
Yale University

Department of Computer Science

Java Implementation of a Single-Database
Computationally Symmetric Private Information

Retrieval (cSPIR) protocol

Felipe Saint-Jean 1

YALEU/DCS/TR-1333
July 28, 2005

1This work was supported by the DoD University Research Initiative (URI) administered by
the Office of Naval Research under Grant N00014-04-1-0725.



Java Implementation of a Single-Database
Computationally Symmetric Private Information

Retrieval (cSPIR) protocol

Felipe Saint-Jean ∗

1 Motivation

Picture the following scenario. Alice is looking for gold in California. What Alice
does is look for a place with a little gold and follow the trace. Now, Alice wants to
find gold in a place where no mining patent has been awarded, but many patents have
been awarded in California during the gold rush. What Alice does is to walk around
California with a GPS and a notebook computer. Whenever she finds a trace of gold
she follows it querying if any patent has been awarded in that location. If she finds a
trace of gold in a piece of land with no issued patent she can request the patent and
start mining for gold.

The problem is that she is worried that Bob’s Mining Patents Inc., the service she
queries the patents from, might cheat on her. Because Bob’s knows she is looking for
gold in California (Alice said so when signing up for Bob’s service), he knows that, if
she queries from some location, then there is gold there. So, if she queries a location
and there is no patent awarded, Bob may run to the patent office and get the mining
patent for that location.

Depending on privacy and economic constraints, a few solutions come to mind. Alice
might buy from Bob the whole database for California. Alice then can make all the
queries to her own database, and Bob will never find out where Alice is looking for
gold. But this might be very expensive, because Bob charges per query; what he
charges for the whole database will probably be more than what Alice is willing to

∗This work was supported by the DoD University Research Initiative (URI) administered by the
Office of Naval Research under Grant N00014-04-1-0725.

1



pay. Alice can also, with each query, perform a collection of fake queries so that Bob
can’t figure out which is the real query (this leaks information unless she queries the
whole database!), but that still makes Alice pay for more queries that she would like.

This Alice-and-Bob scenario is a basic motivation for Private Information Retrieval:
a family of two-party protocols in which one of the parties owns a database, and the
other wants to query it with certain privacy restrictions and warranties. Since the
PIR problem was posed, different approaches to its solution have been pursued. In
the following sections, we will present the general ideas of the variations and proposed
solutions to the PIR problem. Then, we will present a collection of basic protocols
that allow the implementation of a general-purpose PIR protocol. Finally, we will
show details of a particular PIR protocol we have implemented.

2 Introduction

As mentioned in the motivation, the goals of PIR would be realized if Bob were to send
the whole database to Alice. That would be satisfactory if Bob didn’t care whether
Alice learned more than what she queried. In that situation, the challenge is to devise
a protocol that reduces the amount of data Bob has to send in order for Alice to learn
the answer to her query without Bob’s learning what the query was. In general, that
can only be done by having replicated, non-communicating databases.Going back
to the Alice-and-Bob scenario, there is not one Bob but a collection of them with
identical databases. In this way, the query can be hidden if Alice interacts with all
the Bobs in such a way that each Bob is never sure whether the query he receives is the
real one. The solutions proposed in this line of work achieve a lower number of queries
(sublinear in the database’s size) if more replicated Bobs are available. In this kind
of solution, Alice’s privacy is protected, and the objective is to reduce the number
of queries needed. Most of the protocols in this line of work present solutions that
are private from an information-theoretic point of view. For example Choret al. [6]
show that, if the database is replicated two or more times, sublinear communication
complexity can be obtained. Sublinear communication means that, in the execution of
the protocol, less that the complete database is transfered. As mentioned above, the
whole database is a trivial upper bound on the communication of the PIR problem.
In the information-theoretic approach, the protocols are composed of many single-
element queries, each taking with a cost of 1, because exactly one element of the
database is transfered in each response to each query.

An important improvement in PIR was put forth by Kushilevitz and Ostrovsky [2];
they presented a PIR protocol that requires no replication. Their protocol, based on

2



the hardness of the Quadratic Residuosity problem, is private from a computational
complexity point of view; so, to distinguish it from the information-theoretical ap-
proach, it is known as cPIR, for ”computational PIR”. This idea was first considered
in [7]. One variation of the standard PIR scenario, in which only Alice’s privacy is
safeguarded, is the SPIR scenario (Symmetric PIR). In SPIR, we not only care about
Bob’s not learning anything about Alice’s query, but we also want Alice not to learn
anything about other entries in Bob’s database other than the one she queried. This
is very similar to the one-out-of-N Oblivious Transfer problem, and, as we will see
later they are closely related.

