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Node orderings and concurrency in structurally-symmetric sparse problems
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ABSTRACT

In the solution of structurally-symmetric sparse linear systems by direct methods it is
possible to exploit concurrency not only within the elimination operations at a single pivot
step but also over the eliminations using different pivots. The pivot ordering that minimizes
the number of arithmetic operations does not, in general, minimize the time for the
concurrent solution of a system of equations. We investigate minimum degree and nested
dissection orderings, as well as a few other ordering schemes, with respect to potential
solution time and total arithmetic complexity for a few benchmark problems and an
idealized parallel computer. The benchmark problems include 2-dimensional grid problems
and some other standard sparse matrix test problems.
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1 Introduction

The solution of structurally-symmetric sparse linear equations by direct methods offers an
additional potential for concurrency over dense matrix problems. In this paper we estimate the
available concurrency due to sparsity, and compare it with the concurrency that is available in the
elimination within each pivot step. Johnsson (1985b) refers to these two forms of concurrency as
concurrency in the elimination of multiple vertices (CEMYV), and concurrency in the elimination of
single vertices (CESV),-although we will use alternative terms defined in Section 2 in this paper. In
this paper we assume unbounded parallelism and, under this assumption, consider the potential
speed-up both due to CEMV and CESV for some benchmark sparse matrix problems.

We represent the factorization by an elimination tree in which each node represents the zlimination
operations corresponding to a single pivot step and edges of the tree represent dependencies between
different steps. This tree can be viewed as a computational graph for the solution process in the sense
that operations at a node of the graph require information from the sons of the node. The tree thus
defines a partial ordering; work corresponding to all leaf nodes can proceed immediately and
concurrently and work corresponding to any other node can commence once the work corresponding
to its sons is complete. An elimination tree thus defines a dependency graph in computer science
.texms. Duff (1986) discusses the use of the elimination tree in implementing a parallel elimination
scheme. Here we use the tree to study various measures of parallelism and compare some of our
measures with those obtained on real systems. An elimination tree can be uniquely constructed for any
given ordering. However, any ordering of the nodes of the tree which respects the dependencies is
valid and involves the same number of floating-point operations.

The computations at each node include the assembly of small full matrices from the sons together
with information on the pivot row and column corresponding to the node. The pivoting operations are
then performed on the assembled small full matrix, called a frontal matrix, and the non-pivot rows and
columns are sent to the father node. The rows and columns of the small full matrices must be identified
by integer index vectors and indirect addressing operations are required in the assembly phase.

Although we have defined the nodes of the elimination tree in terms of a single pivet, in practice we
amalgamate nodes, so that a single tree node may correspond to several steps of Gaussian elimination.
If the rows and columns in the son are a subset of those in the father then there is no loss in sparsity by
amalgamating father and son pivots into the same tree node and performing both sets of eliminations at
the single node. This nede amalgamation can assist both vectorization and parallelism within the node,
and we assume that it is done. Indeed Duff and Reid (1983) suggest performing additional node
amalgamations at the cost of increasing slightly the overall work and storage, but we do not perform
such amalgamations here. Node amalgamation also facilitates numerical pivoting since pivots can be
chosen from anywhere within the rows and columns corresponding to the intended pivots. In the
following, we do not assume that the matrix is diagonally dominant or symmetric and positive definite,
and we include operation counts for pivoting operations.

We describe our model for calculating parallelism in Section 2 and the various orderings with which
we experiment in Section 3. The results of our numerical experiments are given in Section 4. Finally,
we present some concluding remarks in Section 5.




2 Measures of achievable parallelism

In assessing the potential speed-up from different schemes for parallelizing sparse matrix
factorization, we consider only arithmetic and logic operations. Memory conilicts, bus or network
delays, and the scheduling of a limited number of processing units are ignored. The reference measure
we use for determining the available speed#up is simply the total number of operations for the
sequential factorization, counting additions, multiplications, divisions, and comparisons equally. We
require comparisons for the selection of pivots within the frontal matrix since we do not assume
positive definiteness or diagonal dominance. We also include a count for the assembly of the node. For
each node ordering we use the elimination tree to define measures of parallelism. If a quantity is
defined at the nodes of the tree then we can sum this quantity over all nodes in the path from a leaf
node to the .rbot. The maximum over all leaf nodes of such sums occurs for the so-called “longest
path”. For appropriate quantities, this gives a measure of the sequential work required.

To assist in describing our different measures of parallelism, we sketch the Gaussian elimination
procedure in Figure 2.1, where we have numbered the three basic loops in the elimination, noting that
the overall number of executions of loop (2) is precisely the order of the matrix (the total number of
pivots).

For all nodes in an order respecting dependencies ¢))
For each Gaussian elimination step at node @)
Select pivot

Compute multipliers
For all non-pivot rows in frontal matrix 3

Update entries in rows

Figure 2.1. Sketch of tree-based Gaussian elimination.

