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Abstract

One data-independent and one data-dependent algorithm for the computa-
tion of image histograms on parallel computers are presented, analyzed, and
implemented on the Connection Machine system CM—-2. The data-dependent
algorithm has a lower requirement on communication bandwidth by only trans-
ferring bins with a non-zero count. Both algorithms perform all-to-all reduc-
tion, which is implemented through a sequence of exchanges as defined by
a butterfly network. The two algorithms are compared based on predicted
and actual performance on the Connection Machine CM-2. With few pixels
per processor the data-dependent algorithm requires on the order of /B data
transfers for B bins compared to B data transfers for the data-independent
algorithm. As the number of pixels per processor grows the advantage of the
data-dependent algorithm decreases. The advantage of the data-dependent

algorithm increases with the number of bins of the histogram.




1 Introduction

Histogram computation is commonly encountered in image analysis and com-
puter vision. Algorithms for the computation of ima,ge histograms on parallel ma-
chines with the memory distributed among the processing elements are described
in [10,11,5], and for shared memory machines in [2]. The algorithm in [5] assumes
a tree interconnection structure, while the algorithm in [10] is intended for a ma-
chine with a multistage interconnection network for interprocessor communication.
A similar algorithm for bucket sorting on a hypercube is presented in [6]. The im-
plementations proposed in [10] and [6] use a butterfly network for communication,
and the results of the performance analysis are identical. Techniques that make full

use of the communications bandwidth of hypercube networks are described in [7].

In this article, the histogram computation algorithm described in [10] is
discussed and an alternative implementation, suggested in [6], analysed and imple-
mented on the Connection Machine. The modified algorithm reduces the communi-
cation complexity by only transfering counts for non-empty bins. The architectural
model used in the analysis consists of an ensemble of processing elements inter-
connected through a network that allow for the emulation of butterfly and tree
communications without delay. Each processing element has its own local memory.
Hypercube networks are examples of networks that support the required communi-

cation.




2 A data-independent algorithm for parallel his-

togram computation

The N pixels of the image are evenly distributed over the memories of M
processors. The histogram to be computed is assumed to have B bins. In the parallel
algorithms discussed here local histograms are computed in every processor, and the
global histogram obtained by combining partial results, in a way that distributes
the total count for the bins of the histogram among the processors. If the number
of processors is smaller than the number of bins, then the total count for many bins
of the histogram will reside in one processor. In the description and analysis of the
algorithm that follows, it is assumed initially that M > B so that the total count
for at most one bin resides in a processor. However, results for M < B are given at

the end of this section.

For M > B the algorithm consists of three phases:

1. Each processor computes a local histogram for —1]\% pixels.

2. A histogram is computed for groups of B processors, with one processor hold-

ing the count of one bin of the histogram for all pixels in the group.

3. The global histogram is computed from the %’ partial histograms.

In the first phase there is no communication. The second phase involves
both communication, and local computation. Processors execute a recursive dou-
bling procedure [9], which brings the count of a bin to one processor [10,6]. The

communication is in fact all-to-all reduction 7] within each group of B processors.




All reductions within a group can be performed concurrently, and the different
groups can also be treated concurrently. The third phase consists of B independent

reductions, each over % processors storing the count of one bin.

The all-to-all reduction can be performed through a sequence of exchange
steps, one for each bit required for the encoding of the index of the bins. Such an
algorithm is optimal for one-port communication, i.e., communication on one port
per processor at a time. Other algorithms [7] may be chosen for n-port communica-
tion, i.e., concurrent communication on all ports of every processor. On the Connec-
tion Machine system CM-2, and other computers with shared memory primitives,
a send-with-add would accomplish the desired task. The algorithm description and
analysis in this paper provides the insight into what such an instruction implies in

terms of communication and computational requirements.

