E-16 .703E-16 .703E-16
1280 .239E-07 .205E-07 .266E-14 .345E-15 .346E-15 .346E-15 .346E-15 .346E-15

Table 2.2: Convergence of quadrature rules T;‘,‘ gm for singular functions (10th order)

N log(z]) |z|? |z| = |23 2|5

40 0.29128E-03  0.25056E-04 0.11650E-02 0.42510E-04 0.53715E-03
80 0.72599E-07 0.30493E-07 0.98819E-06 0.53217E-07 0.52449E-06
160 0.56928E-10 0.17499E-10 0.10903E-08 0.32715E-10  0.49582E-09
320 0.65586E-13 0.59119E-14 0.76827E-12 0.12962E-13 0.31491E-12
640 0.18596E-14 0.16376E-14 0.66613E-15 0.17208E-14 0.13878E-14

Table 2.3: Convergence of quadrature rules T:k gm for singular functions (10th order)

1 =TI I =1
N log(|z]) |z]2 =] |=]® =1
40  0.57489E-03  0.49592E-04 0.23137E-02 0.84150E-04 0.10655E-02
80  0.14438E-06  0.60500E-07 0.19680E-05 0.10563E-06 0.10436E-05
160 0.11348E-09 0.34867E-10 0.21762E-08 0.65197E-10  0.98921E-09
320 0.13357E-12 0.13614E-13  0.15360E-11  0.28103E-13  0.62927E-12
640 0.61062E-15 0.16237E-14 0.42188E-14 0.16237E-14 0.50515E-14

Table 2.4: Convergence of the quadrature rule T} sm for functions f(z) = ¢(x)log(|z|)

N m=3 m=9 m=15 m=21 m=27 m=33 m=39

40 .546E-01 .536E-01 .536E-01 .536E-01 .536E-01 .536E-01 .536E-01
80 .291E-03 .764E-03 .265E-03 .129E-03 .640E-04 .300E-04 .107E-04
160 .282E-03 .241E-04 .209E-05 .255E-08 .482E-09 .125E-11 .143E-13
320 437E-04 .190E-04 .912E-06 .392E-09 .162E-09 .294E-12 - .147E-14
640 .573E-05 .315E-05 .468E-06 .166E-07 .108E-09 .583E-13 .119E-14
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2.6 Generalizations and Conclusions

A group of algorithms has been presented for the construction of high-order corrected
trapezoidal rules for functions with various types of singularities, both end-point and in the
middle of the interval of integration. In many cases, the corrected rule can have effectively
an arbitrarily high order, without the attendent growths of correction weights. The draw-
back of the approach is the need for the integrand to be available in a small area outside
the interval of integration, whenever the singularity being corrected is on one of the ends
of that interval.

The algorithm of the chapter admits several straightforward generalizations.

1. There are classes of singularities not covered by this chapter for which some versions of
Theorem 2.15 can be fairly easily proven.
2. The quadratures can be easily modified to handle functions of the form

m

f(z) =9¥(z)+ Z di(z) - si(z), (2.130)

i=1
where 1, ¢1,41,...,¢m are smooth functions, and sy, ss, ..., s,, are several different singular-
ities.
3. Quadrature rules developed of this chapter have fairly obvious analogues in two and
three dimensions. However, the proofs of the multidimensional versions of the theorems in
this chapter are somewhat more involved than those of their one dimesional counterparts.
These results will be reported at a later date.

4. High-order corrected trapezoidal rules can be used to approximate integrals
Ky
/ cos(a cos 0)db (2.131)
0

by rewriting the integral as
@ cos(z)

—-a \/(12—2,‘2

and using the quadrature rule T~ defined in (2.120). This rule proves to be of fundamental

de (2.132)

importance in the development of the fast Hankel Transform (see, for example Chapter 4).

5. Integral equations of the form

/C;L o(w)log(|z — w|)ds, = C (2.133)



CHAPTER 2. CORRECTED TRAPEZOIDAL RULES FOR SINGULAR FUNCTIONS33

are encountered in the study of partial differential equations (see, for example [22]). In
order to apply the Nystrom algorithm to the integral equation (2.133), the left-hand side is

decomposed into a sum
L
/ o(w)log(|z — w|)dsy = I(z) + J(2), (2.134)
0

where the integral operators I and J are defined by the formulae

771 (z) = v H(w)

12)= [ otwllog( Ddsu, (2.135)

L
1) = [ atwlog(|77(z) - v (w) [)dsu. (2.136)

Now, the integral operator I can be discretized by the uncorrected trapezoidal rule and the
operator J can be discretized by the corrected trapezoidal rule o, defined in (2.109) to a

rapidly convergent finite-dimesional approximation to (2.133).



Chapter 3

Fourier transforms of singular

functions

3.1 Introduction

Fourier techniques have been an extremely important and popular analytical tool in math-
ematics and physics for more than two centuries. The introduction of the fast Fourier
transform (FFT) algorithm in the 1960s has greatly broadened the scope of application of
the Fourier transform to data handling, and has also brought prominence to the discrete
Fourier transform (DFT). The impact of the FFT can be felt in such diverse areas as signal
processing, electrical engineering, VLSI circuit modeling, medical imaging.

The DFT is often used for the evaluation of integrals of the form

/ 7 fo)e e, (3.1)
0

for various values of w. It is well known that the DFT is an extremely effective numerical
tool, when the function f is smooth and periodic. However, when the function has a
Jump discontinuity, or is singular, the accuracy of the DFT is significantly reduced. The
reason for the loss of accuracy is that the DFT, which implements the trapezoidal rule, is
slowly convergent. In fact, the numerical error that results from the discontinuity is on
the order of % for a problem of size n. Such errors make even single precision calculations,

especially in higher dimensions, prohibitively expensive. Richardson extrapolation alleviates

34
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the situation, but double precision calculations are still virtually impossible.
In recent papers (see, for example, [29], [5]) algorithms are described for the rapid, and
accurate, computation of Fourier transforms of functions with jump discontinuities. More

specifically, these papers present algorithms for the evaluation of the integrals

. 1 g1 . .
fimm)= [ [ j(e,ppetminze-rmimigzay, (3.2)
0 0

with a given accuracy € for ~M < m < M, and -N < n < N, where f is a piecewise
constant function, or, more generally, a piecewise smooth function. The approach of [29] is
to use Green’s theorem to replace area integrals, with line integrals, thereby reducing the
number of nodes required for integration. Thereafter, the weights are redistributed on a
uniform grid with the help of Lagrange interpolation, bringing the data into a form suitable
for the FFT. The approach of [5] is similar; a wavelet based scheme is devised to redistribute
integration weights onto a uniform grid. However, both algorithms are very involved, and
not as general, as the algorithms developed in this chapter.

In Chapter 2, a group of quadrature formulae is presented applicable to functions with
singularities, generalizing the classical end-point corrected trapezoidal quadrature rules.
More specifically, corrected trapezoidal quadrature rules are developed to approximate def-

Inite integrals of singular functions f : [a,b] — R of the form

f(z) = ¢(z)s(z) + ¥(z), (3.3)

and

f(z) = ¢(z)s(z), (3.4)
where ¢(z), ¥(z) € c*[a,b], and s is an integrable function with a singularity on the interval
[a,b]. In this chapter, we observe that the quadrature scheme developed in Chapter 2 can
be applied, in a straightforward manner, to numerically integrate singular functions of the
form f(z)- =,

We also develop an alternate scheme to evaluate the Fourier transform of functions of
the form (3.3), (3.4) where ¢, ¢ are periodic. This procedure is based on using trigonometric
basis functions to approximate the integrand f(z). In this case resulting systems of linear
algebraic equations are well-conditioned, and in fact can be solved rapidly by means of the

FFT; thus, the correction weights do not need to be precomputed and tabulated.
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In the following section, we summarize several facts from approximation theory, classical
numerical analysis, and Chapter 2 to be used in subsequent sections. In §3.3 we describe
a procedure to evaluate the Fourier transform of singular functions based on the results
of Chapter 2. In Section 3.4 we describe an alternate procedure to evaluate the Fourier
transform of periodic singular functions, using global corrections. Finally in §3.7 we provide
results of several numerical experiments, and in §3.8 we discuss several straightforward

generalizations and applications of the algorithms of this chapter.

3.2 Mathematical and numerical preliminaries

In this section, we summarize some mathematical, and numerical results, to be used in the

rest of the chapter.

3.2.1 Corrected trapezoidal quadrature rules for singular functions

In Chapter 2, we construct a class of quadrature formulae for end-point singular functions,

generalizing the classical end-point corrected trapezoidal rules. In this subsection we sum-
marize some of the results obtained in Chapter 2.

Suppose that n > 2 is an integer. Suppose further that & > 0 is a real numbers with

= b/(n — 1). Finally, suppose that {w_p,...,wy,} are appropriately chosen correction

coefficients. We define a corrected trapezoidal rule T by the formula

TX(f)=Tulf)+h D wi f(2i), (3.5)
where 2; = ¢ h, for all i = —m, ..., m. For a function f : [-mh,b] — R, we will look upon

the sum T’(f) as an approximation to the integral

/ ' f(o)de. (3.6)
0 i

Remark 3.1 Consider a function f : [~mh,b] — R which has a singularity at zo = 0.
Suppose that there are 2m + 1 correction coefficients {w_p,,..., W, } surrounding the sin-
gularity. Then we say that T™ is a locally corrected rule if m < n. On the other hand, if
there are as many corrections as there are nodes on the interval of integration (i.e., m = n),

then we say that 7" is a globally corrected rule.
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The proof of the following theorem is almost identical to the proof of Theorem 2.17 in

Chapter 4.

Theorem 3.1 Suppose that n > 2 is an integer. Suppose further that h,b > 0 are real
numbers with h = b/(n — 1), and f € ¢*[—mh,b] is an integrable function. Then there
exist real coefficients {w” Wi} (wf| < 1) such that the rule T is of order 2m, i.e.,

-yt

there erists a real number ¢ > 0 such that

b
TN - [ f@)de < =, (37)
for allm > 2.

In Chapter 2, end-point corrected quadrature formulae T’ are developed to approximate

definite integrals of singular functions f : [a,b] — R of the form
f(z) = ¢(z)s(z) + ¢(z), (3.8)

and
f(z) = ¢(z)s(2), (3.9)

where a < 0 < b, ¢(z),¥(z) € c*[a,b], and s is an integrable function with a singularity on
the interval [a, b].

The actual quadrature weights {w_,,, .. .y WN4+m} are obtained for each singularify as a
solution of a linear algebraic system. For a pair of natural numbers k,m, with £ > 1 and
m > 3 and odd, we will consider the following system of linear algebraic equations with

respect to the unknowns w;, with 7 = 0,41, 42, ..., +m:

i . 1 rb . )
> e tw =y / 2 lde — To(2'), (3.10)
J=—m,j#0 0
fori=1,2,...,m, and
“ i—m—1 | i=m-1
Z T} s(zj)w; = -};/0 z} s(z)dz — Ty(z s(z)), (3.11)
j=_m1j¢0

fori=m+1,m+2,..,2m, with h = b/(n—1), z; = jh.
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3.2.2 The Fast Fourier transform

The following definition of the discrete fourier transform (DFT) can be found, for example,
in [25].

Definition 3.1 For a complex sequence {fy, ..., fn-1} the discrete Fourier transform {F;}

is defined by the formula
Fi=2 % fi-% (3.12)
forallj=0,1,...., N~ 1, where i = /—1.

Remark 3.2 The FFT algorithm reduces the number of operations for the DFT from
O(N?) to O(Nlog N) by a sequence of algebraic manipulations (see, for example, [25]).

Remark 3.3 The DFT is a trapezoidal approximation (see Definition 2.1) to the continuos
Fourier transform. More specifically, suppose that f € c*[0,2r] is a periodic function with

period 2. Suppose further that h = -217”, fi = f(ih), and Fj is defined in (3.12). Then
Fi 02" f(z)- é%da, (3.13)
forall j =0,1,...,N = 1.
The following corollary is an immediate consequence of Lemma 2.1.

Corollary 3.2 Suppose that f € c™|[0,2r] is a periodic function with period 2w. Suppose
further that h = %r, and f; = f(th). Then the DFT is a rule of order m, i.e., there exists

some real ¢ > 0 such that

2T .
| F; —/0 f(@)-e97da |< - (3.14)

forallj=0,1,...,N - 1.

3.3 Application of local corrections to the evaluation of

Fourier transforms of functions with singularities

Remark 3.4 It is clear from Corollary 3.2 that, when a function is smooth, and periodic

on the interval [0,2n], the DFT provides an an excellent approximation to the continuous



CHAPTER 3. FOURIER TRANSFORMS OF SINGULAR FUNCTIONS 39

Fourier transform. However, when a function has a jump discontinuity, or is singular the

DFT provides a poor approximation to the exact Fourier transform.

In this section we develop a scheme for the accurate, and rapid evaluation of the Fourier
transform of functions with singularities. The algorithm is based on a combination of the
fast Fourier transform (FFT) with a quadrature scheme tailored to the singularity. More
specifically, we observe that the quadrature scheme derived for singular functions (see,
Section 3.2.1) can be applied, in a straightforward manner, to the numerical integration of
singular functions of the form f(z)-e¥®,

The following corollary is an immediate consequence of Theorem 3.1.
Corollary 3.3 Suppose that f :[0,27] — R is a function of the form

f(z) = ¢(z)s(z) + ¥(2), (3.15)
and,
f(z) = ¢(z)s(z), (3.16)
where ¢(z),¥(z) € ¢™[0,2r], and s(z) = 2% (Ja| < 1) or s(z) = log(z). Consider the rule
T (introduced in (3.5)) approzimating integrals of functions of the form (3.16), i.e.,

1220~ [ rede 1< o (3.17)

Then the same rule T™

n's also integrates the exact Fourier transform with the order of con-

vergence 2m , i.e., there exists a real number d > 0 such that
N 2 3 d
T = [ fa)- einde 1< 2 (3.18)
0

forallj=0,1,...,.N - 1.