In this work, we will focus on the implementation of a specific SPIR protocol proposed
by Naor and Pinkas [3] that uses Oblivious Transfers as a building block. One of the
properties of this protocol is that it requires only one initialization phase for a sequence
of queries, thus amortizing the cost of the initialization phase. We will also show a
variation of the protocol, proposed by Boneh, that eliminates the initialization phase
by introducing a cPIR query as part of the protocol.

3 Description of protocols and other tools

In this sections, we present a collection of protocols that are required for the SPIR
implementation. In all of them, the Sender (Bob) owns a database, and the Receiver
(Alice) wants to get the i-th value in this database.

3.1 One-out-of-two Oblivious transfer OT 2
1

In a one-out-of-two Oblivious Transfer (abbrev. OT 2

1
), the Sender holds two values.

As a result of the protocol, the Receiver learns a value of his choice and nothing about
the other. The Sender learns nothing about the choice made by the Receiver. The
implementation of OT 2

1
that we used is:

Initialization: The Sender and Receiver agree on a large prime q and a generator
g for Z∗

q . In the actual implementation, the Sender generates them and sends them
to the Receiver. The pair (q, g) can be used in several transfers. That is because
we want the Receiver not to be able to compute the discrete log efficiently and no
extra information that enables him to do so is given as part of the protocol. H(.) is
a random oracle– in practice, a hash function.

3



Receiver Sender
Sender chooses a random element C

in Zq and sends it to the receiver
C ←r Zq

← C

k ←r Z∗
q ; Choose k random in Zq

Let PKσ = gk and PK1−σ = C
PKσ

Send PK0 to the Sender
PK0 →

PK1 = C
PK0

; Sender computes

PK1

r0 ←r Z∗
q

r1 ←r Z∗
q

E0 =< gr0, H(PKr0

0 )⊕M0 > ; En-
cryption of M0

E1 =< gr1, H(PKr1

1 )⊕M1 > ; En-
cryption of M1

← E0E1

Mσ = H((grσ)k)⊕Mσ

In our implementation, the random oracle H is implemented as a Hash function.
Thus, the size of Mi has to be smaller than the size of the output of H . We used
sha− 256; so, Mi can be up to 256 bits.

3.2 One out of N Oblivious Transfer OTN

1

One-out-of-N Oblivious Transfer (abbrev. OT N
1

) is a generalization of OT 2

1
. In OT N

1
,

the Sender holds a list of N elements instead of 2. Here also desired properties are
that the Receiver learn only the i-th value in the database and that the Sender learn
nothing about i. Our implemented OT N

1
protocol is the following:

Initialization: The Sender holds values X1, X2, ..., XN with Xi ∈ {0, 1}m and N =
2l. The Receiver wants to learn Xi.

4



Receiver Sender
Prepares l = ⌈log2N⌉ random pairs
of keys
(K0

1
, K1

1
), (K0

2
, K1

2
), ..., (K0

l , K
1

l ),
where each Kb

j is a t-bit key to the

pseudorandom function Fk.
For all 1 ≤ I ≤ N , let
(i1, i2, ..., il) be the bits of I; com-
pute YI = XI ⊕

⊕l
j=1

F
K

ij

j

(I)

Sender and Receiver engage in an
OT 2

1
for the strings < K0

j , K
1

j >

with j = 0, ..., l.

In the OT 2

1
picks; K

ij
j to learn XI .

← Y1, .., YN

XI = YI ⊕
⊕l

j=1
F

K
ij

j

(I)

The paper by Naor and Pinkas that proposed this protocol [4] is ambiguous in defining
the pseudorandom function F as FK : {0, 1}m → {0, 1}m but using it as Fk(I); where
1 ≤ I ≤ N ; for our implementation we needed to use a pseudorandom function
FK : {0, 1}l → {0, 1}m; where l = ⌈log2N⌉.

In relation to the domain of this OT N
1

implementation, Kb
j will be input of a OT 2

1
, so

the Xi have to be the same size as the output of the pseudorandom function used.