The bins for the histogram are assumed to be labeled from 0 to B — 1. The
exchange sequence defines communication in the form of a butterfly network of
log B stages for B bins, and B processors in each group. The recursive splitting
of bins among processors can be performed by processors whose addresses differ in
bit log B — k exchanging segments of their local histograms during step k,k > 1.
Specifically, at the beginning of step 1 each processor holds the complete histogram
of its subimage. Before exchange step k a processor holds a segment of length EkB:T
Let the index of a bin be (Biogp-1Blogs-2-- - Bo). The segment a processor with

address w = (Wpy—1Wm—2 - . . Wo) holds after exchange step k has a starting index of

log B—-1 .
te= >, w2, 1<k<logB (1)
j=log B-k

In the k' exchange, processor w = (Wpy—1Wm-2 - - . Wiog B—k - - - Wo) €Xchanges
9 g

a segment of length fg with processor w = (Wpm-1Wm-2 ... WiogBk---Wo). The




starting index of the segment being exchanged is

log B—1 B
se= ) w? +Wieghr op (2)
j=logB—lc+1 .

where w; denotes the complement of w;. The index of the first bin of the segment
of the local histogram that is updated is given by Equation (1). The details of this
implementation are presented in [10] and [6]. If, for every node, hist(j) denotes
the 5" bin of the local histogram, 0 < 7 < B — 1, and recetve(s) the j** data item
received by a processor, then the following procedure is executed by a node with

address w, during the second phase:

for k:=1 to log B do

for 7:=0 to B/2F — 1 do

send hist(sg + 7) to processor (Wiogp-1- - - Wiog Bk - - - Wo)
endfor
for 2:=0 to B/2¥F — 1 do

hist(ty + ) = hist(ty + ¢) + recesve(?)

endfor

endfor

The third phase of the algorithm combines the histograms computed by ev-
ery group of B processors. The reduction operation in this phase requires log %
communication steps. It can be performed such that the first B processors hold the

histogram of the whole image. If M < B then at the end of the algorithm every




processor holds % bins of the histogram of the whole image. The algorithm termi-
nates after log M steps of the second phase. This difference is the only difference

between the cases M < B and M > B.

The first phase has a computational complexity of % additions. The second
phase introduces a communications overhead due to the transfer of segments of the
histogram between processors, as well as a computational cost due to the updates of
segments of the local histograms. With the all-to-all reduction performed through
an emulation of the butterfly network, a total of B — 1 data exchanges distributed
over logB communication steps are required for B bins. For n-port communication

the data transfer time can be improved by a factor of logB [7].

A data communication either transfers the count associated with one bin, or
transfers the index of the bin. The term word will be used to denote a piece of data
holding either the address of a bin, or the corresponding count. The term should
not be taken strictly as an 8-bit entity, but rather as an elementary data element
used to hold the information that needs to be transferred. The computational cost
associated with the updates of segments of the local histograms during the second
phase is B — 1 additions. Finally, the third phase of the algorithm requires one
data transfer during each of log% steps for a total of log]-‘g— data transfers, and
an equal number of additions. Thus, the three phases of the algorithm result in
B-1+ log%— data transfers and a computational cost of % +B—-1+ log%

additions.

In the case M < B the log M communication steps of the second phase re-
quire B — —ABJ- data transfers for one-port communication. The number of additions

performed by every processor during this phase is also B — 1\%' Thus, the total




communications overhead is equal to B — —']6[— data transfers (one-port communi-

cation) and the total computational cost is equal to % + B — ]\% additions. The

local storage needed in this algorithm is an array of size B.

3 A data-dependent algorithm for histogram com-

putation

In the algorithm described above, pairs of nodes exchange histogram seg-
ments without checking which bins of the histogram have non-zero counts. This
results in a straightforward implementation of the algorithm. But, many of the
exchanged bins may be empty, particularly in the first few steps of communication.
Communication bandwidth is used up without any effect on the histogram com-
putation. In the data-dependent algorithm, every processor manipulates - sends,
receives and updates - only bins with non-zero count. The data dependency for
important implications for the computational cost and communications overhead of

the algorithm in cases of very few pixels per processor.