3.3.1 The corrected discrete Fourier transform

Definition 3.2 For a finite real sequence {f_,,.. .fn_1} we define the corrected discrete

Fourier transform {FJC} by the formula

2t & i2mik

forallj =0,1,...,N—1, where {F;} is defined in (3.12), and {w_pm,...,wy} are appropriate

correction coefficients.
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Remark 3.5 It follows from Definition 3.2, and (3.5) that
F{ = TY(f - &%), (3.20)

forall j=0,...,N — 1. Now, due to Corollary 3.3 the corrected discrete Fourier transform

is a rule of order 2m. That is, there exists a real number ¢ > 0 such that

J

2 L. ¢
| FC —/0 f(@)-e97da |< — . (3.21)

3.3.2 Rapid evaluation of the corrected discrete Fourier transform

It is possible to rapidly evaluate the sums (3.19) by means of the FFT.
More specifically, given the real sequence {f_,,,...fn_1}, we define the sequence
{fo,---, fn_1} by the formulae

fi = fowi + foiwy, (3.22)

forall:=0,1,...,m, and
fi=fi (3.23)

forall i =m+1,...,N — 1. Then it immediately follows from the combination of (3.19),
(3.22), and (3.23) that

o 2R . o
F} = — Z fk .e N (3.24)
N k=0

Observation 3.6 The sequence { fo, ..., fn-1} is computed in O(m) operations using (3.22).
Subsequently, the sums (3.23) are computed, by means of the FFT, in O(Nlog N) opera-

tions. Hence, the corrected Fourier transform is computed in O(N log N)+0(m) operations.

Remark 3.7 We have observed that the system of linear algebraic equations used to obtain
the quadrature weights can be extremely ill-conditioned (see, Remark 1.1). It turns out,
that for periodic functions, an alternate procedure may be devised; in this case, the resulting
system of linear algebraic equations is well-conditioned. We develop this approach in the

following section.
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3.4 Application of global corrections to the evaluation of

Fourier transforms of functions with singularities

In this section we develop a procedure for the evaluation of the Fourier transform of functions
of the form f(z) = ¢(z) - s(z), where ¢ is periodic, and s is an integrable singularity. We
devise a quadrature scheme which uses trigonometric basis functions to obtain correction
weights. Although, the scheme for deriving quadrature weights is similar to the approach
of Chapter 2, the resulting systems of linear algebraic equations are well-conditioned, and
in fact can be solved rapidly by means of the FFT. Thus, the correction weights do not
need to be precomputed and tabulated. More importantly, since the growth of quadrature

weights is suppressed, we can construct schemes of arbitrarily high order.

3.4.1 Integration of periodic functions

Remark 3.8 For the rest of this section we shall assume, without loss of generality that
N > 1is an odd integer, h = -2]-\,’1 Further, we shall assume that z; = h-j, for all

J=0,1,..., N — 1, are equispaced nodes at which functions are tabulated.

Theorem 3.4 Suppose s is singular function integrable on [0,2x]. Suppose further that
¢ : R! = C! is any periodic function of the form

N1

2

dz)= > o€t (3.25)

k=— N-1

where {ay} is a set of real numbers. Then there ezists a sequence of real numbers (weights)

{wo, w1, ..., wn_1} such that any function f : [0,27] — R of the form

f(z) = ¢(z) - s(z) (3.26)
is integrated ezactly, i.e.,
27 N-1
[ 1@z = Y wid;). (3.27)
0 o
Proof. Since f, defined in (3.26), is a linear combination of {s(z) - e‘i'N_z—'l'z,...,s(z)-

N1 . . . . .
e’z 7}, it is sufficient to show the existence of weights {wo, w1, ..., wn-1} which integrate
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each of the above basis functions exactly. That is,

N-1 ] 2r

Z ek = / ek s(x)de, (3.28)
for all £k = —(N - 1)/2,...,(N — 1)/2. We observe that the left hand side of (3.28)
is simply the DFT of the sequence {wg,ws,...,wn—1}. Thus, the correction weights
{wo,w1,...,wN_1} can be obtained as the inverse DFT of the sequence of the Fourier

coefficients of s. More specifically, suppose that

2T
8 = / ¢ . s(2)dz, (3.29)
0
forall k= —(N -1)/2,...,(N - 1)/2. Then
| M- N
wj = — 3 - e VITE (3.30)
N k=0
forall j=0,1,...,N - 1. a

Remark 3.9 Suppose that the sequence of Fourier coefficients {3} (see, (3.29)) are com-
puted and stored. Then the weights {wo,wy,...,wn-1} can be computed in O(N log N)

operations (using an FFT to evaluate the sums in (3.30)).

3.4.2 The Fast fourier transform of singular functions

In this subsection we describe a procedure, based on Theorem 3.4, for the accurate eval-
uation of Fourier transforms of singular functions. It follows from Theorem 3.4 that the
the quadrature weights {wo, w1, ..., wn_1} will exactly integrate functions f(z)-e*** whose
maximum (combined) frequency is k = Nz;l Hence, in order to exactly evaluate the ex-
act Fourier transform of the a function f(z) (defined in (3.26)), twice as many nodes and
weights are required (i.e., the function needs to be oversampled by a factor of 2).

More specifically, suppose that functions s, f, and ¢ are as specified in Theorem 3.4.
Suppose further that the 2N — 1 quadrature weights {wp, wy, ..., wyn_1} are computed by
means of the formula (3.30). Then

2 ) 2N-1 '
f(@)e*odz = Y wigethe (3.31)
0

=0
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forall k= —(N - 1)/2,...,(N - 1)/2.

Remark 3.10 It was observed in Remark 3.9 that the quadrature weights can be com-
puted in O(N log N) operations. Subsequently, sums of the form (3.31) can be computed
in O(N log N) operations using the FFT (see, Remark 3.2). Thus the corrected Fourier
transform, including computation of correction weights, can be computed in O(NlogN)

operations
The following corollary is an immediate consequence of Theorem 3.4.

Corollary 3.5 Suppose that {s1,ss,...,8,} are singular functions integrable on [0,27].
Due to Theorem 3.4, we know that there exists a set of quadrature weights {wé, cees wéN_l}
for each singularity {s;}, such that the corrected Fourier transform is ezact, i.e., for each

l=1,2,...,p .
2N-1

02” f(@)si(z)e %de = Z wégbjei'k'xf (3.32)

j=0
forallk = —(N - 1)/2,...,(N - 1)/2. Suppose further that S is a linear combination of

the singularities, i.e.,

P
S(z)=>_ 8- slz), (3.33)
=1
where {1, ...,B8,} are a sequence of real numbers, and define the real coefficients
p .
Wi=> wi-p (3.34)
=1

forallj=0,1,...,2N—1. Then the quadrature weights {Wy, . . ., Wan—1} integrate a linear

combination of the singularities, i.e.,

2 ) 2N-1 ]
A f(2)S(2)e*%dz = S Wigsei*es, (3.35)

j=0
forallk = —(N -1)/2,...,(N -1)/2.

3.5 The FFT for functions with singularities in two-dimensions

All the results of the previous section generalize to the two-dimensional case. The following
theorem is the two dimensional analog of Theorem 3.4. The proof is almost identical to the

proof of Theorem 3.4.
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Theorem 3.6 Suppose that s : R? — C! is singular function integrable on [0,27]X ([0, 2x].
Suppose further that ¢ : R? — C! is any periodic function of the form

N 1

¢(z,y)— Z Z ak,m~e"'""x+’"'y), (3.36)

2 m= 2
where {agm} is a set of real numbers.
Then there ezxists a sequence of weights {wo 0, wo 1, - -, waN-1,2N-1} such that the Fourier

transform of any function f[0,2r]? — C! of the form

f(.’l), y) = d)(.’l:, y) ' S(.’l:, y) (337)
is evaluated ezxactly, i.e.,
o s . 2N-12N-1 .
/0 @) et dzdy = 37 37 wip- ¢laj,y) - F AW, (3.38)
=0 j=0

for allk = —=(N —1)/2,...,(N - 1)/2, and for allm = —(N — 1)/2,...,(N = 1)/2.

Remark 3.11 When s(z,y) = s1(z) - s2(y), the problem can be reduced from a two dime-

sional problem to a one dimensional one. Clearly,

2r 27w
L[ A@- w- et mae = ([T 5 i) - ([ p)-emay, (339)

forall k = (N ~1)/2,...,(N = 1)/2, and for all m = —(N = 1)/2,...,(N — 1)/2. In
other words, suppose that the weights {w§,w{,...,wk_;} exactly integrate fi(z), and
{wd, w?, ..., wk_,} exactly integrate f2(y). Then the tensor product of these weights

{wpw, wgwi,. .., wh_;w%_,} exactly integrate f(z,y) = fi(z)- f2(y). Hence 2-D Fourier
transforms of singularites which are naturally separable (such as the characteristic function

of a rectangle) are reduced to 1-D Fourier transforms.

3.6 Applications of quadratures to the design of VLSI masks

In recent papers (see, for example, [29], [5]) algorithms are described for the rapid, and
accurate, computation of Fourier transforms of functions with jump discontinuities. More

specifically, these papers present algorithms for the rapid evaluation of the integrals

. 2T 2r . R
fimm)= [7 [7 fa, p)eimsemsazay, (3.40)
0 0



CHAPTER 3. FOURIER TRANSFORMS OF SINGULAR FUNCTIONS 45

where f is a piecewise constant function. In this section we outline a scheme to solve a

more general problem. We present an algorithm for the rapid evaluation of the integrals

. 2 p27m . .
f(m,n) = /0 | #(,9) - s(3,y) - €™ ™ dzdy, (3.41)
where s is piecewise constant, and ¢ is a periodic function.

Lemma 3.7 Suppose that ¢ is as defined in (3.25). Suppose further that s; is a step

function

si(z) =1 if l-h<z<(I+1)-h,
si(z) =0 otherwise, (3.42)

foralll=0,1,...,N — 1. Finally, suppose that the weights {wh, wh, .. . wh_,} are chosen
(see, Theorem 3.4) so that each function fi(z) = ¢(z) - si(z) is integrated ezactly, i.e.,

N-1

2m
A fi(z)dz = Z w;¢>(:1:]) (3.43)
j=0
foralll =1,2,...,N —1. Then the weights- {wé} are erpressed by {w?} by the following
formulae
w; = wi_y, (3.44)
foralll < 7, and
'UJ‘I7 = w_?-—l-{-N’ (345)

foralll > j.

Proof. Due to Theorem 3.4 the weights {wé} are given by the formula

1 N-1 o r
wé =¥ Z e"'k']'h/ e*e . si(z)dz, (3.46)
k=0 0

forall j=0,1,...,N—1,and all [ = 0,1,..., N. Now, for a fixed [, we express the Fourier

coeflicients of s;(z) by those of so(2), i.e.,

2T 27 . 2m
/ eikT si(z)dz = / ek, so(z —=1-h)dz = e"k'l’h/ ek, so(z)dz (3.47)
0 0 0
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Hence,
1 N-1 o i 2T
wh = ¥ e—z.k.].he,.k.z.h/O ¢ so(a)da = (3.48)
k=0
1 N 2
— e_"k'(J_l)'h/ ek . so(z)dz. (3.49)
N 0
k=0
Or,
wh = wd_, (3.50)
foralll < j, and
wh=w)_1, N, (3.51)
for all I > j. g
In other words, the set of weights {w}, wi,..., wk _,}, is obtained from the set
{wd, w?,...,w%_,}, by a shift in the index.

The proof of the following corollary is an immediate consequence of Lemma 3.7.

Corollary 3.8 Suppose that S(z) is a linear combination of step functions, i.e.,

N-1
S(@) = Bisiz). (3.52)
=0

We know that (see, Corollary 3.5) the set of weights that integrate the linear combination

of singularities, is given by the formula

N-1
W= 3" wip (3.53)
=0

forallj =0,1,...,N — 1. It follows immediately from the conclusion of Lemma 3.7 that

the weights may instead be computed by the following discrete convolution
W, = w! * B (3.54)

Remark 3.12 It is obvious that both Lemma 3.7, and Corollary 3.8 generalize to the two-
dimensional case. In the following subsection, we make use of this fact to construct an

algorithm used for the evaluation of the integrals (3.41).
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3.6.1 An algorithm applicable to VLSI

The following problem is encountered in the design and study of VLSI circuit design.

Problem: Given a two-dimensional function f : R? — R,
N N
f(x’ y) = E Ed’(x, y)’aj,k 'Sj’k(x, y)’ (355)
j=1k=1

where ¢ is a function periodic [0,27], {@;;} is any sequence of real numbers, and 85k

represent characteristic functions of squares, i.e.,

I
st

sik(z,y) ifzel[j-h,(j+1)-h], and,y € [k-h,(k+ 1) - hl,

sjk(z,y) = 0 otherwise. (3.56)

Evaluate the following integrals (the Fourier transform),

R 2 2 s .
famy= [ [7 f(e,p)eiteemsanay, (3.57)
4] 4]

forall /= —(N -1)/2,...,(N -1)/2,and m = —(N - 1)/2,...,(N - 1)/2.

An algorithm, based on the results of this section is presented below.

Algorithm 3.1
Step Complexity Description
0 O(N?) Comment [Precomputation: Input Problem size N. Compute the Fourier

coeficients of the square s o analytically.]
27 27 . .
Sk = / / so,0(z,y) - €97 - e*¥dzdy, (3.58)
o Jo
forj=—(N-1)/2,...,(N~1)/2,and k = ~(N-1)/2,...,(N - 1)/2.

1 O(N%logN) Comment [Initialization: Compute the Fourier transform of the location

vector (the coefficients a;,,), by means of the FFT.]

N N i2nit
& m :EEaJk . a e (3.59)

forli=0,..,N—=1,m=0,...,N—1.
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2 O(N?) Comment[Multiply the Fourier coefficients of the location vector, and the

Fourier coefficients of the square]
Wim = 8im - &1,m, (3.60)
fori=0,....,N-1,m=0,...,N—1.

3 O(N%log N) Comment[Inverse FFT obtaining the sum of the weights associated with all

singularities]

Wik = Z Z Wi - e F5 ™5 (3.61)

=1 m=1
forj=0,...,N-1,k=0,...,N—1]
4 O(N?) Comment[Multiply the weights by the function values.]
ik = Wik - 6(z5, v), (3.62)

forj=0,...,.N=1,k=0,...,N—1.

5 O(N?*log N) Comment[Obtain the corrected Fourier transform]
N N 2 1 i2xk
x i2xkm
=YY ¢; SR (3.63)

b
1]

=1 1

forl=0,...,.N-1,m=0,...,N-1.

Remark 3.13 Suppose that ¢(z,y) is a constant function (this is the problem addressed
in [29], [5]). Then it is clear that Algorithm 3.1 reduces to Step 0, 1, 2. In other words,

only 1 FFT and 1 multiplication are required to solve the problem.

Remark 3.14 It is also clear that the discontinuity is not restriced to the charateristic
function of a square (see, 3.56). In fact, the algorithm would perform identically for any
discontinuity or integrable singularity, as long as the Fourier coefficients (see, 3.58) are

analytically available.
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3.7 Numerical Examples

We have written FORTRAN implementations of the algorithms of this chapter using double
precision arithmetic, and have applied these programs to a variety of situations. The imple-
mentations of these algorithms have been tested on a SPARCstation 10. Five experiments

are described in this section, and their results are summarized in Tables 2.1, 2.2.