3.3 PIR

In a PIR protocol, the Sender holds a database of size N . The Receiver wants the i-th
value in this database. As a result of the protocol; the Receiver must learn the i-th
entry in the database, but the Sender must learn nothing about i. In a general PIR
protocol, by ”learn nothing”, we mean that a computationally unbounded Sender can
learn nothing about i. That means privacy is preserved from an information-theoretic
point of view. We mention this kind of protocol for clarity, but it is not used in our
implementation. There is no restriction on what the Receiver can learn as a result of
the protocol.

5



3.4 cPIR

A cPIR protocol is similar to a PIR protocol. The only difference is that privacy is
safeguarded against a polynomially bounded Sender.

3.5 Other tools and protocols required in the way

A few additional cryptographic techniques will be needed to implement the SPIR
protocol.

Random Oracle

A random oracle is a protocol-design tool that gives all the parties in the protocol a
common source of random bits. In practice, the shared randomness is provided by a
cryptographically strong hash function like SHA-1.

Sum-consistent synthesizer

A sum-consistent synthesizer is a function S for which the following holds:

• S is a pseudo-random synthesizer.

• For every X, Y and X ′, Y ′, if X + Y = X ′ + Y ′, then S(X, Y ) = S(X ′, Y ′).

where a pseudo-random synthesizer is basically a pseudorandom function on many
variables that is pseudorandom on each one of them. Pseudo-random synthesizers
where introduced by Naor and Reingold in [1].

4 cSPIR Implementation details

The scenario in which an SPIR protocol is used is similar to that in which a cPIR
protocol is used. However, at the end of the execution of an SPIR protocol, the
Receiver should have learned nothing about values in the database other than the
i-th one. Note that SPIR is the most constrained of all PIR variations and that an
OT N

1
is a SPIR protocol.

6



We implemented a variation of version 3 of the protocol presented in [3]. Version 3
of the protocol is not secure, because, after several queries (3 to be exact) it leaks
information. The authors of [3] propose a high-cost fix. In our implementation, we
lower the cost by modifying a step in the protocol. The original protocol as described
in [3] is

Initialization: The Sender prepares 2
√

N random keys (R1, R2, ..., R√
N , C1, C2, ..., C√

N).

For every pair 1 ≤ i, j ≤
√

N , the Sender prepares a commitment Yij of Xij ,
Yij = commitKij

(Xij). It sends all of the commitments to the Receiver.

If the Receiver wants to learn Xij , then the protocol proceeds as follows:

Receiver Sender
Choose rC random in the same
space the keys R and C are chosen
from. Set rR = −rC so rC + rR = 0
Sender and Receiver engage in a

OT
√

N
1 protocol for the values R1 +

rR, R2 + rR, ..., R√
N + rR

Receiver gets Ri + rR

Sender and Receiver engage in a

OT
√

N
1 protocol for the values C1 +

rC , C2 + rC ..., C√
N + rC

Receiver gets Rj + rC

Kij = S(Ri + rR, Cj + rC); Receiver
opens the commitment Yij and re-
veals Xij.

In the modified version, if the Receiver wants to learn Xij , then the protocol proceeds
as follows:

7



Receiver Sender
The
Sender prepares 2

√
N random keys

(R1, R2, ..., R√
N , C1, C2, ..., C√

N).

For every pair 1 ≤ i, j ≤
√

N , the
Sender prepares a commitment Yij

of Xij , Yij = commitKij
(Xij)

The Receiver makes a PIR query
over the Y s and learns Yij

rC ←r and rR = −rC ; so rC + rR =
0
Sender and Receiver engage in an

OT
√

N
1 protocol for the values R1 +

rR, R2 + rR, ..., R√
N + rR

Receiver gets Ri + rR

Sender and Receiver engage in an

OT
√

N
1 protocol for the values C1 +

rC , C2 + rC ..., C√
N + rC

Receiver gets Rj + rC

Kij = S(Ri + rR, Cj + rC) Receiver
opens the commitment Yij to obtain
Xij.

The main difference is that the original protocol requires Ω(n) initialization network
traffic to send the commitments. In the modified version, that is replaced by a PIR
query. One can randomize the commitments in each step to solve the information-
leakage problem. The price of this is O(N) local computation, which is better for
overall protocol efficiency than Ω(N) communication.