In the case of one pixel per processor every processor will have only one bin
of its histogram updated. During the first communication step, pairs of processors
need to exchange at most one bin. Every processor sends or keeps the the count of
a bin depending on which half of the histogram the bin falls in. Since the processors
must also send the index of the bin, the worst case number of data transfers is two
words. The bin a processor receives may be different from the bin to which the
local pixel belongs. Consequently, the data which needs to be transferred during

the second communication step (in the worst case) is the counts for two bins, and



their indices. It is clear that in the worst case the number of bins that need to
be communicated doubles for every communication step. However, the histogram
segment a processor keeps updated is reduced by a factor of two for each step.
Hence, the doubling can only take place up to some communication step r < log B.
For communication steps k¥ > r the data-independent algorithm is invoked. It will
be shown in section 4.1 that the data dependent algorithm may yield a reduced

communications overhead for p pixels per processor, if p < B/4.

Next, two different approaches to organizing the local computation at each

node are proposed and analyzed.

3.1 Approach 1

In the data-dependent algorithm, the arithmetic overhead incurred at each
node originates mainly from the need to select only the active bins from the segment
of the histogram that will be transferred. Every node knows, through the simple
arithmetic described above, the segment of its local histogram which is updated and
the segment whose active bins are transferred at each step of the butterfly. What the
processors do not know in advance, are the specific bins of this segment that will be
received, and whether some of these bins correspond to bins in the local histogram
which are already active. Therefore, upon receipt of the bins, the processors must
check the addresses of the received bins and update the corresponding bins in the
local histograms. Since the processors send only the active bins, they must scan
the appropriate segment of the histogram to find and send only those bins. The

procedure that every node executes at step k, for 1 < k < r, is the following:




Loty =Y 0800 w2
2. 8k = ¥ Fiog Bokrr W2 + Wiog 5k &
3. for ¢:=0 to 5’% —1do
if hist((sk + ¢) # 0) then
send [(sx+17),hist(sp+7)] to processor w = (Wy— 1 Wyy—2 . . . Wiog Bf - - - Wo)
endfor

4. for 2:=0 step 2 until all messages received do
hist(receive(s)) = hist(receive()) + recetve(s + 1)

endfor

Note: receive(s) holds the address of the bin and receive(i + 1) the corre-

sponding count.

In the first several steps, the processors scan big segments of the histogram
looking for very few active bins. In the worst case, when the active bins happen to lie
at the end of a segment, they have to scan all the bins of that segment. For example,
in the case of a 256 bin histogram and 1 pixel per processor, every processor receives
at most 1 bin that may lie at the end of an array of 128 elements. This procedure
applies to every communication step, and the processors scan histogram segments
of decreasing length until a step is reached where the full segment is sent without

searching for active bins.

Since the bins to be sent are selected by searching the list of potential candi-
dates, this approach to organizing the local computation does not fully realize the

goal of the data-dependent algorithm, namely the manipulation of active bins only.

10




A different approach, which overcomes this problem and accesses directly the bins

that need to be sent, is discussed next.

3.2 Approach 2

The scanning of bins to find active ones can be avoided if each processor keeps
a list of all active bins in the segment of the histogram that is to be transferred dur-
ing the various communication steps. This list is updated at every communication
step. One way to organize the list is as a collection of lists, one for each of the first
r steps of communication. Sublist £ holds the addresses of the bins that are active
and fall in the histogram segment that must be exchanged during communication
step k. In our implementation we use a set of r arrays, with a set of counters for the
number of active bins entered into each array. At the k* step of communication,
the processors check the counter associated with the k** array and fetch from it the
indices of as many bins as the value stored in the counter. For each fetched address
the count is retrieved from the local histogram and the address and the count sent

to the appropriate processor. No scanning of histogram segments is required.