Example 1:

We consider the cosine transform of the singular function f,

/ f(z) - cos(k - z)dz, (3.64)

where f(z) is given by
f(z) = log(z) - e, (3.65)

Combining formula (3.2) with the appropriate quadrature weights, (see, Chapter 2) we
construct a corrected cosine transform. In the example presented we use 20 quadrature
weights to obtain a 40th order rule. In Table 1, we present convergence results of the cor-
rected FFT. The first column of Table 1 contains the number N of nodes discretizing the
interval [0, 7]. Columns 2-4 contain the relative error of the numerical solution as compared
with the analytically obtained one, for various values of k. We empirically observe that
that the function tabulated at the Nyquist sampling rate (of two-points per wavelength)
Is integrated to single precision accuracy, and when tabulated at twice the Nyquist rate is
integrated to double precision accuracy. Similar results are obtained for other singularities

of the form s(z) = z* where (|a| < 1) using the weights in Chapter 5.

Example 2

We consider the cosine transform of the singular function,
f(z)-cos(k - z)dx (3.66)

where f(z) is given by
1
(x2 - 22)3

f(=) =] ] (3.67)
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Combining formula (3.2) with the appropriate quadrature weights, (see, Chapter 2) we
constructed a corrected cosine transform. In the example presented we used 20 quadra-
ture weights to obtain a 40th order rule. In Table 2, we present convergence results of the
corrected FFT. The first column of Table 1 contains the number of nodes discretizing the in-
terval [-7, 7]. Columns 2-4 contain the relative error of the numerical solution as compared
with the analytically obtained one for various values of k. We empirically observe that the
function tabulated at the twice the Nyquist sampling rate (of two-points per wavelength) is
integrated to single precision accuracy, and when tabulated at four times the Nyquist rate

is integrated to double precision accuracy.

Example 3:

We use the term non-separable for functions of the form
f(z) = ¢(z) + s(z) - ¥(z), (3.68)

where the singularity cannot be separated (i.e., it is not possible to express the function in
the form g(z) = s(z) - h(x)). However, it is still possible to numerically compute the FFT
accurately (albeit, with a slightly inferior convergence rate compared to the previous two

examples). We consider the Fourier transform of the singular function,
PE ”
f(z)- ", (3.69)
0

where f is given by
f(z) = € cos(z) + e sin(z) log(z)). (3.70)

In Chapter 2, a quadrature formula is derived to approximate integrals of functions of
the form (3.70). Combining formula (3.2) with the appropriate correction weights we con-
structed a corrected FFT. In the example presented we used a 10th order corrected rule.
In Table 3, we present convergence results of the corrected FFT. The first column of Table
1 contains the number of nodes discretizing the interval [0,27]. Columns 2-4 contain the
relative error of the numerical solution as compared with the analytically obtained one for
various values of k. We observe that the convergence is slower than in the previous two

examples. The reasons for being able to use only a 10th order rule, as opposed to a 40th
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order rule, when the singularity is non-separable, are discussed in detail in Chapter 2.

Example 4:

In this example, we evaluate the Fourier transform of a piecewise constant function
s(z,y) which is a linear combination of characteristic functions of a pseudo-random combina-
tion of rectangles. More specifically, suppose that h = ., s(z,y) = sy for z € [k, (k+1)h],
y € [4,(7 4 1)h], and the N? coefficients Sk,; are randomly distributed numbers on the unit

square [0, 1]. Then we evaluate the integrals

R Vs 2 . ..
fedy= [ [ stz p)etecivday, (3.71)
0 0

to double precision accuracy, for all k = —(N — 1)/2,...,(N = 1)/2, and j = —(N -
1)/2,...,(N — 1)/2 by means of Algorithm 3.1.

In Table 4, we present the results of the corrected FFT. The first column of Table 3
contains the number of nodes discretizing the interval [0,27]. Columns 2-4 contains the
evaluation time required for Step 0, Step 1, Step 2, of Algorithm 3.1. Column 5 contains
the ratio of the time required by the algorithm compared to the time required for the stan-
dard implemenation of the FFT. Finally, Col.umn 5 contains the L, error of the numerical

solution as compared with the analytically obtained one.

Example 5:

In this example, we evaluate the Fourier transform of a piecewise periodic function s(z, y)
which is a linear combination of characteristic functions of a pseudo-random combination
of rectangles. More specifically, h = 3%, s(z,y) = s ; for z € [k, (k+ 1)h], y € [7,(7 + 1)A),
and the N? coefficients Sk,; were randomly distributed numbers on the unit square [0,1]2

We evaluated the integrals

. 2r p2m . .
flk,j) = /0 /0 $(z,9) - s(z, y)e* e iVdzdy, (3.72)

to double precision accuracy, for all k = —(N — 1)/2,...,(N - 1)/2, and j = —(N -
1)/2,...,(N —1)/2, and
d(z,y) = e %A= +(y-m)?) (3.73)

by means of Algorithm 3.1.
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In Table 5, we present the results of the corrected FFT. The /ﬁfst column of Table 3
contains the number of nodes discretizing the interval [0,27r]. Columns 2-7 contain the
evaluation time required for Steps 0-5 of Algorithm 3.1. Column 8 contains the ratio
of the time required by the algorithm compared to the time required for the standard
implemenation of the FFT. Finally, Column 9 contains the L error of the numerical solution

as compared with the analytically obtained one.

Remark 3.15 The reason for the low of accuracy for small N (N = 16,32) is that for

these values, the function (3.73) is under sampled.
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3.8 Generalizations and conclusions

A group of algorithms has been presented for the rapid evaluation of the Fourier transforms
of function with singularities. The algorithms are based on a combination of quadrature
schemes with the FFT; they overcome the accuracy problems associated with computing
the Fourier transform of discontinuous functions. All the algorithms admit several straight-
forward generalizations.

1. There are classes of singularities not covered in this chapter for which versions of Theo-
rem 3.4, and Theorem 3.6 can be fairly easily proven.

2. In [9], [10] a collection of algorithms are designed for the efficient computation of certain
generalizations of the DFT, namely the application and inversion of the transformation
F:CN = CN defined by the formulae

N/j2-1 ‘
Fla)j= Y op-e*, (3.74)
k=-N/2
for j = 1,...,N, where z = {z,,...,zn} is a sequence of real numbers in [-m,7] and
a = {a_nj3,-- s @N/2-1} is a sequence of complex numbers. The number of arithmetic

operations required by each of the algorithms of this paper is proportional to
N -log N + N -log (%) (3.75)
where ¢ is the desired accuracy, compared with O(N %) operations required for the direct
application and O(N3) for the direct inversion of the transformation described by (3.74).
The algorithms designed for the non-equispaced FFT are slowly convergent schemes
for the approximation integrals. More specifically, since the function tabulation is at non-
Gaussian nodes the order of convergence is the same as the convergence of the trapezoidal

rule which the DFT implements, i.e.,

2m . N/2-1 .
| / a(k)e*1dk - 3 oy - €| < O(1/N?). (3.76)
0 k=~N/2
The procedures developed in this chapter can be applied to this situation to design rapidly

convergent schemes. This work has been completed and the results will be reported at a

later date.
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In Section 3.6 we assume that the singularities lie on grid points. In this situation
the equispaced FFT is used for the derivation of quadrature weights. However, there are
situations when the singularities do not lie on grid points. It is clear that in this situation
a non-equispaced FFT may be used to obtain the quadrature weights instead.

3. There are a number of applications based on the approach of this chapter to the study
of diffraction techinques in optics. For example, the Fraunhofer diffraction formula is of the
form

1 ;2m
I(ug, uj, D) = be‘ 2 Az, y)e"f_D"""uydxdy[ (3.77)

where A(z,y)is the aperture function. In many situations the aperture function accounts for
the finite extent of the aperture; numerically a discontinuity. Currently, standard numerical
techniques, approximate integrals of the form (3.77) by means of the DFT. Oversampling
and extrapolation are used to combat the error resulting from the discontinuity; the algo-
rithms of this chaper may be implemented in a straightforward manner to the evalutation

of these integrals.
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Table 3.1: Accuracy of the locally corrected FFT for evaluating singular integrals

Example 1:
/ [log(z) - 6_412] -cos(k - z)dz
0
N k=N k=N/2  k=N/4
64 0.107E+00 0.578E-07 0.437E-14
128 0.914E-01 0.570E-08 0.109E-13
256  0.855E-01 0.255E-08 0.320E-13
512 0.829E-01 0.199E-08 0.699E-13
1024 0.818E-01 0.184E-08 0.120E-13
2048 0.812E-01 0.179E-08 0.957E-13
Example 2:
/r [ ! ] cos(k - z)dz
- /1% — 22
N k=N/2 _ k=N/4 _ k=Nj§
32 0.165E-01 0.829E-08 0.897E-15
64 0.109E-02 0.334E-07 0.868E-14
128 0.671E-02 0.668E-08 0.298E-13
256 0.784E-02 0.175E-07 0.107E-13
512 0.798E-02 0.242E-07 0.361E-13
1024 0.795E-02 0.257E-07 0.597E-14
Example 3:

27 .
[e=*? cos(z) + e=** sin(z) - log(z)] - €'%%,
0

N k=N/8 k=N/16 k=N/32 k=N/6d

“k=N/128

0.119E-06
0.114E-07
0.486E-07
0.802E-07
0.113E-06

0.372E-09
0.462E-10
0.510E-10
0.607E-10
0.774E-10

0.131E-03
0.750E-04
0.490E-04
0.301E-04
0.130E-04

256
512
1024
2048
4096

0.709E-01

0.134E400
0.192E+00
0.250E400
0.309E+00

0.130E-10
0.265E-12
0.162E-12
0.183E-12
0.295E-12




CHAPTER 3. FOURIER TRANSFORMS OF SINGULAR FUNCTIONS

Table 3.2: Applications of quadratures to VLSI

Example 4: Piecewise constant function.

R 2 2T . ..
f(k,j)= / / s(z, y)e’kze”ydzdy,
o Jo

N Step0 Stepl Step?2 tu,/trrr error

16 0.03 0.16 0.02 1.12 0.132E-14
32 0.11 0.85 0.11 1.12 0.156E-14
64 0.48 3.43 0.53 1.15 0.121E-14
128 1.82 14.94 1.84 1.12 0.502E-14
256  8.69 65.39 7.19 1.11 0.104E-14

Example 5: Piecewise smooth function.

< 2 2r . ..
f(k,5)= / o(z,y) - s(z, y)e’kze”yd:cdy,
o Jo

N

Step 0,1,2 Step3 Step4 Step 5 talg /tFFT error

16
32
64
128
256

0.200 0.180 0.040 0.150 3.375 0.218E-02
1.060 0.840 0.110 0.840 3.235 0.683E-06
4.260 3.200 0.630 3.290 3.322 0.403E-13
18.010 14.540 1.720 14.580 3.240 0.542E-14
79.030  64.060 6.700 63.940 3.216 0.704E-15

All times are measured in 1/100 of a second.
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Chapter 4

An algorithm for the fast Hankel

transform

4.1 Introduction

Given a function f € ¢%[0,00] and a real number a > 0, the Hankel transform is defined by

the formula

g(a) = /Ooo f(z)Jo(az)dz.

Hankel transforms are frequently encountered in applied mathematics and computa-
tional physics. Their applications include vibrations of a circular membrane, flow of heat
in a circular cylinder, wave propagation in a three-dimensional medium and many others.
However, attempts to use Hankel transforms as a numerical tool (as opposed to analytical
apparatus) tend to meet with serious difficulty: given a function f : [0, A] — R, tabulated

at N nodes, it takes O(N?) operations to obtain the numerical Hankel transform

A
/0 f(z)Jo(a - z)dz, (4.1)

for N values of a. In other words, unlike the Fourier series, the Chebyshev expansion or
the Legendre series (see, for example [4]), the Bessel functions do not have a fast transform
associated with them. Therefore, whenever possible, the Hankel transform is avoided in

favor of an expansion for which a fast transform exists.

57
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In this paper we present a procedure for the rapid evaluation of integrals of the form
(4.1), to any degree of precision, expending CPU time proportional to N log N. More
specifically, suppose that h = ﬁ’-“:, z; = ih, a; = W%ﬁ’ and f:[0,A] — R is a function

tabulated at N equispaced nodes zg,z1,...,2n—_;. Then the integrals

A
o)) = [ F(e)da(ase)ds, (42)
are computed for all j = 0,1,2..., N — 1, in O(N log ) operations.

Remark 4.1 Suppose that a function f : [0,00] — R has compact support, i.e., there exist
a pair of real numbers A, € such that |f(z)| < e for all z > A. Then, it is obvious that (4.2)

approximates, to a degree of precision ¢, the exact Hankel transform,
g(a) = /0 F(2)Jo(az)dz. (4.3)

Our algorithm for the Hankel transform is based on well known facts from classical
analysis. The Hankel transform is decomposed into two separate integral operators, each
of which is evaluated independently. The first operator is rapidly computed using a fast
cosine transform of a non-periodic function. Since the convergence of this procedure is slow
(O(1/n)) we accelerate it by means of an appropriate end-point correction procedure. The
second integral transform has a singular kernel. A trapezoidal approximation to the integral
is computed rapidly using a generalized version of the one-dimensional fast multipole method
(1-D FMM); a different set of end-point corrections is used to assure the rapid convergence
of this second step.

In the following section, we summarize several facts from approximation theory, classical
numerical analysis, and [18] to be used in the subsequent sections. Section 4.3 provides the
numerical apparatus for the algorithm, and is divided into three subsections. In §4.3.1
a procedure for the accurate evaluation of a cosine transform of a non-periodic function
is described. In § 4.3.2 we design a very high-order end-point corrected trapezoidal rule
for integrals of the form (4.2). In §4.3.3 we present an algorithm based on the 1-D FMM
which computes a trapezoidal approximation to the integrals (4.2) in O(N) operations.
In §4.4 we combine the results of Sections 4.3.1, 4.3.2, and 4.3.3 to present the detailed

description and complexity analysis of our algorithm, for the fast Hankel transform. Finally,
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in §4.5 we provide results of several numerical experiments, and in §4.6 we discuss several

straightforward generalizations and applications of the algorithm of this paper.

4.2 Mathematical and Numerical Preliminaries

In this section we summarize several well known results from classical analysis and approx-

imation theory to be used in this paper.