The commit function was implemented with the symmetric cryptosystem AES; commitKij
(Xij) =

AES − ENCKij
(Xij). The Sum-consistent synthesizer S was implemented with the

hash function sha256, S(A, B) = sha256(A + B).

5 Network Layer

All of these protocols involve two-party computations. To implement them, we needed
a network layer. Because the implementation was done in Java, a natural choice
would have been RMI. The problem with RMI is that it does not fit well with the
kind of message-driven way protocols are usually described. That means that using

8



RMI forces the code to be structured differently from the way protocols are specified.
That doesn’t seem too important at first glance, but it makes a big difference when
checking and going through code. It is much easier to go over a piece of code that
looks like the protocol written in the original paper. For that, reason our network
layer was implemented by means of messages. Another important feature of the
network layer is that it requires support for nested calls. The SPIR implementation
is built upon other two-party protocols; so we needed to have persistent connection in
all the nested protocol calls. For a simple solution that combined both requirements,
we implemented the NetworkBroker class. The NetworkBroker class is a symmetric
class written over TCP sockets that allows the sending of serializable objects over
a network in a way that is very natural for implementing protocols involving two
parties. Here is a short code sample showing an object message passing through a
pair of threads:

public void testSimpleCase() throws IOException, ClassNotFoundException{

int port = 40000;

final NetObjectBrokerServer server = new NetObjectBrokerServer(port);

final Integer sc = new Integer(900);

final Integer cs = new Integer(901);

Runnable r = new Runnable(){

public void run() {

try {

server.accept();

System.out.println("Got a connectoon");

Integer cs1 = (Integer)server.waitObject();

assertEquals(cs1.intValue(),cs.intValue());

server.sendObject(sc);

server.close();

} catch (Exception e) {

e.printStackTrace();

fail();

}

}};

// Server is waiting

new Thread(r).start();

System.out.println("Here!!");

NetObjectBrokerClient client =

9



new NetObjectBrokerClient("localhost",port);

System.out.println("Connected, sending obj");

client.sendObject(cs);

Integer sc1= (Integer)client.waitObject();

assertEquals(sc1.intValue(),sc.intValue());

client.close();

6 Conclusions and extensions

The main objective of this work is to see how applicable PIR protocols are in practice.
A typical database-oriented application would benefit from a few more features of the
query engine. Interesting extensions, from that point of view, would include the
ability to query for existence of an entry and the ability to query for string-valued
or non-sequential keys. That can be easily implemented if the Sender maintains two
tables. More ambitiously, we would like to be able to compute joins in a private way
without NM complexity, where N and M are the sizes of the joint tables.

An OT N
1

is an SPIR query. It has the same privacy properties. It would be interesting
to identify the cases in which an SPIR query is more efficient than an OT N

1
; then in

many places where a OT N
1

is done, it might be replaced by a recursive SPIR query.

Many optimizations can be done. One of them is to replace the basic implementation
of OT 2

1
with a more efficient one.

10



References

[1] M.Naor and O. Reingold, “Synthesizers and their application to the parallel construc-
tion of pseudo-random function,” Proc. 36th IEEE Symp. on Foundations of Computer
Science, 1995:170-181.

[2] E. Kushilevitz, R. Ostrovsky, “Replication is not needed: Single database, computation-
ally private information retrieval,” Proc. 38th IEEE Symp. on Foundations of Computer
Science, 1997:364-373.

[3] M. Naor, B. Pinkas, “Oblivious Transfer with Adaptive Queries,” Advances in
Cryptology-Crypto’99, Lecture Notes In Computer Science; Vol. 1666 , 1999: 573 -
590

[4] M. Naor, B. Pinkas, “Oblivious Transfer and Polynomial Evaluation,” Proc. 31st ACM
Symp. on Theory of Computing, 1999: 245 - 254

[5] M. Naor, B. Pinkas, “Efficient Oblivious Transfer Protocols,” Proc. 12th ACM-SIAM
Symp. on Discrete Algorithms, 2001: 448 - 457

[6] B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan, “Private Information Retrieval” Jour-
nal of the ACM (JACM), Volume 45 , Issue 6 , 1998: 965 - 981

[7] B. Chor , N. Gilboa, “Computationally Private Information Retrieval” Proc. 29th ACM
Symp. on Theory of Computing, 1997:304-313

11