Upon receipt of a bin, the processors must determine the communication
step at which the bin will be transferred, i.e. to which array the bin belongs. From
Equation (2) it follows that the bin should be inserted into array j, where j is the
highest order bit in which the log B lowest order bits of the processor address and
the bin index differs. In addition, the processors must determine whether a received
bin appears in the corresponding array, or it is inactive. A bin appears in the list
if the count for the bin is non-zero, and the processor only needs to update the

count for the bin. Otherwise, the bin index needs to be added to the array, and its

11




counter updated.

This approach to deciding what bins are to be sent at each communication
step results in more bookkeeping per received bin, and increased memory require-
ments. In addition to the local histogram stored at every node, r one-dimensional
arrays z;(.) are required, one for each of the first » steps of communication, and
r registers C;. The registers hold the number of active entries in each array. The
length [; of array z;(.) is the number of bins communicated during step 7. The
length is a function of the granularity. If initially there are p pixels per processors,
then {; < p, I < 2p and, in general, I[; < 2"1p, for 1 < ¢ < r. The decision making

process at every node is implemented by the following procedure:
1. for 7:=0to Cy — 1 do
send z(7), hest(zx (7)) to processor (Wpy—1Wm—3 . .. Wiog 5% - - - Wo)
endfor

2. for ¢ step 2 until all messages received do

if (hist(receive(?)) = 0) then
compute k' from the processor address and bin index
Co=Cp+1
2 (Cr) = recetve(?)
endif

hist(receive(s)) = hist(recetve(i)) + receive(t + 1)

endfor

12




The procedure above is executed only during the first r communication steps,
at which point a switch is made to the data-independent algorithm. Many standard
processors have dedicated circuitry for determining the number of leading zeros in
a word, making the computation of the array index very fast. Should the above
scheme be too slow a look-up table can be used. However, such a table requires
extra storage. The step r at which the data-independent algorithm is invoked is

predetermined based on a worst case analysis.

4 Performance analysis of the data-dependent al-

gorithm

In this section the performance of the data-dependent algorithm is analyzed.
The communication overhead for one-port communication is derived. We will only
comment on the possible improvement for n-port communication. The analysis
of the computational cost, associated with the two proposed approaches to the

organization of the local computation follows.

4.1 Communication overhead

The main difference between the data-independent algorithm and the data-
dependent algorithm is the selection criterion for transfering bins during a com-
munication step. In the first algorithm, at communication step k, 5’% bins are
transferred. In the second algorithm, every node selects among the 2% bins only
those whose count is not zero. With p pixels per processor a processor will activate

at most p bins in computing its local histogram. In the worst case a processor will

13




communicate all the p bins in the first communication step, and a total of 2 x p
words. After a processor receives the bins, it must update the local histogram.
The update is done via one of the two approaches discussed in section 3. In the
worst case, all p received bins will be different from the already active bins in each
node’s histogram. Thus, after the first communication the local histogram may
have 2p active bins. If all 2p bins fall in the segment of the histogram which is to
be transferred in the second step, then the data to be transferred is 4p words (2p
bins and the corresponding counts). At step k > 1, 2¥~!p bins are transferred in the
worst case giving a total amount of transferred data of 2(2¥~1p) words. Hence, the
data dependent algorithm has an advantage with respect to the communications

overhead for the first r steps, where # is the largest number for which
2(21) < B/ (3)
The total communications overhead for the first r steps is equal to:
2(p+2p+4p+ ..+ 27 'p) = 2p(2" — 1) (4)

In the last &k steps of phase two, log B — r < k < log B, segments of length 255 are

transferred in step k£ resulting in a total communications overhead of

B B
2r+1+2r+2+...+2+1=§—1 (5)

words for one-port communication. For n-port communication the data transfer
time is reduced by a factor log B — r [7]. The communication cost for the second
step of the algorithm is the sum of Equations(4) and (5) (one-port communication).