4.2.1 An expression for the Bessel function J,

As is well known, for any z € C,

Jo(z) = 1 AW cos(z cos 8)dé, (4.4)

T

where Jo denotes the Bessel function of order 0 (see, for example [2]). It follows immediately

from (4.4) that, for any function f € ¢?[0, A] — R, and any real number a,

A 1 re 1 A
/0 f(z)Jo(az)dz = ;./;a \/_aT—_—u"’./o f(z)cos(ux)dadu. (4.5)
4.2.2 Chebyshev Polynomials

In this section we summarize several well known facts about Chebyshev polynomials. The

following three classical definitions can be found, for example, in [13].

Definition 4.1 The n-th degree Chebyshev polynomial T,(z) is defined by the following

equivalent formulae:

Tn.(z) = cos(narccosz), (4.6)
(2) = %-((m+\/z7—1)”+(z— 2 o1y). (4.7)

The proof of the following lemma can be found in, for example, in[2)].

Lemma 4.1 Suppose that n > 0 is an integer. Then

! To(u)du -
[ia=m (48)
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and,
U To(u)du
=0, 4.9
/_1 V1—u? (4.9)
for alln > 1.

Definition 4.2 The roots {t1,...,t,} of the n-th degree Chebyshev polynomial T, lie in the
interval [-1,1] and

2k-1 «
- .- 4.
ts cos ( 2) s (4.10)

for k=1,...,n. They are referred to as Chebyshev nodes of order n.

Definition 4.3 Given an integer n > 1, we will denote by u1,. .., u, the set of polynomials

of order n — 1 defined by the formulae

u;(t) = ﬁ il 3 (4.11)

ety 1 T

for j=1,...,n, where t; are defined by (4.10).

The proofs of the following two lemmas are well known from classical theory of Cheby-

shev approximation, and can be found, for example, in [9], [11].

Lemma 4.2 Suppose that p > 2, b > 0, and zo are real numbers such that |zo] < b.
Suppose further that {t,...,t,} are Chebyshev nodes on the interval (zo = b,z0+b]. Then,

(4.12)

1
m zﬁ m(20) |< O(55)

for all |y| > 3b.

Lemma 4.3 Suppose that p > 2, b > 0, and yo are real numbers such that |yo| > 3b.
Suppose further that {t1,...,1,} are Chebyshev nodes on the interval (yo— b,y0+ b]. Then,

F z () 1< 0(5) (4.13)

for all |z| <b.
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4.2.3 The fast cosine transform

The following definition of the discrete cosine transform can be found for example, in [30].

Definition 4.4 For a real sequence {fo,..., fn_1} the discrete cosine transform {FJT} is
defined by the formula

m fot+ (=1) fnoy

N-2 R
_T__ . 71'.].1
F; _N_l(gf,cos(N_l)—i— 5 ) (4.14)

forallj=0,1,...,.N—1.

Remark 4.2 The fast cosine transform is an algorithm, based on the FFT (see, for example

[30]) to evaluate the discrete cosine transform (DCT) in O(N log N) operations.

Remark 4.3 The discrete cosine transform is a trapezoidal approximation (see Definition
2.1) to the exact cosine transform. More specifically, suppose that f € *0,7],h = 7T/(N -
1), z; =1h, f; = f(z;), and {FJT} is defined in (4.14). Then

FjT z/o f(z)cos(j - z)dz, (4.15)
forall j=0,1,..., N - 1.

The following well known theorem provides an error estimate for the approximation
to the exact cosine transform given by the discrete cosine transform. The proof follows

immediately from the combination of (4.14) and Lemma 2.1.

Theorem 4.4 Suppose that f € c?[0,7]. Suppose further that h = T/(N =1), z; = ih,
and f; = f(z;). Then the discrete cosine transform is second order convergent, t.e., there

ezxists some real ¢ > 0 such that
T N . c
| FT - /0 f(@)cos(ji-2) I< (4.16)
forallj=0,1,...,N—1.

The following theorem is less widely known. The proof also follows immediately from

the combination of (4.14) and Lemma 2.1; it can also be found in [11].
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Theorem 4.5 Suppose that f € ¢™[0,7] is an even function (i.e., f(z) = f(-z)). Suppose
further that h = n /(N — 1), z; = ih, and f; = f(z;). Finally, suppose that f(m)=f(r)=
f'(m) = ... = f™(x) = 0. Then the discrete cosine transform is a rule of order m, i.e.,

there exists some real ¢ > 0 such that

| FT - /07r f(z) cos(j - z) |< N—cm- (4.17)

forallj=0,1,..,N-1.

4.3 Numerical apparatus

4.3.1 The corrected fast cosine transform

Remark 4.4 When a function is even, the discrete cosine transform provides a remarkably
good approximation to the exact cosine transform (see Theorem 4.5). For functions that

are not even, we use end-point corrections to accelerate the convergence of the DCT.

Definition 4.5 For a finite real sequence {f_(n__l), ooy Joy ooy fam1} we define the corrected

discrete cosine transform {F J-C} by the formula

N-2

ch = FJT + N:}Tr._l Z (—f_," + f,‘)COS(jV_.é._{)IB?N—B, (418)

i=1
forall j =0,1,...,N — 1, where {FJT} is defined in (4.14), and ﬂ?N'3 are the correction
coefficients defined in (2.52).

The following corollary provides an error estimate for the approximation to the exact co-
sine transform given by the corrected discrete cosine transform (CDCT). It is an immediate

consequence of Theorem 2.14.

Corollary 4.6 Suppose that f € ¢™[—m, 7). Suppose further that h = /(N -1), z; =1ih,
and f; = f(z;) for alli = 0,4£1,...,£N — 1. Finally, suppose that f(m)= f'(7r) = f”(‘}'l') =
... = f™(m) = 0. Then there exists some real ¢ > 0 such that
c_ [T - ¢
| Ff —/ f(@)cos(j - z) |< ~ (4.19)
0 Nm

forallj=0,1,..,N-1.
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Remark 4.5 The CDCT requires that the function be tabulated outside the interval of
integration [0 : w]. However, if a function is odd (or even) this requirement is obviated, i.e.,

the function needs to be tabulated only within the interval of integration.

Observation 4.6 Suppose that f € ¢™[0,7] is an even function (i.e., f(z) = f(-=2))
satisfying the conditions of Corrollary 4.6. Then it follows from (4.18) that

C _ T
F¢ = FT, (4.20)
foralj=0,1,....N—-1.
Observation 4.7 Suppose that f € c™[0,7] is an odd function (i.e., f(z) = =f(-z))
satisfying the conditions of Corrollary 4.6. Then it follows from (4.18) that
N-2 ..
c_pT__T . £ .p32N-3 TteJ
F] —I;} N -1 ;(2 f" 131 )COS(N—].) (4‘21)

forallj=0,1,....N - 1.

Rapid evaluation of the corrected discrete cosine transform (CDCT)

Suppose that {f_(n_l), -+«y Jos--+, fno1} is a finite real sequence. Suppose further that we
define the real sequence {fg,..., fn_l} by the formulae

fo=for  fno1=fna, (4.22)
and,
fi= Je+ BN =S+ £o), (4.23)
for all ¢ = 1,2,..., N — 2, where the real coefficients ,BZN_S are defined in (2.52). Then it
immediately follows from the combination of (4.18) and (4.22) that

N=-2 .. 7 7
FY = (8 froos(Gr2d) ¢ Lot WP v (424)
i=1

forall j=0,1,2,...,N - 1.

Remark 4.8 Given areal sequence {f__(n_l), ooy Joy -+, fa-1}, the sequence {fg, cees fn_l}
can be computed (using (4.22)) in O(N) operations. Subsequently sums of the form (4.24)
can be computed in O(N log N) operations using the FCT (see Remark 4.2). Thus the cor-
rected discrete cosine transform {FJC} can be computed in O(Nlog N) + O(N) operations.
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The approach we use for correcting the fast cosine transform for non-periodic functions
(i.e., preprocessing the tabulated function with correction weights prior to the use of the
FCT algorithm) can be used to evaluate the Fourier transform of functions with singularities.

The details of this scheme are developed in [19].

4.3.2 End-point corrected trapezoidal quadrature rules for singular func-
tions of the form ﬁ%)%;

In this section we develop an end-point corrected quadrature formula to approximate the

definite integral

¢ _Flu)
4.25
T (4.25)
with a > 0, and F € c*[~a, d], an even function (i.e., F(—u) = F(u)).
We define the corrected trapezoidal rule Tﬁ\, by the formula
F(u) =2 F(ml) . F(yz) (426)

LAC ) W ¢
v “2) l=_(21\;_2)\/a2—:v12 ¥ h; " VIa? ~ (4:)7

where h = a/(N —1),z; = lh,y; =a—hiforall 1 <i < k/2,and y; = a + h(i — k/2)
for all k/2+ 1 < i < k. We will use the expression Tﬁq with appropriately chosen ulN
as a quadrature formulae to approximate integrals of the form (4.25), and the following
construction provides a tool for finding z/fv , so that the rule is of order 2k — 2, i.e., there

exists a real ¢ > 0 such that

F(u) ¢ _F(u)
I T \/—-) —a \/—_—— l N2k 2° (4'27)
Remark 4.9 The correction nodes {y, ..., yx} are equispaced nodes on both sides of the

singularity a (i.e., half the correction nodes lie outside the interval of integration). The
approach we use in this paper is similar to that of [18]; where a group of quadrature
formulae is presented applicable to functions with end-point singularities, taking advantage

of functional information outside the interval of integration.
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Construction of the quadrature weights vV

For any pair of positive integers k, N (k < N), we will consider the following system of

linear algebraic equations with respect to the unknowns {v{",...,v]}:

k N-2
Toio(yp) N 1,/ T21 2(u) Toi—2(z1)
St L1t 2N T = O S =GN (4.28)
p=11/1a? — (yp)?| ’ h'J-a Va2 —u? I=—(N-2) {/a% — z?

{

foralli = 1,2,..., k, where h, ), and y; are defined in (4.26). In (4.28) Ty;_, is the Chebyshev
polynomial defined in (4.6).
The following simple observation is crucial to the development of our algorithm for the

fast Hankel transform.

Observation 4.10 The linear system (4.28) is independent of the length of the interval a
i.e., the quadrature weights U{V,Vév,...,u,iv are only dependent on the number of points N

used in the trapezoidal approzimation to the integral (4.25).

Thus, by substituting @ = 1 in (4.26), the unknowns {v¥, v}, ..., v} alternatively can

be determined by solving the system of equations:

T2 Toi_o(u) =2 Ty Toi—2(z1)
§ j (/ Sty gy 22222y (4.29)
p=1 il - 42 vi-a I=—(N-2) /1 -2}

for all 4 = 1,2,...,k, where h = N—_—l-, 2y =1lh,yp =1—hpforalll < p < k/2, and
Yp=1+h(p—k/2)forall k/24+1< p<k.

Remark 4.11 Any polynomial basis can be chosen to construct the linear system (4.29)
above. Our choice of the Chebyshev polynomials T; as the polynomial basis is simply for
the reason that the right-hand side of of the linear system (4.29) can be simplified due to

Lemma 4.1.

Hence, we may alternatively solve the following system of equations to obtain the quadra-

ture weights v1¥, v}, ..., vl

k ] N- .
Z T21—2(3/p)l/1])\7 — _l_(ﬂ. —-h 22 M), (4.30)
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for ¢ =1, and
k

N_ .
Z Tai-2(yp) N h( _h Z T21—2(u1))’ (4.31)
=14/ 1—ypl I=—(N-2) 1-z?

fori =2,3,...,k.

Convergence of the rule Tﬁv

The use of expressions Tﬁ, as quadrature formulae to approximate integrals of the form

(4.25) is based on the following theorem.

Theorem 4.7 Suppose that k, N > 2 are a pair of positive integers. Further, suppose that
h,a are positive real numbers with h = a/(N — 1). Also, suppose that the systems (4.30),
(4.81) have solutions (v¥, vy, ...,u)) for all N. Finally, suppose that F € c*[—a—kh,a+kh]

is an even function. Then the rule Tﬁv s of order 2k — 2, i.e., there exists some real number

¢ such that
F(u) ¢ F(u)
I (\/2—11,2)_ —aﬁ ‘< Nzk -2 (4'32)
Proof. Let us define the functions
_ _Fw)
f(u) - \/mv
1
s(v) = (4.33)

where F satisfies the conditions of Theorem 4.7. Applying the Taylor expansion to the

function f at v = 0 we obtain

f(u) = P(f)(u) + Re(F)(u)s(u), (4.34)

where
(v)

(4.35)

k
P(f)(u) = s(u)
=1

Substituting (4.34) into (4.32), we obtain

1TXD - [ swdn) < TG~ [ PG +

TN (EE) -0 = [ (ReF)s(a(w). (4.36)
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Due to (4.30), (4.31)
T(P(f) = | P(f)(w)du =0, . (4.37)

and we have
[T () = | J(w)du|<| TN (s Re(F)) = | (s- Ry(F))(w)du . (4.38)
Finally, due to Lemma 2.12 there exists some real ¢; > 0 such that

| TN(s- Ru(F)) - / (s - Ri(F))(w)du |< (4.39)

N21c -2

Now, the conclusion of the theorem follows from the combination of (4.39), and (4.37). O

The following corollary is an immediate consequence of Theorem 4.7.

Corollary 4.8 Suppose that F € czk[—N, N] is an even function. Suppose further that F
is tabulated at equispaced nodes on the interval [~ N, N). Finally, suppose that the systems
(4.30), (4.31) have solutions (z/{,ug,...,ui) for all j =1,2,3,...,N — 1. Then there exist

real numbers c; such that

F(u) IOEPHRS

|7 (————] =) = ,———] —

forallj=1,2,...,N—-1.

(4.40)

The following theorem easily follows from the combination of (4.18), Corollary 4.8, and
Corollary 4.6.

Theorem 4.9 Suppose that f € czk[—7r,7r] 15 an odd or even function. Suppose further
that h =n /(N 1), z; =ih, and f; = f(z;) for alli = 0,%1,...,+N —1. Finally, suppose
that

c =

J
—) (4.41)

where f is defined in (4.22). Then there exist real numbers c; such that

C(y x o
|T (\/u)_/o $(@) ol - @)z |< =, (4.42)

forallj =0, £1, £2, +3,..., £N - 1.
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Approximation of the Hankel tranform using the rule Tjj

Suppose that we define the trapezoidal approximation ¢7 to the Hankel transform by the

formula ‘
T =1 FC
g; = h1=_(j_1) ﬁ’ (4.43)
and the correction ¢ by the formula
FC.
(4.44)

k
.:h ———
‘=Zl \/] _(yz)

forall j = £1, £2,..., £+ N — 1, where yf =j—ifor1<i<k/2, and yf =j+(i—k/2) for
k/2+ 1< i< k. It follows immediately from the combination of (4.43), (4.44), and (4.26)
that e

95 +9] = Ti:(\/—jz%?)- (4.45)
Remark 4.12 It is obvious that gJT can be computed for all j =0, +£1 +2,..., +N - 1.in
O(N?) operations, and gJC can be computed _in O(kN) operations. In the following section

we discuss how to compute sums of the form (4.43) in O(N) operations.