The largest value of r that satisfies (3) is

log %

=22 (©
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Figure 1: The number of data transfers as a function of the number of pixels per
processor. The solid and dashed curves correspond to the data-independent and

data-dependent algorithms, respectively.

Since r > 1, Equation(6) can be used to determine the relationship between

B and p for which the data dependent algorithm offers an advantage with respect
to data transfer time, in the worst case. The condition is

B v

p<- (7)

In Figure 1 the communications overhead of the data-dependent algorithm

in the worst case and the data-independent algorithm are plotted as a function of

the number of pixels per processor p for B = 256. If M < B, then the algorithm

terminates during the second phase, and the complexity expressions for the second

phase shows a dependency on M. The analysis is similar to the case M > B. For

very few pixels per processor, the data-dependent algorithm results in considerable

savings in the number of data transfers. In the case of one pixel per processor, the
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number of data transfers is proportional to v/B for the data-dependent algorithm,
whereas it is proportional to B for the data-independent algorithm. For commonly
used values of B, this results in an order of magnitude difference in the number of
data transferred during the second phase of the algorithm. However, a fair compar-
ison between the two algorithms requires a quantitative analysis of computational

cost as well.

4.2 Analysis of computational complexities
4.2.1 Computational cost of approach 1

The computational cost of approach 1 for the data-dependent algorithm
comes from the need to search the local histogram segments during the first r steps
of the second phase of the algorithm, and from the update of the local histograms
with the received data. The cost of updating the local histograms during the first

r steps is equal to
(p+2p+4p... + 2 p) (8)

additions in the worst case, whereas the cost of searching the local histograms is

equal to
—+=+..+= 9)

In the last log B — r steps the data-independent algorithm is used, and the compu-

tational cost is due to updating the local histograms. This cost is equal to

B B
W+§‘;ﬁ+...+2+l (10)
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Figure 2: The number of arithmetic operations as a function of the number of pixels
per processor. The solid and dashed curves correspond to the data-independent and

approach 1 to the data-dependent algorithm respectively.

additions. The total computational cost of approach 1 for the data-dependent
algorithm is the sum of expressions (8), (9), and (10). Additions and comparisons
are assumed to incur the same cost in terms of performance. Thus, approach
1 results in an increased computational cost compared to the data-independent
algorithm given by (8), because the sum of expressions (9) and (10) is equal to the

computational complexity of the data-independent algorithm.

Figure 2 shows the computational costs associated with the second phase of
the data-independent algorithm and approach 1 for the implementation of the data-
dependent algorithm, as functions of the number of pixels per processor p. This plot '
indicates that the computational cost of approach 1 is a piecewise monotonically

increasing function of p. The discontinuities occur for p = 4, p = 16 and p = 64
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because, for these values of p, the value of the critical step r decreases by one. For the
values of p for which r remains the same, expression (8) shows that the incremental
cost increases linearly with p. The magnitude of the step-wise decrements in the
communication cost can be obtained from expressions (8) and (6). Let p' be the
value of p for which the critical step changes from 7' +1 to /. Then, the incremental

cost in increasing the number of pixels per processor from p’ — 1 to p’ is found to be

PRI-1) - -1t -1 =2"2-p) -1 (11)

Expression 11 is always negative for p > 2. Thus, every time the value of »
changes, as the number of pixels per processor increases, the computational cost of

the data-dependent part of phase two decreases.

Note that the memory requirements of approach 1 for implementing the data-
dependent algorithm are the same as in the data-independent algorithm. Approach
1 leads to the desired reduction of the number of transferred bins, but the reduction

is achieved at the expense of additional at each node.