Remark 4.13 The numerical stability of the scheme developed above, for the approxima-
tion of integrals of the form (4.25), is dependent on the assumption that the size of the
quadrature weights (z/{ ,z/% , ...,z/i) is small. We have observed in [18] that the size of the
quadrature weights can be suppressed (for both singular and non-singular functions) by
using functional information outside the interval of integration. It is observed empirically

that the quadrature weights (z/f, z/g, - ui) are always of O(1).

Remark 4.14 The authors have been unable to construct a quadrature rule which is inde-
pendent of the number j of points used in the uncorrected trapezoidal rule. However, this

is a minor deficiency since the weights in such cases can be precomputed and stored.
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4.3.3 A fast multipole method in one-dimension for sums of the form
Tho g
(y_., :z:k)
In this section we consider the problem of computing the sums

j=1

fi= Y —— (4.46)

2
k=1 yj - I

for j=1,..., N, where {z1,...,zn} and {v1,-..syn}, {e1,...,an}, and {fiy..., fn} are

sets of real numbers.

Remark 4.15 For the remainder of this section, we shall assume without loss of generality

that z;,y; € [-1,1]fori=1,...,N.

Remark 4.16 Sums of the form (4.46) are a simple reformulation of the trapezoidal ap-

proximation to the Hankel transform, defined in (4.43).

The fast multipole algorithm of [13] computes sums of a slightly different form than
(4.46) in O(N) arithmetic operations, described described by the formulae

N

Qg
fi= (4.47)
’ El wj 2k
forj=1,...,N, where {z,...,2n} and {wy,..., wx} are sets of complex numbers. From

a physical viewpoint, this corresponds to the evaluation of the electrostatic field due to N
charges which lie in the plane. The two and three dimensional scenarios for the N -body
problem have been discussed in some depth (see, for example, [13]). In recent years the the
analysis and applications of one dimensional problems have been invesigated in (9], [10], [4].

In [9] the sums

N
Qp
fi= 4.48
f kgl — (4.48)
forj =1,2,..., N, are computed in O(N) using a combination of chebyshev approximation

techniques, singular value decompositon (SVD) based compression. In [4], an algorithm is

constructed to evalauate the function f

f1) =S a;- Py(1), (4.49)
7=0
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Figure 4.1: Well-separated intervals on the line.

at the nodes to,1y,...,t,_1, in expending CPU time proportional to O(N) operations. In
fact, an early implementation of the FBT used a version of the algorithm developed in [4].

In this section we briefly describe an O(N) algorithm for the computation of (4.46)
which is based on the one-dimensional FMM of [9], and [4]. We assume that the reader is
familiar with [13].

General strategy

We will illustrate by means of a simple example how Chebyshev expansions can be used
to evaluate expressions of the form (4.46) more efficiently. We will also give an informal
description of how the method of this simple example is used in the construction of a fast
algorithm for the general case.

First we introduce a definition which formalizes the notion of well-separated intervals
on the real line. This is simply the one-dimensional analog of the definition of well-

separatedness in [13].

Definition 4.6 Let {z1,...,an} and {y,...,yp} be two sets of points in R. We say that
the sets {z;} and {y;} are well-separated if there exist points zo,y0 € R and a real r > 0
such that

|z —xol<r V i=1,...,N,

lyi—wl<r V i=1,....,M, and (4.50)
|zo — yo| > 4r.
Suppose now that {z,,...,zn} and {y,,.. .,ym} are well-separated sets of points in

R (see Figure 4.1), that {a1,...,an} is a set of complex numbers, and that we wish to
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compute the numbers f(y1),..., f(ypr) where the function f : R — C is defined by the

formula

N
E (4.51)

A direct evaluation of (4.51) at the points {yi,...,ysm} requires O(NM) arithmetic
operations. We will describe two different ways of speeding up this calculation based on
the following two observations. The observations follow from a combination of Lemma 4.2,

Lemma 4.3, and the triangle inequality.

Observation 4.17 Suppose that p > 2 is an integer. Further, suppose that we define the
real coefficients ®.,,, (representing the far field) by the formula

O = o - um(2), (4.52)

for allm = 1,2,...,p, where uy,, is defined in ({.11). Finally, suppose that
P
(y) =) ——— (4.53)

for all j = 1,2,..., M, where t1,1s,...,t, are the Chebyshev coefficients defined in (4.10).
Then,

z 1
| f(yi) — f(y;) 1< 0(5; . (4.54)
forallj=1,2,...,. M.
Computation of the coefficients ®; requires O(Np) operations, .and a subsequent eval-

uation of fl(yl), .. .,fl(yM) is an O(Mp) procedure. The total computational cost of ap-
proximating (4.51) to a relative precision 1/5” is then O(Np + Mp) operations.

Observation 4.18 Suppose that p > 2 is an integer. Further, suppose that we define the

real coefficients ¥, (representing the local expansion) by the formula

E : (4.55)
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for all m = 1,2,...,p, where t;,1y,...,t, are the Chebyshev coefficients defined in (4.10).
Finally, suppose that

£15) =Y Ynun(d) (4.56)
m=1

forall j =1,2,...,N, where u,, is defined in (4.11). Then,

| £3) - Faws) 1< O(55). (457)
forallj=1,2,....M.

Computation of the coefficients ¥; requires O(N p) operations, and a subsequent evalu-
ation of fg(yl), .. .,fg(yM) is an O(Mp) procedure. Again the total computational cost of
approximating (4.51) to a relative precision 1/57 is O(Np+ Mp) operations.

Consider now the general case, where the points {z1,...,on} and {y1,...,ym} are
arbitrarily distributed on the interval [-1, 1] (see Remark 4.15). We use a hierarchy of grids
to subdivide the computational domain [—1, 1] into progressively smaller subintervals, and to
subdivide the sets {z;} and {y;} according to subinterval (see Figure 4.2). A tree structure is
imposed on this hierarchy, so that the two subintervals resulting from the bisection of a larger
(parent) interval are referred to as its children. Two Chebyshev expansions are associated
with each subinterval: a far-field expansion for the points within the subinterval, and a local
expansion for the points which are well-separated from the subinterval. Interactions between
pairs of well-separated subintervals can be computed via these Chebyshev expansions in
the manner described above, and all other interactions at the finest level can be computed
directly. Once the precision has been fixed, the computational cost of the entire procedure
is O(N) operations. We refer the reader to the algortithm of [9], or [4] for a detailed

description.

A more efficient algorithm

Chebyshev expansions are not the most efficient means of representing interactions be-
tween well-separated intervals. All the matrix operators of the algorithm are numerically
rank-deficient, and can be further compressed by a suitable change of basis. The orthogo-

nal matrices required for this basis change are obtained via singular value decompositions
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(SVDs) of appropriate matrices. We describe briefly below how SVDs can be used to make
a more efficient algorithm for the evaluation of sums of the form (4.46).
Suppose that we define the matrix
1

My = —e (4.58)

y? - 12,

forall j =1,2,..,M,and all m =1,2,3,...,p. Then, the SVD of the matrix is
M = Ujm - Emm - VI (4.59)

Now, it is observed emperically that the numerical rank of the matrix M; ., is p where
P ~ E. This observation provides us with a tool to compress the far field expansion ®,,.
We define the matrix

Mim =Ujm  Zam - Vim (4.60)

L] 3

for all j = 1,2,..,M, and all m = 1,2,...,p. and, the real coefficients (representing the

compressed far field expansion) by ®,,,

Qm = Eﬁtﬁz'v' m'Qm, (461)

Now, obviously
fi;2 Ujm - ®m. (4.62)
forall j =1,2,..M.

Suppose that we define the matrix

1
M;i = - (4.63)
forall j =1,2,..,N,and k = 1,2,3, ..., p. Obviously
U, =M, o= Uik - Xk - V,Z’m - (4.64)
for all j =1,2,...m, and, if the numerical rank of the matrix M; . is p, then
‘1/3 = I"j,k Q= U_;,k . Ek,k : ng c O (4'65)

where j = 1,2,...,p, then the local representation of potential is

U =Us - (4.66)
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Figure 4.2: Hierarchy of subintervals.

4.4 The fast Hankel transform

4.4.1 Informal description of the algorithm

In this section we outline the procedure we use to rapidly evaluate integrals of the form

g(a) = /0 ® f2)Jo(az)dz. (4.67)

More specifically, suppose that h = A/(N -1), z; = ih, a; = N Ui = N’r—i, and, f :

[0, A] - R is a function tabulated at N zq,z1,...,25—;. Then

s(a5) = [ 1(&)ofaze)iz (4.68)

is computed for all j =0,1,2...,N -1, in O(N log N) operations.
We use the (4.5) to decompose the right-hand side of equation (4.67) into two separate

integrals, each of which is computed independently. If we define

A
F(u) = /0 f(z) cos(uz)dz, (4.69)

then (4.67) is equivalent to
©_F(u)

W= ], T

Now, given a function f tabulated at n points, we evaluate the integrals F(u;), for all

du. (4.70)

t=10,1,2..., N — 1, using a fast cosine transform in O(N log N) operations. Subsequently,
using a high order corrected trapezoidal rule (developed in [18]), we evaluate the integrals

g(a;) in two stages. First, a trapezoidal approximation to the integral is made using the
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formula -
< F(u)
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Figure 4.3: Correction nodes

The trapezoidal approximation gr is subsequently corrected with appropriately chosen

quadrature weights v{,v3,...,1] using the formula

\ .
i F(y)

gola;) = h)y v —==me,

=1 l a? - y12 '

forall j = 0,1,2,...,N — 1, where y; = a; —hifor 1 <i < k/2, and y; = a; + h(i — k/2)

(4.72)

for k/2+1 < i < k. In Section 4.3.2 we prove that the corrected rule gt + gc is of order

2k — 2, i.e., for all j there exists some real ¢ > 0 such that

| (97(a;) + go(a;)) — g(az) |< j2§_2. (4.73)

The trapezoidal approximation gr is rapidly computed in O(N) operations, using a gen-
eralized version of the 1-D FMM for the smoothly varying kerne] \/_a‘l_‘r_? The correction
to the trapezoidal approximation g¢ is computed in O(kN) operations using (4.72). Thus,
the total asymptotic time complexity of the algorithm is O(Nlog N) + O(N)+ O(pN).

4.4.2 Detailed description of the algorithm, and complexity analyis

This section contains the complexity analysis of the algorithm for the fast Hankel transform.
More specifically, suppose that f : [0,4] — R. Further, suppose that h = A/(N - 1),

zi =th,a; = &, u; = ﬁ—i, and f is tabulated at N points zg, zq,...,2x—7. Then

(05) = [ 1()o(azz)iz (4.74)
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is calculated for all j =0,1,2..., N — 1, in O(N log N) operations. The function is assumed

to be tabulated at the Nyquist sampling rate.

Algorithm 4.1
Step Complexity Description

1

O(NlogN)

Comment [Preprocessing: Input Problem size N. Compute the correction
coefficients ;" using the formula (2.52). Compute the correction weights v
by solving the system of equations (4.30), (4.31). These correction weights

are obtained once and are stored.]

Comment [The fast cosine transform of an even or odd function, ie, for a
function f tabulated at n points, f(zo), f(z), ..., f(:cN 1), compute the
integral Fc(a;) fo f(z) cos(a;z)dzx for all i = 0,1,. -1]

If the function f is even,

N-
Fe(a;) = Z ) cos ( )),
is computed using a fast cosine transform.
If the function f is odd,

The function is interpolated to a finer grid of with twice the number of nodes,
using a two fast sine transforms in O(2N log N ) operations. Subsequently, f

is calculated using the formula (4.22) in O(1N) operations. Finally,

N~

Z f(z;) cos (—-))

j=0

is computed using a fast cosine transform.
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3 O(N) Comment [The trapezoidal approximation to the to the integral (4.74) is
computed in O(N) operations using a 1-D FMM.]

g7 aJ = A Z Ul)

I=—(j-1) —uf

is computed for all j = 0,1,...,N — 1, using an SVD based 1-D FMM (see,
section 4.3.3).

4 O(N) Comment [The trapezoidal approximation is corrected using an end-point

corrected trapezoidal rule.]

for all j = 1, £2,..., +¥=1 where y; = a; — hi for 1 < i < k/2, and
yi=a; +h(i —k/2) fork/2+1<i<k.

4.5 Numerical Results

In this section we present numerical experiments testing the algorithms of this paper.

We consider the following integral (of an odd function),

2 2

/(; sin(bz) - cos(bz)-e . (4.75)
to illustrate the effectiveness of using the correction coefficients ™ (see, 2.52) for correcting
the cosine transform of an odd function (see, (2.52)). In Table 1 we present convergence
results of the standard trapezoidal rule, while in Table 2 we present convergence results
using these correction coefficients. In both tables the first column contains the number of
nodes discretizing the interval [0 : 27]. In Table 1, columns 2-6 contain the relative errors of
the standard trapezoidal rule used to evaluate the integral (4.75) for various values of b. In
Table 2, columns 2-6 contain the relative errors of the corrected trapezoidal rule (using the
mapping Pn2n-3 defined in (4.22)) to also evaluate the integral (4.75) for various values
of b. We observe empirically that, an odd function sampled at 4 points per wavelength,
can be integrated to double precision accuracy using the correted trapezoidal rule for non-

singular functions. Hence, it is possible to accurately evaluate the cosine transform of an
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odd function if the function is sampled at twice the Nyquist sampling rate (see, Step 2 of
Algorithm 4.1).

The quadrature weights for the rule Tjj (see, (4.26)) are obtained as solutions of linear
systems (4.30), (4.31). The linear systems used for determining these weights are very
ill-conditioned. In order to combat the high condition number, all systems were solved
using the mathematical package Mathematica using 100 significant digits. We consider the

following integral
™ cos(b- u)

- /T2 — u?

to experimentally demostrate the convergence rate of the quadrature rule Tjj. In Ta-

du, (4.76)

ble 3 convergence results are presented for the rule rule Tjj using 20 correction weights
( z/f ,z/g, ...,1/%0). The first column contains the number of nodes discretizing the interval
[0 : 27]. Columns 2-4 contain the relative errors of rule to evaluate the integral (4.76) for
various values of b. It can be observed in Table 3 that the rule Tj , provides single precision
accuracy for a function tabulated at twice the Nyquist sampling rate, and double precision
accuracy for function tabulated at four times the Nyquist sampling rate.

We have written a computer program in ANSI FORTRAN for the implementation of the
algorithm of this paper. This program was tested on a Sun SPARCstation 10 for a variety
of input data. Four experiments are described below, and their results are summarized
in Tables 4-7. These tables contain error estimates and CPU time requirements for the

algorithms, with all computations performed in double precision arithmetic.

The table entries are described below

¢ The first column in each table contains the problem size N, which was chosen to be

a power of 2, ranging from 32 to 1024.

¢ The second column contains the time required for the fast cosine transform. In Ex-

amples 3, and 4 this includes the time to interpolate to a finer grid.

¢ The third column contains the time required for the one-dimensional FMM.
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o The fourth column contains the time required for the correction to the trapezoidal

approximation to the Hankel transform.

e The fifth column contains the time required for the the direct implementation of the

Hankel transform.
o The sixth column contains the time required for an FFT of the same size.

o The seventh column contains the relative 2-norm E, for each result.
Two technical details of our implementations appear worth mentioning here:

o The implementation consists of two main subroutines: the first is an initialization
stage in which the elements of the various matrices employed by the algorithms are
stored on disk, and the second is the evaluation stage in which these matrices are
applied. Successive applications of the linear transformations to multiple vectors

requires the initialization to be performed once.

o The parameters for the algorithm were chosen to retain maximum precision while min-
imizing the CPU time requirements. We found that by using 20 quadrature weights
for the correction of the trapezoidal approximation (see, 4.43) we minimized the CPU

time of the algorithm without sacrificing accuracy.

Following are the descriptions of experiments, and tables of numerical results.

Example 1. The Hankel transform for an even function The purpose of this
example is to demonstrate the performance of the fast Hankel transform for evaluating the
expression

o(a;) = 02” f(2)Jo(ajz)dz (4.77) .

where
2

f(z) = (cos(b-z) + cos(b‘Tz) + cos(b'Tz)) e (4.78)

and b = %—. The function f is tabulated at the equispaced nodes Zg,Z1,..-,ZN_1, Where

h = 1\?317 and, z; = ¢th. The Hankel transform (4.77) is computed for all a; = 1%-% for all
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J =0,1,...,N — 1. The single precision results are provided in Table 4. The algorithm is
easily modified to provide double precision results, merely by zero padding the input vector
by a vector of the same size (see, Table 3). The double precision results are are provided
in Table 5.

Example 2. The Hankel transform for an odd function The purpose of this

example is to demonstrate the performance of the fast Hankel transform for evaluating the

expression
sa)= [ f@)olase)da (4.79)
where
f(z) =z -((cos(b-z)+ cos(b—'zi) + cos(b.Tx)) . e_"2), (4.80)
and b = %. The function f is tabulated at the equispaced nodes Zg,T1s...,TN_1, Where

h = ’NZZ-ET’ and, z; = th. The Hankel transform (4.77) is computed for all a; = ﬁ% for all
J=0,1,...;,N — 1. The single precision results are provided in Table 4. The algorithm is
easily modified to provide double precision results, merely by zero padding the input vector
by a vector of the same size (see, Table 3). The double precision results are are provided

in Table 5. We observe that if a function g is defined as follows
. 2 2
u,0) = (eos(b-yflu 4+ 0%) + cos( L EH,
. 2 2

(i.e., the function is rotationally symmetric) then the Hankel transform may be used to

compute the two-dimensional FFT (see, )

2 2T . .
g(ak,aj)=/2 /2 g(u,v)- ek - e (4.82)

for all k = 0,£1,42,...,+8=1 and all j = 0,£1,%2,...,£%=1 Column 10 contains the
time required by a 2-D FFT to evaluate the integrals (4.82) Column 11 contains the ratio
of the time taken by the 2-D FFT to the time taken by Algorithm 4.1.
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Table 4.1: Accuracy of the uncorrected trapezoidal rule for evaluating integrals f02" sin(bz)-

cos(bz) - e

N b=4 b=8 b=16 b=32 b=64

32 0.223E400 0.108E+01 0.124E+02 0.330E4+02 0.358E402
64 0.519E-01  0.220E400 0.104E401 0.261E402 0.677E+402
128  0.127E-01 0.524E-01  0.218E+00 0.102E4+01 0.533E+02
256  0.313E-02 0.129E-01 0.523E-01 0.216E+00 0.101E+01
512  0.779E-03 0.320E-02 0.129E-01 0.521E-01  0.215E400

Table 4.2: Accuracy of the corrected trapezoidal rule for evaluating the integrals J2" sin(bz)-

cos(bzx)-e”

2

N b=4 b=8 b=16 b=32 b=64
32 0.359E-04 0.125E401 0.126E+402 0.334E+02 0.376E+02
64 0.730E-14 0.346E-11 0.119E401 0.262E402 0.679E+02
128 0.708E-14 0.705E-14 0.621E-14 0.115E4+01 0.533E+402
256 0.665E-14 0.705E-14 0.554E-14 0.355E-14 0.111E401
512 0.644E-14 0.749E-14 0.598E-14 0.599E-14 0.133E-13

Table 4.3: Accuracy of the quadrature rule ng for evaluating the integrals [7_cos(b-u)/(n%-

uZ)%du

N b=N/2 _ b=N/4 ___ b=N/8
32 0.165E-01 0.829E-08 0.897E-15
64  0.109E-02 0.334E-07 0.868E-14
128  0.671E-02 0.668E-08 0.298E-13
256  0.784E-02 0.175E-07 0.107E-13
512 0.798E-02 0.242E-07 0.361E-13

1024 0.795E-02 0.257E-07 0.597E-14
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Table 4.4: Numerical results for Example 1 (single precision)
N teos tfmm teorr talg tair tfft talg/tfft E; error
32 0.00011 0.00016 0.00016 0.00043 0.00050 0.00011 3.839 0.33351E-07
64 0.00018 0.00048 0.00034 0.00100 0.00142 0.00019 5.319 0.33688E-06
128 0.00040 0.00116 0.00080 0.00236 0.00464 0.00040 5.900 0.22484E-06
256 0.00070 0.00280 0.00170 0.00520 0.01660 0.00082 6.341 0.19274E-06
512 0.00200 0.00600 0.00350 0.01150 0.05900 0.00260 4.423 0.32146E-06
1024 0.00400 0.01200 0.00700 0.02300 0.22900 0.00760 3.026 0.62221E-06
Table 4.5: Numerical results for Example 1 (double precision)
N - teos Tfmm teorr talg tair tffg tazg/tffg E, error
64 0.00020 0.00065 0.00030 0.00115 0.00140 0.00020 5.750 0.27881E-13
128 0.00030 0.00190 0.00080 0.00300 0.00470 0.00038 7.895 0.12463E-12
256 0.00060 0.00500 0.00160 0.00720 0.01660 0.00084 8.571 0.13597E-12
512 0.00150  0.01350 0.00350 0.01850 0.06300 0.00280 6.607 0.19605E-12
1024  0.00417 0.03333 0.00667 0.04417 0.23917 0.00833 5.300 0.26481E-12
Table 4.6: Numerical results for Example 2 (single precision)
N teos trmm teorr taig Lair trse taig/tsse E; error t2Dfft tapgreftalg
32 0.00046 0.00016 0.00016 0.00078 0.00086 0.00011 7.091 0.76613E-07 0.00335 4.295
64 0.00082 0.00050 0.00038 0.00170 0.00214 0.00021 8.173 0.33767E-06  0.01332 7.835
128 0.00160 0.00116 0.00080 0.00356 0.00588  0.00040 8.900 0.17319E-05 0.05268 14.798
256  0.00350 0.00270 0.00170 0.00790 0.01890 0.00086 9.186 0.18528E-06  0.22000 27.848
512 0.00850 0.00550 0.00350 0.01750 0.06800 0.00260 6.731 0.45411E-06  1.42000 81.143
1024  0.02000 0.01300 0.00700 0.04000 0.25200 0.00740 5.405 0.6342E-06  8.58200 214.550
Table 4.7: Numerical results for Example 2 (double precision)
N teos tymm teorr taig tair trse talg/lsse E» error tapsse tapgsiftag
64 0.00080 0.00065 0.00035 0.00180 0.00205 0©.00019 9.474 0.10525E-13  0.01265 7.028
128 0.00160 0.00180 0.00080 0.00430 0.00590 0.00038 11.316 0.85742E-13  0.05190 12.070
256 0.00340 0.00460 0.00180 0.00980 0.01880 0.00084 11.667 0.10078E-12  0.21880 22.327
512 0.00750  0.01400 0.00350 0.02500 0.06700 0.00280 8.929 0.90009E-12  1.55300 62.120
1024  0.02250 0.03167 0.00750 0.06167 0.25583 0.00783 7.872 0.54210E-12  8.72167 141.432
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4.6 Generalizations and Conclusions

An algorithm has been presented for the rapid evaluation of the Hankel transform. The
algorithm is based on a combination of high-order quadratures for singular functions, and
a version of the one-dimensional fast multipole method. The algorithm can be applied to a

number of situations.

1. It is is well known (see, for example [23]) that a function f € ¢¥(0,a) can be expanded

in a series
o0
f(@) =Y Acda(Ac2), (4.83)
r=1
where n > —1, J,, are the Bessel functions of order n, and Ay, Ao, ..., are the positive zeros

of J,,(Aa). The coefficients A, are given by the formula
a 2 ,
/ 2 £(@)Ta(A2)de = A (T (Ma). (4.84)
0

Expansions of the form (4.83) are known as Fourier-Bessel expansions. Fourier-Bessel ex-
pansions are encountered in many areas of computational physics. Among the problems
leading to them are the vibrations of a circular membrane, flow of heat in a circular cylinder,
wave propagation in a three-dimensional layered medium and many others.

2. The Fourier Transform of a cylindrically symmetric function can be computed with a sin-
gle integral instead of a double integral as we show below. We introduce polar coordinates

in both the spatial and frequency domains,

r=rcos(¢) and y=rsin(d),

u=pcos(a) and v = psin(a),
so that uz + vy = rpcos(¢ — a). If, f(z,y) = g(r) then the transform
Fluo) = [ [7 fla,y)eiestidsay,
is just

G(p) = /;: /000 f(r)e~ireeosté=o) drdgp.
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If we change the order of integration,
/ e~irpcos(o-algy - 2 Jo(rp).
Thus, if F(u,v) = G(p) then,

G(p) =2x /ooo rf(r)Jo(rp)dr. (4.85)

3. There are a number of applications based on the approach of this chapter to the study
of diffraction techinques in optics. For example, the Fraunhofer diffraction formula is of the
form

I(uku;, D)~ | [ Az, y)e= 55+ dady| (4.86)

AD Jr?
where A(z,y) is the aperture function. In many situations the aperture function is circular,

simply reducing the problem to a Hankel transform.




Chapter 5

Appendix

5.1

Correction weights for Non-singular and Singular func-

tions

5.1.1 Quadrature Weights 3" for Non-singular Functions

Q

/a : f(z)de

T (f)

m—1

k=1

Ta(f)+h Y (f(b+kh) — (b= kk) — f(a+ k) + f(a — kh))B].

m=3

m=35

m=7

0.4166666666666667D-01

0.5694444444444444D-01
-0.7638888888888889D-02

0.6483961640211640D-01
-0.1395502645502646D-01
0.1579034391534392D-02

m=9

m =11

m =13

0.6965636022927690D-01
-0.1877177028218695D-01
0.3643353174603175D-02
-0.3440531305114638D-03

0.7289995064734647D-01
-0.2247873075998076D-01
0.5728518443362193D-02
-0.9618798768104324D-03
0.7722834328737106D-04

0.7523240913673701D-01
-0.2539430387171893D-01
0.7672233851187638D-02
-0.1739366039940610D-02
0.2539297439987751D-03
-0.1767014007114040D-04
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m=15

m= 17

m =19

0.7699017460749256D-01
-0.2773799116605967D-01
0.9429999321943197D-02
-0.2591615965155427D-02
0.5202578456284055D-03
-0.6683840498737985D-04
0.4097355409686621D-05

0.7836226334784643D-01
-0.2965891540255508D-01
0.1100166460634853D-01
-0.3464763345380610D-02
0.8560837610996297D-03
-0.1531936403942661D-03
0.1753039202853559D-04
-0.9595026156320693D-06

0.7946301859082432D-01
-0.3126001393779562D-01
0.1240262582468400D-01
-0.4326893325894750D-02
0.1240963216686299D-02
-0.2763550661820004D-03
0.4447195391960246D-04
-0.4581897491741901D-05
0.2263996797568645D-06

m =21

m = 23

m = 25

0.8036566134581083D-01
-0.3261397807027540D-01
0.1365243887004996D-01
-0.5160102022805384D-02
0.1657567565141616D-02
-0.4325816968527443D-03
0.8735769567235570D-04
-0.1275061020655204D-04
0.1193747238089644D-05
-0.5374153101848776D-07

0.8111924751518991D-01
-0.3377334140778168D-01
0.1477039637407387D-01
-0.5955094025666833D-02
0.2092328816706471D-02
-0.6167158739860944D-03
0.1470308086322377D-03
-0.2710805091870410D-04
0.3616565358265304D-05
-0.3101244008783459D-06
0.1281914349299291D-07

0.8175787507251367D-01
-0.3477689899786187D-01
0.1577395396415406D-01
-0.6707762218226974D-02
0.2535074812330083D-02
-0.8233306719437802D-03
0.2231520499850693D-03
-0.4885697701951313D-04
0.8277049522724384D-05
-0.1016258365190328D-05
0.8036239225326941D-07
-0.3070147670921659D-08
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m = 27

m = 29

m =31

0.8230598039728972D-01
-0.3565386751750355D-01
0.1667832775003454D-01
-0.7417074991466566D-02
0.2978395295604828D-02
-0.1047324179282599D-02
0.3146160654817536D-03
-0.7872277799802227D-04
0.1591319181836592D-04
-0.2491841417488210D-05
0.2832550619442283D-06
-0.2077714429849625D-07

0.8278153337505391D-01
-0.3642664110637037D-01
0.1749655860883470D-01
-0.8083781617155592D-02
0.3417018075663398D-02
-0.1284180480514226D-02
0.4198855326958103D-03
-0.1170025842576793D-03
0.2714748278587396 D-04
-0.5092371734040995D-05
0.7409483976575184D-06
-0.7838889284981948D-07
0.5360956533353892D-08
-0.1778140387386520D-09