4.2.2 Computational cost of approach 2

For every received message, the processors must perform one comparison
and one addition, and depending on the result of the comparison compute an array
index (or look up a table), increment a counter, and append a bin index to an array.
Before the first “send” operation, each processor using the values of its own pixels
updates the arrays that hold the index of active bins to be transferred during each of
the first r steps. The procedure generates the initial local histogram. In subsequent

steps up to step r, the same procedure updates the arrays containing the indices of

18




active bins, and the local histogram with the counts of the received bins. After the
rth “send” operation, each processor updates the local histogram with the received
counts, but does not need to update the arrays that hold the indices of active bins.
Hence, during the first r — 1 steps two — five operations are performed per received
bin. During the last log B — r steps only one operation per bin is required. The
computational complexity associated with the initial updates of the arrays is three
operations per pixel. The operations for the update of the local histogram, is not

part of the second step of the algorithm, and is not taken into account. Thus, the

total computational complexity associated with the first » steps is at most
3xp+5%(p+2p+4p+...+27 %)+ 2 p (12)

arithmetic operations. In the remaining log B — r steps the computational cost is

that of the data-independent algorithm:

B B
ottt t2tL (13)

The total computational cost associated with the second phase of approach 2 to the

data-dependent algorithm is the sum of Equations (12) and (13).

In Figure 3 the computational cost of this approach is plotted as a function of
the number of pixels p per processor for B = 256. The behavior of the cost function
is similar to the one discussed in the last section. The form of the curve can be
explained by Equations (6), (12) and (13). The memory requirement of approach 2
is higher than for approach 1 due to the use of arrays to record the indices of active
bins to be communicated in each of the first » steps. These arrays require a storage

of

p+20+...+27p=p(2" 1) (14)
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Figure 3: The number of arithmetic operations as a function of the number of pixels
per processor. The solid and dashed curves correspond to the data-independent

algorithm and approach 2 to the data-dependent algorithm respectively.
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words. Although this approach to organizing the local computation at each node
results in more complicated bookkeeping, the actual computational cost is reduced
compared to the data-independent algortihm for few pixels per processor, i.e. p <

10.

5 Implementation issues

The performance of the algorithms depends on the characteristic parameters
of the machine, and the problem size. The machine parameters we consider are
t., the time it takes to transfer one piece of data between adjacent nodes, t,, the
time for an arithmetic operation, or a comparison, and 7, the start-up time for a
communication. If the length of a message is larger than maximum packet size as
defined by the communications buffers, then the message is split into pieces equal
to the maximum packet size. Note that if the maximum packet size is sufficiently
large, then the number of communication start-ups is the same for both the data-
independent and the data-dependent algorithms. The number of communication
steps are the same, but the size of the data set differs. The performance data is
derived using Equations (4) and (5) for the communication cost, Equations (8), (9)
and (10) for the computational cost of approach 1 for the data-dependent algorithm,
and Equations (12) and (13) for approach 2.

The data-independent algorithm and both approaches 1 and 2 to the data-
dependent algorithm were implemented on the Connection Machine system, model
CM-2. For an accurate estimation of the communication time for the CM-2 it is
necessary to understand some of its architectural features [4,3]. There are 16 Con-

nection Machine processors to a chip, and 4k chips interconnected as a Boolean
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cube, for a total of 64k processors. On-chip communication is effectively local
memory moves that can take place concurrently, while inter-chip communication is
- bit-serial. Communication can take place concurrently on all interconnections. The
on-chip communication time is in the range 20us — 30us for 4 bytes depending on
communication pattern. For off-chip communication the time to transfer 4 bytes
across a wire is about 35us. The peak computational performance of a Connection
Machine system CM-2 with 64k processors and hardware support for floating-point
operations is in the range 1.5-2.3 Gflops/s using *Lisp [1], a parallel extension to
Common Lisp. Up to an order of magnitude higher floating-point performance
currently can be achieved only in lower level programming languages. The pro-
gramming language *Lisp was used for the implementation of the algorithms on the

CM-2. For *Lisp t, &~ 30us.