0.8319804338077547D-01
-0.3711265758638233D-01
0.1823974312884766D-01
-0.8709621212955971D-02
0.3847282797776159D-02
-0.1530046036007233D-02
0.5372304569083815D-03
-0.1636490137583287D-03
0.4245334246577455D-04
-0.9173934315347822D-05
0.1604355866780116D-05
-0.2179294939201383D-06
0.2155763344330162D-07
-0.1380750254862090D-08
0.4296200771869423D-10

m = 33

m = 35

m = 37

0.8356586223906441D-01
-0.3772568901686392D-01
0.1891730418359046D-01
-0.9296840793733073D-02
0.4266725355474089D-02
-0.1781711570625991D-02
0.6648868875120992D-03
-0.2183589125884934D-03
0.6214890604463385D-04
-0.1506576957398094D-04
0.3044582263334879D-05
-0.4984930776645727D-06
0.6348092756603319D-07
-0.5895566545002414D-08
0.3550460830740161D-09
-0.1040280251184406D-10

0.8389305571446765D-01
-0.3827675171227989D-01
0.1953724971593344D-01
-0.9847903489149048D-02
0.4673760300951798D-02
-0.2036550840838121D-02
0.8011551083894191D-03
-0.2806529564181254D-03
0.8640764426675015D-04
-0.2305218544957479D-04
0.5240846629123186D-05
-0.9942016492531560D-06
0.1529838641028607D-06
-0.1833269916550451D-07
0.1604311636472664D-08
-0.9116340394367584D-10
0.2523768794744743D-11

0.8418600148964681D-01
-0.3877475953008444D-01
0.2010640150771007D-01
-0.1036531420894598D-01
0.5067442370362510D-02
-0.2292444185955085D-02
0.9444553816549185D-03
-0.3499410006344108D-03
0.1152776626902024D-03
-0.3336290631509345D-04
0.8369617098659884D-05
-0.1790615950589770D-05
0.3199739595444088D-06
-0.4643199407153423D-07
0.5253570715177823D-08
-0.4346230819394555D-09
0.2337667781591708D-10
-0.6133208535638922D-12
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m = 39

m = 41

m =43

0.8444980879146044D-01
-0.3922700061890783D-01
0.2063059004248263D-01
-0.1085151806728575D-01
0.5447289134690455D-02
-0.2547701211583463D-02
0.1093355313271473D-02
-0.4255727119317083D-03
0.1487041779510615D-03
-0.4617000028477128D-04
0.1259595810865357D-04
-0.2980436293579194D-05
0.6019365929090900D-06
-0.1016414607443390D-06
0.1395254130438025D-07
-0.1495069020432704D-08
0.1172703286200068D-09
-0.5987202298631028D-11
0.1492744845851982D-12

0.8468861878191560D-01
-0.3963949060242128D-01
0.2111481741443320D-01
-0.1130884391857241D-01
0.5813149815719777D-02
-0.2800989375372994D-02
0.1246579017292300D-02
-0.5068750854937796 D-03
0.1865518346092672D-03
-0.6158941596033656D-04
0.1806736367095093D-04
-0.4659163000193157D-05
0.1042814313838009D-05
-0.1993926296380813D-06
0.3190683763180230D-07
-0.4154964772643378D-08
0.4227988947523140D-09
-0.3152674188244618D-10
0.1531756684278896D-11
-0.3638111051825521D-13

0.8490582345073519D-01
-0.4001723785254232D-01
0.2156339227395194D-01
-0.1173947578371039D-01
0.6165108551649863D-02
-0.3051271143145499D-02
0.1403005122150116D-02
-0.5931791433463679D-03
0.2286250628124040D-03
-0.7968542809071795D-04
0.2490991825775139D-04
-0.6921164516490830D-05
0.1691476513364548D-05
-0.3590633249061523D-06
0.6517156581265044D-07
-0.9908863701222516D-08
0.1227209106806963D-08
-0.1188835069924533D-09
0.8447500588821128D-11
-0.3914899117784468D-12
0.8877720031504791D-14

5.1.2 Quadrature Weights 7;‘ for Singular Functions

/0 " f(a

z ~ T,;I‘, gm (f)

k

= Tigm(N+h Y 11(s)

J=—k,j#0

| s(z) = log(z) ||

s(z) = z3

s(z) = z~%

k=2

0.7518812338640025D+4-00
-0.6032109664493744D+00
0.1073866830872157D+-01
-0.7225370982867850D+4-00

0.4911169802967502D4-00
-0.3176980828356269D+00
0.7141080571189234D+00
-0.3875269545800468D+00

0.1635135941723353D+-01
-0.1533115151360971D+01
0.2143719446940490D+-01
-0.1745740237302873D+-01
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k=4

0.1420113571035790D+01
-0.3125287797178819D+01
0.2592853861401367D+01
-0.7648698789584314D4-00
0.2027726083620572D+01
-0.3730238148796624D+01
0.2914105643150046D+01
-0.8344033342739005D4-00

0.8951854542876017D+00
-0.1631355661694529D+-01
0.1216528022899115D+01
-0.3318968291168987D+00
0.1323278097869649D+01
-0.1996997843341944D+01
0.1392513231112159D+01
-0.3672544720151524D4-00

0.3192416400365587D+01
-0.8349519005997507D+01
0.7653118908743808 D+ 01
-0.2415721426013858D+01
0.4127731944814846D+01
-0.9431538570036398D+01
0.8285519053356245D+-01
-0.2562007305232722D+01

k=6

0.2051970990601252D 401
-0.7407035584542865D+01
0.1219590847580216D+02
-0.1064623987147282D4-02
0.4799117710681772D+01
-0.8837770983721025D+-00
0.2915391987686506D+01
-0.8797979464048396D+01
0.1365562914252423D+02
-0.1157975479644601D+02
0.5130987287355766D+01
-0.9342187797694916D4-00

0.1265469280121926D+01
-0.3802563634358600D+-01
0.5639024206133662D+01
-0.4569107975444730D+-01
0.1943368974038607D+01
-0.3411137981342110D+00
0.1878261417316043D+01
-0.4649333971499730D+4-01
0.6444550155059975D+-01
-0.5048462684259424D+01
0.2104363245869803D+01
-0.3644552148433214D4-00

0.4710262208645700D+01
-0.2025763995934342D+02
0.3690977699143199D+-02
-0.3458675005305701D+02
0.1646218520818186 D+02
-0.3167334195084358D+-01
0.6026290938505443D+01
-0.2274216675280301D+-02
0.3978973181300623D4-02
-0.3656337403895339D+02
0.1720419649716102D4-02
-0.3285178657691059D+-01
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k=8

-8

W I O G W N

0.2661829001135098D+01
-0.1336900704886964D+02
0.3292331764210170D+-02
-0.4773939140223472D 402
0.4288580615706955D+-02
-0.2359187584186291D+02
0.7312948709041004D+01
-0.9817367313018633D+00
0.3760781014023317D+01
-0.1580903864167977D+-02
0.3674321491528176D+4-02
-0.5179306469244793D4-02
0.4575621781632506D+02
-0.2489478606121209D+-02
0.7656685336983747D+01
-0.1021900172352320D+-01

0.1616169645940613D+-01
-0.67717670504_68779D+01
0.1503196947284841D+02
-0.2024989176835058D+02
0.1717995995110646D+-02
-0.9018058251167396D+-01
0.2686335493243228D+01
-0.3483500116200692D+00
0.2398992474897278D+01
-0.8260181779465771D+-01
0.1714292235263991D+02
-0.2233476105127601D+02
0.1857536706216344D+02
-0.9622728690582360D+-01
0.2839683305088209D+-01
-0.3656611549965858D+-00

0.6202998068889192D+-01
-0.3714709770899691D+02
0.1012860584122768D+-03
-0.1577736812789053D+03
0.1497778690096803D+03
-0.8617211496827355D+-02
0.2773685303768452D+4-02
-0.3846246456428401D+-01
0.7870429343373961D+-01
-0.4150717430533848D+-02
0.1088399244984859D4-03
-0.1663887812447046D+-03
0.1562272759566466 D403
-0.8923488368760573D+402
0.2857613653609836D+-02
-0.3947565212882627D+-01
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k= 10

'
= [ ] t ] ) ] ] ] '
© ©w o N Ut e W N

W 00 1 O Ut R W N e

—
o

0.3256353919777872D+0‘1
-0.2096116396850468D+02
0.6872858265408605D+02
-0.1393153744796911D+4-03
0.1874446431742073D+03
-0.1715855846429547D+03
0.1061953812152787D+03
-0.4269031893958787D+02
0.1009036069527147D+-02
-0.1066655310499552D+-01
0.4576078100790908D+01
-0.2469045273524281 D402
0.7648830198138171D+02
-0.1508194558089468D+03
0.1996415730837827D+03
-0.1807965537141134D+03
0.1110467735366555D+03
-0.4438764193424203D+02
0.1044548196545488D+02
-0.1100328792904271D+01

0.1953545360705999D+01
-0.1050311310076629D+02
0.3105516048922884D+02
-0.5850644296241638D+02
0.7437254291687940D+02
-0.6498918498319249D+02
0.3866979933460322D+02
-0.1502289586232686D+02
0.3445119980743215D+01
-0.3544413204640886D+00
0.2895451608911961D+01
-0.1277820188943208D+02
0.3534092272477722D+02
-0.6441908403427060D+-02
0.8029833065236247D4-02
-0.6926226351772149D+02
0.4083390088012690D+02
-0.1575467189373152D+02
0.3593677332216888D+01
-0.3681517162342983D+00

0.7677722423353747D4-01
-0.5894517227637276D+02
0.2140398605114418D+-03
-0.4662332548976578D+03
0.6631353162140867D+-03
-0.6351002576675097D+03
0.4083227672169233D+03
-0.1696285390723725D+4-03
0.4126838241810020D+02
-0.4476202232026015D4-01
0.9675787330957780D+01
-0.6561769910673283D+-02
0.2294242274362024D+03
-0.4907643918974356D+03
0.6906485447124722D+03
-0.6568499770824342D+03
0.4202275815793937D+4-03
-0.1739340651258045D+4-03
0.4219582451243715D+02
-0.4566454997023116D+-01

s(z) = z$

s(z) = =%

s(z) = £~ 716

k=2

0.5534091724301567D+-00
-0.3866961728429464D+00
0.8032238407479816D+00
-0.4699368403351921D4-00

0.1181425202719417D+01
-0.1060178333186577D+01
0.1613104391254726D+-01
-0.1234351260787565D+-01

0.9469239981678674D+01
-0.9440762908621185D+-01
0.1027199835611538D+-02
-0.9800475429172870D+-01

k=4

-2
-3

B W N =

0.1020832071388625D+-01
-0.1983186102544885D+-01
0.1533381243224831D+01
-0.4298392181270347D+00
0.1498331817034082D+01
-0.2412699293646369D+01
0.1747071103625803D+01
-0.4738916209550530D+-00

0.2282486199885223D+01
-0.5650813876770368D+01
0.5015176492677874D+01
-0.1549698701260824D+-01
0.3083643341213459D+01
-0.6532393248536034D+01
0.5514329562635926D+01
-0.1662729769845256D+01

0.1887299140127902D+02
-0.5533585657332243D+-02
0.5446669568113802D+-02
-0.1798256931439028D+02
0.2031702799746152D+02
-0.5722348457297536D+02
0.5565641900092846D+02
-0.1827122362011895D+02
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k=6

D Ot B W N e

0.1453673785846622D+01
-0.4645097217879781D+01
0.7134681085431341D+-01
-0.5928340311544518D+01
0.2571788299099303D+-01
-0.4588965281604129D+4-00
0.2135823382632839D+-01
-0.5636852769577275D+-01
0.8109443112743051D+01
-0.6522597930471829D+01
0.2775248991033700D+01
-0.4888738991530396 D400

0.3345150279872830D+01
-0.1359274618599862D+-02
0.2395745376553084D+-02
-0.2193610831631847D+-02
0.1025817941642386D+02
-0.1946039989983884D+-01
0.4476264293482232D+01
-0.1561643865091390D+-02
0.2622632514046215D+02
-0.2345727234258157D+02
0.1081909216811830D+02
-0.2033859578093758D+01

0.2823540877500425D+-02
-0.1374572775395727D+03
0.2701409207262959D4-03
-0.2668390934875709D+-03
0.1321842198719930D+03
-0.2624585302793210D+-02
0.3025125337714398D+4-02
-0.1418090842954654D+-03
0.2756109143783281D4-03
-0.2708086499560764D+03
0.1337381187138368D+03
-0.2650087753598454D+-02

s(z) =z¥

s(z) = =3

s(z) = 2= TS

k=8

0 I O U R W N

0.1866196808675184D+01
-0.8307135206229368D+01
0.1909144688191794D+02
-0.2636153756127239D4-02
0.2279974850816623D+02
-0.1215894117169713D+4-02
0.3671126621978929D+01
-0.4816958588438264D4-00
0.2736714477854559D+01
-0.1004886340865174D 402
0.2164374286136325D4-02
-0.2894336017656429D+02
0.2456068654847544D+02
-0.1293400965739323D+-02
0.3870327870200545D+-01
-0.5044475379801205D4-00

0.4383819645513359D+-01
-0.2478753951112947D+4-02
0.6535630997043997D+02
-0.9943323854718145D+-02
0.9269762740745608D+02
-0.5255448820422732D+02
0.1670932578919686 D02
-0.2292774564229746D+01
0.5819143597164960D+-01
-0.2833732911493431D+-02
0.7130006863921132D+02
-0.1060508801269256D+03
0.9756101768474124D+02
-0.5482984235409941D+02
0.1732510108672746D+02
-0.2366321397723911D+-01

0.3756991225931813D+-02
-0.2556568200490798D+03
0.7531560640068682D+-03
-0.1239060653686887D+04
0.1226707735965091D+-04
-0.7300983324043684D+03
0.2417364444480294D4-03
-0.3433771074231191D+-02
0.4011575033483495D+-02
-0.2633133438634569D+03
0.7675751360752552D+03
-0.1256487025699375D+-04
0.1240341295810031D+04
-0.7368055436813910D+03
0.2436290214530279D+03
-0.3457193022558553 D02
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k= 10

-10

W 00 N O Ut o W N

—
o

0.2264788460960479D+-01
-0.1292939169279749D+4-02
0.3957101757244672D402
-0.7639785056816069D+-02
0.9898237584503627D+02
-0.8785457780822613D402
0.5297228202020211D402
-0.2081786990425939D+02
0.4823072180507942D+01
-0.5007874588446741D4-00
0.3311620888787288D+01
-0.1559126529305869D+02
0.4475277794263923D+-02
-0.8371954827689160D+02
0.1064593309138400D4-03
-0.9333016061951656D+4-02
0.5578209928784346 D402
-0.2177894078450347D+-02
0.5020172381264958D+01
-0.5191450872697767D+00