With 256 bins and 256 processors per group a group requires 16 processor
chips, or 4 off-chip steps. For a 64k processor configuration there are 256 such
groups, which implies that phase three has eight steps. Since on-chip communica-
tion is faster it is beneficial in the data-independent algorithm to perform the first
four steps of phase two on-chip, and the last four steps with off-chip communica-
tion. For the first off-chip step each processor holds 16 bins. All 16 processors on
a chip exchanges 8 bins each with a “buddy” on another chip, i.e., values for 128
bins are sent, and values for another 128 bins are received over the same inter-chip
connection. In the next step, half as many bins are exchanged. The off-chip commu-
nication requires approximately 16 X 15 X 35us = 8.4 ms for the data-independent
algorithm. By pipelining the off-chip communication as described in [8] the com-
munication time can be reduced to about 4.6 ms. The on-chip communication time

for the first four steps is about 7 — 8 ms for the data-independent algorithm.
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Figure 4: The estimated communication time for the Connection Machine machine
as a function of the number of pixels per processor. The solid and dashed curves
correspond to the data-independent and data-dependent (the communication time

is the same for both approaches) algorithms respectively.

The communication time is the sum of the times for off-chip and on-chip commu-
nication. The estimated times of communication and computation, as well as the
total execution time for computing a 256 bin histogram on the CM-2 are shown in

Figures 4, 5, and 6 respectively.

The data-independent algorithm and approach 1 to the data-dependent al-
gorithm were implemented on the CM-2. For each algorithm two versions were
implemented. In the first, the first four communication steps were on-chip and
the remaining steps off-chip; in the second, the first four steps are off-chip and the
remaining steps on-chip. The performance of each implementation was evaluated

with 1, 2, 4, 16 and 32 pixels per processor. The histogram was computed for cor-
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the data-independent algorithm, approach 1, and approach 2 to the data-dependent

algorithm respectively.
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respond to the data-independent algorithm, approach 1, and approach 2 to the

data-dependent algorithm, respectively.
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Figure 7: Test images used in the implementations on the CM. The small window
on the left was used for 1 pixel/processor and the larger window on the right was

used for 16 pixels/processor.

respondingly sized windows of the 64k test image shown in Figure 7. The measured
computation and communication time, and the calculated total execution times are
shown in Figures 8, 9 and 10 for the first version of the algorithms and in Figures

11, 12, and 13 for the second version.

With the first communication steps being on-chip the data-independent al-
gorithm performs better than approach 1 to the data-dependent algorithm. The
reason is that the algorithms are computation bound due to the fast on-chip com-
munication, which is used for the bulk of the data transfers. The on-chip transfer
of a 32 bit word is performed as fast as one arithmetic operation, thus making the
local computation dominate the total execution time. Most of the time for local

processing in approach 1 to the data-dependent algorithm is spent in searching for
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the active bins. The search time in approach 1 incurs a cost which cancels out the

savings in communication time.

However, in version two of the algorithms with the first four communica-
tion communication steps being off-chip communications the data-independent al-
gorithm becomes communication bound. Approach 1 to the data-dependent algo-
rithm performs better than due to the reduced communication time. Figures 4
and 8 show that, in general, there is good agreement between predicted and mea-
sured communication time. However, Figures 5 and 9 show a discrepancy between
predicted and measured computation time. This is due to the fact that in our cal-
culation of predicted values the time for evaluating and executing the conditional

statements is underestimated.

The indirect addressing feature of the Connection Machine system, model
CM-2, is used in the search procedure, but incurs a certain overhead. This feature

is used in the search of the histogram segments (Section 3.2.1., steps 3 and 4).

The performance analysis of the data-independent algorithm and approach
1 to the data-dependent algorithm demonstrates that the latter algorithm performs
better when the histogram computation is communication bound. This is also
supported by the results of the implementation on the Connection Machine. To
fully realize the potential of the data-dependent histogram computation, approach

2 to the data-dependent algorithm should be used.
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6 Discussion

A data-independent and two versions of a data-dependent algorithm for com-
puting image histograms on parallel architectures have been analyzed, and the data-
independent algorithm and one of the data-dependent algorithms implemented on
the Connection Machine system, model CM-2. The data-independent algorithm
has also been analyzed in [10] and [6]. All algorithms consist of two phases: lo-
cal histogram computation and global accumulation of the counts for the different
bins. For convenience in the implementation we perform the second phase in two
stages, if the number of processors exceeds the number of bins, effectively making
the algorithms consist of three phases. The data-dependent algorithms only differ
from the data-independent algorithm for part of the second of the three phases.
The purpose of the data-dependent algorithm is to reduce the need for information
transfer by only communicating information about bins with a non-zero count. The
potential benefits of such an implementation was pointed out in [6]. Transferring
only the counts of bins with a non-zero count introduces a need for bookkeeping
of what bins are active and when to communicate the active bins. The addresses
of bins to be transferred are determined during the execution of the algorithm.
The communication cost of the implementations and the computational cost due
to local processing have been analyzed. In fact, for the second implementation,
two approaches to the organization of the local computation have been considered

leading to different costs.

The global accumulation is made using an exchange algorithm. The number
of exchange steps in phase two is min(log B,log M), where M is the number of

processors and B the number of bins. The third phase consists of B independent
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reduction operations (one for each bin) on sets of | %] elements each. For an image
with 106 pixels, 256 bins, and 10° processors, the third phase results in 12 data
transfers and 12 startups. The second phase results in 255 data transfers with the
data independent algorithm versus 45 with the data-dependent algorithm, and 8
startups for both. In general, for a realistic number of bins, pixels, and processors,
the third phase involves 8 — 15 startups and an equal number of data transfers,
whereas the second phase involves 8 — 12 startups and a much larger number of
data transfers. The exact contribution of the second and third phase to the total
execution time depends on the number of pixels per processor, and the number of
bins in the histogram, assuming that there are at least as many processors as bins.
For machines with short startup time, the second phase dominates the execution

time of the complete algorithm.

An interesting consideration is the effect of the start-up time on the perfor-
mance of the two algorithms. The improved performance of the data-dependent al-
gorithm deteriorates in machines with high startup times. However, the tendency in
current machines is towards lower start-up times and, therefore, the data-dependent
algorithm is a reasonable choice for few pixels per processor. The start-up time on
the Connection Machine system, model CM-2, is approximately equivalent to the

transfer of 4 bytes.

Note that as the number of bins in the histogram increases, the performance
of the data-dependent algorithm becomes increasingly better compared to the per-

formance of the data-independent algorithm.
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Figure 8: Measured communication time as a function of the number of pixels
per processor. The data was obtained from a CM implementation in which the
first four communication steps were on-chip and the remaining steps off-chip. (O

data-independent algorithm, <> data-dependent algorithm).
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Figure 9: Measured computation time as a function of the number of pixels per
processor. The data was obtained from a CM implementation in which the first
four communication steps were on-chip and the remaining steps off-chip. (O

data-independent algorithm, ¢ data-dependent algorithm).
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Figure 10: Measured total execution time as a function of the number of pixels
per processor. The data was obtained from a CM implementation in which the
first four communication steps were on-chip and the remaining steps off-chip. (O

data-independent algorithm, > data-dependent algorithm).
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Figure 11: Measured communication time as a function of the number of pixels
per processor. The data was obtained from a CM implementation in which the
first four communication steps were off-chip and the remaining steps on-chip. (O

data-independent algorithm, ¢ data-dependent algorithm).
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Figure 12: Measured computation time as a function of the number of pixels
per processor. The data was obtained from a CM implementation in which the
first four communication steps were off-chip and the remaining steps on-chip. (O

data-independent algorithm, ¢ data-dependent algorithm).
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Figure 13: Measured total execution time as a function of the number of pixels
per processor. The data was obtained from a CM implementation in which the
first four communication steps were off-chip and the remaining steps on-chip. (O

data-independent algorithm, > data-dependent algorithm).
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