0.5405454633516052D4-01
-0.3917131575943378D+4-02
0.1375220761115852D4-03
-0.2925218664728695D+03
0.4085024389395215D 403
-0.3854463863750540D+03
0.2447281804852179D+03
-0.1005754937354166D+03
0.2423820803863685D+-02
-0.2606987282704575D+4-01
0.7126578020279918D+01
-0.4460041915515531D+02
0.1496138805763186D+03
-0.3113382992063869D+-03
0.4292142311074982D+03
-0.4015725721227424D+03
0.2534431424358416D+03
-0.1036930201058000D+4-03
0.2490333391795860D+02
-0.2671164050811178D+01

0.4688376828974556D+-02
-0.4098330186123370D+03
0.1609252630383255D+4-04
-0.3705300977598581D+-04
0.5500852053333245D+4-04
-0.5454835999290140D+-04
0.3611006247703252D+04
-0.1538237727142339D+4-04

-0.4230611481851793D+02
0.4993063308066224D+02
-0.4215785445878369D+03
0.1638730173971623D+04
-0.3755162938068600D+04
0.5559352058138100D+-04
-0.5502789929350287D+04
0.3638060903851112D+04
-0.1548279140995316D+-04
0.3847470160018897D+03
-0.4252574395098780D+-02

0.3825346496620566D+03

5.1.3 Quadrature Weights p* for Singular Functions
J

b

f(z)dz

~b

~

T,

I:]xﬁ"‘ (f)

{
= TRem(f)+TLom () +h D ui(f(25) + f(z-5))

i=1

s(z) = log(z) I

s(z) = 2% ”

s(z) = 73 l

k=1

0.1825748064736159D+01
-0.1325748064736159D4-01

0.1205225037415674D+01
-0.7052250374156737D+-00

0.3778855388663843D+01
-0.3278855388663843D+-01

k=2

B W N =

0.3447839654656362D+01
-0.6855525945975443D+01
0.5506959504551413D4-01
-0.1599273213232332D+01

0.2218463552157251D+01
-0.3628353505036473D+-01
0.2609041254011273D+01
-0.6991513011320512D+00

0.7320148345180434D+01
-0.1778105757603391D+02
0.1593863796210005D+-02
-0.4977728731246580D+01
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k=3

(=) B 2 I

0.4967362978287758D+-01
-0.1620501504859126 D402
0.2585153761832639D+02
-0.2222599466791883D+02
0.9930104998037539D+-01
-0.1817995878141594D+01

0.3143730697437969D+-01
-0.8451897605858329D+-01
0.1208357436119364D+02
-0.9617570659704153D+-01
0.4047732219908410D+01
-0.7055690129775324D+00

0.1073655314715114D+02
-0.4299980671214643D+02
0.7669950880443822D+-02
-0.7115012409201039D+02
0.3366638170534288D+02
-0.6452512852775417D+401

k=4

® I O Ut B W N e

0.6422610015158415D+01
-0.2917804569054941D+02
0.6966653255738346D+02
-0.9953245609468264D+02
0.8864202397339461D+02
-0.4848666190307500D+02
0.1496963404602475D+02
-0.2003636903654183D+01

0.4015162120837891D+01
-0.1503194882993455D+02
0.3217489182548832D+02
-0.4258465281962659D+02
0.3575532701326990D+02
-0.1864078694174975D+4-02
0.5526018798331437D+01
-0.7140111666166550D+00

0.1407342741226315D4-02
-0.7865427201433540D4-02
0.2101259829107628D4-03
-0.3241624625236100D+03
0.3060051449663269D4-03
-0.1754069986558793D+03
0.5631298957378288D+-02
-0.7793811669311027D+01

k=5

W 00 I O Gt o W N =

—
o

0.7832432020568779D+01
-0.4565161670374749D+02
0.1452168846354678D+03
-0.2901348302886379D+03
0.3870862162579900D+03
-0.3523821383570680D+-03
0.2172421547519342D+03
-0.8707796087382989D+-02
0.2053584266072635D4-02
-0.2166984103403823D+-01

0.4848996969617959D+01
-0.2328131499019837D+02
0.6639608321400605D+02
-0.1229255269966870D+03
0.1546708735692419D+03
-0.1342514485009140D+03
0.7950370021473013D+02
-0.3077756775605837D+02
0.7038797312960103D+01
-0.7225930366983869D+00

0.1735350975431153D4-02
-0.1245628713831056D+-03
0.4434640879476441D4-03
-0.9569976467950934D+03
0.1353783860926559D+-04
-0.1291950234749944D+-04
0.8285503487963169D4-03
-0.3435626041981771D4-03
0.8346420693053734D+-02
-0.9042657229049132D+01

|

s(z) = 5

s(z) = z_?”

=1

0.1356633013178138D+01
-0.8566330131781384D+-00

0.2794529593974142D+01
-0.2294529593974142D+01

k=2

W N

0.2519163888422707D+-01
-0.4395885396191253D+01
0.3280452346850634D+01

-0.9037308390820877D4-00

0.5366129541098682D+01
-0.1218320712530640D+02
0.1052950605531380D+02
-0.3212428471106080D+01
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k=3

(=B L R T

-0.1028194998745706D+02

-0.1245093824201635D+-02

-0.9477704273134525D+-00

0.3589497168479460D+01

0.1524412419817439D+02

0.5347037290133003D+01

0.7821414573355062D+-01
-0.2920918483691252D+-02
0.5018377890599299D+02
-0.4539338065890004D+02
0.2107727158454216D+02
-0.3979899568077642D+01

k=14

0 3 O Ut B W N =

-0.1835599861488110D+02

-0.5530489773783668D+02

-0.2509295082909035D+02

-0.9861433968239469D+-00

0.4602911286529744D+01

0.4073518974328119D+02

0.4736043505664168D+02

0.7541454492179474D+01

0.1020296324267832D+02
-0.5312486862606378D+-02
0.1366563786096513D+03
-0.2054841186741071D+-03
0.1902586450921973D+03
-0.1073843305583267D+03
0.3403442687592432D+02
-0.4659095961953657D+01

k=5

© W g D N R W N =

—
o

0.5576409349747767D+01
-0.2852065698585619D+-02
0.8432379551508595D+02
-0.1601173988450523D+-03
0.2054417067588763D+4-03
-0.1811847384277427D+03
0.1087543813080456D+03
-0.4259681068876286 D402
0.9843244561772901D+01

-0.1019932546114451D+-01

0.1253203265379597D+02
-0.8377173491458909D4-02
0.2871359566879038D+03
-0.6038601656792564D+4-03
0.8377166700470196D+03
-0.7870189584977965D4-03
0.4981713229210595D+03
-0.2042685138412166D+03
0.4914154195659545D+02
-0.5278151333515754D4-01

5.1.4 Quadrature Weights pf for Singular Functions

Note: po is given for h = 0.01, For any other A, the following formula is used to calculate po.

b

f(z)dz

—-b

Q

= Thom (£)+TLam (F)+ 1Y pi(d(x5) + $(2-))

P
po = (—.9189385332046727417803 + 0.5l0g(h)) = S _ p,

T:p Bp™ (f)

3=0

=1

95
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L

=

wr]

=

-0.3221523626198730D+01

-0.3191075169140337D+-01
-0.3044845705839327D-01

-0.3181467102013171D+-01
-0.4325921322794724D-01
0.3202689042388491D-02

m=29

m= 11

m =13

-0.3176811195217937D+01
-0.5024307342079858D-01
0.5996233119529027D-02
-0.4655906795234226D-03

0.3174071153542312D+01
-0.5462714010179898D-01
0.8188266460029230D-02
-0.1091885919666338D-02
0.7828690501786438D-04

0.3172268092036274D+01
-0.5763224261186158D-01
0.9905467894350714D-02
-0.1735836457536894D-02
0.2213870245446548D-03
-0.1431001195267904D-04

m = 15

m= 17

m=19

0.3170992165916170D+01
-0.5981954453204053D-01
0.1127253159446256D-01
-0.2343420324253269D-02
0.4036621845595672D-03
-0.4745095013720858D-04
0.2761744848710794D-05

0.3170041916020681D+01
-0.6148248184914681D-01
0.1238115647253341D-01
-0.2897732763288696DD-02
0.6052303442088134D-03
-0.9784299004952013D-04
0.1051436637368180D-04
-0.5537586803550720D-06

0.3169306861514305D+01
-0.6278924541603596D-01
0.1329589096935583D-01
-0.3396678852464559D-02
0.8131245480320894D-03
-0.1618104373797589D-03
0.2422167651587582D-04
-0.2381400032647607D-05
0.1142275845182835D-06

m = 21

m = 23

m = 25

0.3168721384920306D+01
-0.6384310328523506 D-01
0.1406233305604607D-01
-0.3843770069700536D-02
0.1019474340602541D-02
-0.2355067918692057D-03
0.4387403771306165D-04
-0.6066217757119951D-05
0.5477355521032650D-06
-0.2408377597694342D-07

0.3168244070581230D+01
-0.6471094753809971D-01
0.1471321624569456D-01
-0.4244313571022683D-02
0.1219746091263614D-02
-0.3156154921336350D-03
0.6890800654569580D-04
-0.1195656336479857D-04
0.1529459820049702D-05
-0.1274231726028842D-06
0.5166969831297037D-08

0.3167847493678468D+01
-0.6543800519316396D-01
0.1527249136497475D-01
-0.4603847576274231D-02
0.1411497560731106D-02
-0.3995067600256630D-03
0.9851668933111745D-04
-0.2018119747186014D-04
0.3260961737325821D-05
-0.3871484601943021D-06
0.2990271150667017D-07
-0.1124351894335142D-08
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[

m=27”

m =29 ”

m=3lﬂ

-0.3167512774719844D+01
-0.6605594788600917D-01
0.1575801776649599D-01
-0.4927531843955059D-02
0.1593569961301572D-02
-0.4851878897058822D-03
0.1318371286512027D-03
-0.3070344146767653D-04
0.5891522736279919D-05
-0.8882076980903206D-06
0.9822897121976360D-07
-0.7065765782430224D-08
0.2475589120039617D-09

-0.3167226492889164D+01
-0.6658761414298577D-01
0.1618335077207727D-01
-0.5219948285292188D-02
0.1765579632676354D-02
-0.5711927253932730D-03
0.1680496910458935D-03
-0.4337783830581833D-04
0.9512778975749005D-05
-0.1711220479787840D-05
0.2413616289062888D-06
-0.2495734799324587D-07
0.1678885488869214D-08
-0.5505102218712507D-10

-0.3166978846772530D+01
-0.6704988689403577D-01
0.1655894738230538D-01
-0.5485075304276741D-02
0.1927601699833581D-02
-0.6564674975812873D-03
0.2064233385304999D-03
-0.5799637068090648D-04
0.1416413018600433D-04
-0.2924616447680532D-05
0.4941524555505996D-06
-0.6540388025633560D-07
0.6345793057687260D-08
-0.4007478791366100D-09
0.1234631631962446D-10

m = 33

m = 35

m = 37

0.3166762511619708D +01
-0.6745551530557688D-01
0.1689299430945688D-01
-0.5726331418330602D-02
0.2079973982393914D-02
-0.7402722529894703D-03
0.2463303649153491D-03
-0.7432197238379932D-04
0.1984260034353227D-04
-0.4580836910292848D-05
0.8916453665775555D-06
-0.1418448246845963D-06
0.1767037741742959D-07
-0.1614096203394717D-08
0.9602551109604562D-10
-0.2789306492547372D-11

0.3166571903740287D+01
-0.6781430660801560D-01
0.1719198706148916D-01
-0.5946641867196491D-02
0.2223175774156742D-02
-0.8221018482825148D-03
0.2872451625618713D-03
-0.9211101483880897D-04
0.2651349126416089D-04
-0.6715522004894009D-05
0.1466368276662483D-05
-0.2695610269256914D-06
0.4047684210333943D-07
-0.4759815470416764D-08
0.4105974377982503D-09
-0.2308426950559283D-10
0.6342175941576707D-12

0.3166402692325675D+-01
-0.6813392816895060D-01
0.1746114206017127D-01
-0.6148508116208072D-02
0.2357753273497796 D-02
-0.9016249160749561D-03
0.3287354588014059D-03
-0.1111274006152623D-03
0.3412004557474223D-04
-0.9348560035479858D-05
0.2246527693132364D-05
-0.4646008810431617D-06
0.8082991536902293D-07
-0.1148532768136401D-07
0.1278405465017250D-08
-0.1044412720573741D-09
0.5564945021538352D-11
-0.1450213949229612D-12
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L

m = 39 |

m=41 |

m =43 |

-0.3166251466775081D+-01
-0.6842046079112800D-01
0.1770469478902206D-01
-0.6334072100094389D-02
0.2484274171602103D-02
-0.9786376366601862D-03
0.3704506824517389D-03
-0.1311507079674222D-03
0.4259144483911754D-04
-0.1248611531858182D-04
0.3255027605557997D-05
-0.7428077534364396D-06
0.1457448522607878D-06
-0.2404950901525398D-07
0.3241558798437558D-08
-0.3423992518658962D-09
0.2656123735758442D-10
-0.1344809528411308D-11
0.3332744815245408D-13

-0.3166115504658825D+-01
-0.6867878881201404D-01
0.1792611880692437D-01
-0.6505172477564357D-02
0.2603300521146428D-02
-0.1053029105125390D-02
0.4121099047922528D-03
-0.1519803191376791D-03
0.5184904980367620D-04
-0.1612303155465844D-04
0.4509136652480968D-05
-0.1119040467513331D-05
0.2428371655709533D-06
-0.4528845255185268D-07
0.7103184896000958D-08
-0.9102854426840433D-09
0.9146251630822981D-10
-0.6753249440965090D-11
0.3256755515337396D-12
-0.7693371141612778D-14

-0.3166115504658825D+4-01
-0.6867878881201404D-01
0.1792611880692437D-01
-0.6505172477564357D-02
0.2603300521146428D-02
-0.1053029105125390D-02
0.4121099047922528D-03
-0.1519803191376791D-03
0.5184904980367620D-04
-0.1612303155465844D-04
0.4509136652480968D-05
-0.1119040467513331D-05
0.2428371655709533D-06
-0.4528845255185268D-07
0.7103184896000958D-08
-0.9102854426840433D-09
0.9146251630822981D-10
-0.6753249440965090D-11
0.3256755515337396D-12
-0.7693371141612778D-14
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