The first measure of parallelism is obtained only from the sparsity of the problem (corresponding :0
loop (1) in Figure 2.1). Here we assume that the operations at any one node must be done sequentiaily.
The operations at each node comprise arithmetic operations, comparisons for pivoting, and assembly
operations. The total sequential count is obtained by summing these over all nodes of the tree. The
measure of parallelism is obtained by dividing the total sequential count by the maximum sum of
number of operations along any path from a leaf node to the root of the tree. Since this parallelism is at
the outermost level of the triply nested Gaussian elimination loop, we call this measure “outer” in our
numerical experiments in Section 4.

The next measure of parallelism is obtained from allowing full parallelism within the operations at a
node. A parallel algorithm is used for pivot selection. This requires a number of comparisons that is
logarithmic in the size of the frontal matrix. The calculation of the multipliers can be performed
concurrently as can the rank-1 update in loops (3). Parallelizing the assembly process is considerably




simplified if the programming language includes a concurrent wrire instruction with addition, which
uses hardware synchronization for accumulaton. The Ultracomputer (Schwartz 1980), the RP3
(Pfister er al. 1985), the Connection Machine (Hillis 1985) and the Fluent (Ranade ez al. 1988) are
examples of architectures that offer such support. We assume this model and parallelize the assembly
accordingly. We call this measure “2 inner”. -

In architectures with a significant overhead for parallelization of operatons at such a fine level of
granularity, an aggregation of operations may be desirable. For this reason, we also compute a measure
of parallelism for sequential pivot selection, followed by calculating the multiplier and updating each
row in serial mode but performing the updates of different rows in parallel. The assembly is also
performed sequentially within a row, but concurrently within a column. We call this measure of
parallelism for a node “1 inner” in Section 4.

Assuming that sufficiently many processors are available, different nodes of the elimination tree can
be eliminated concurrently, as long as the dependency rules are not violated, in combination with
concurrent elimination within individual nodes. We compute the parallelism that can be achieved by
combining concurrent elimination of tree nodes, “outer ”, with “1 inner” concurrency at the nodes, and
call this measure “outer + 1 inner”. We also determine the maximum parallelism attainable by
concurrent elimination of tree nodes and maximally exploiting concurrency in each node elimination.
We call this measure “outer + 2 inner”.

In the formulae on the following page, we give the precise definitions of how the different
complexity measures are computed and the corresponding measures of parallelism. The total number
of pivots is , that is the entire sparse matrix is of size nX n. The number of nodes in the elimination
tree is N1, and the number of pivots in node j is P;. The size of the frontal matrix at node j is K XK.
The path from the leaf node / to the root is identified by parh,. The number of additions for assembly
of son i at node j is denoted AA j-(i), and the number of sons of node j is § IE

In the complexity expressions in these formulae, the term within the square brackets defines the
number of operations required for one node of the elimination tree under the different schemes for
exploitung parallelism. The first term in the complexity expression for a node represents the number of
additions in sequence that are necessary for the assembly, the second term the number of comparisons
in sequence for the pivot selection, the third term the number of arithmetic operations for the
calculation of the multipliers, and the last term the number of sequential operations for the rank-1
update.

Note that in determining the complexity measures C, C,, and C, the maximum is sought for
different expressions, and the selected paths may be different. The paths with the widest frontal
matrices are likely to benefit the most from parallelizing one or both “ inner” loops..




The complexity estimates for the different modes of parallclism arc
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When deciding how to measure speed-ups in the parallel implementation of an algorithm, two base
measures are used. One is the performance of the same algorithm on one processor, and the other is the
time for the best known sequential algorithm for performing the same computation. The latter measure
is what is important in practice. The former provides insight into how a given ordering performs when
the number of processors is increased. We use this measure in most of our tables, but the latter measure
is used occasionally for reference.

3 Orderings

Ordering strategies that attempt to minimize storage or the total amount of arithmetic performed
during elimjnation have been investigated extensively. For general graphs the two most common
ordering strate.gies are minimum degree and nested dissection. Nested dissection is of optimal order
with respect to fill-in for graphs with good separators, such as planar graphs. However, the minimum
degree ordering yields competitive orderings for many graphs and is often better than nested dissection
at reducing fill-in and arithmetic (for example, George and Liu 1981, Duff, Erisman, and Reid 1986).
An ordering that is optimal with respect to storage or arithmetic is not necessarily optimal with respect
to parailel complexity. With unbounded parallelism and a symmetric positive definite problem, an
ordering that minimizes the maximum number of pivots along any path in the tree is optimal with
respect to solution time. If each node represents a single pivot step, then an ordering that minimizes the
tree height (that is the number of nodes on the longest path from a leaf node to the root) is optimal with
respect to solution time, for unbounded parallelism.

A good example of the fact that an ordering that is optimal with respect to fill-in is far from optimal
for any reasonable model of parallel computation is the solution of tridiagonal systems. For such
systems orderings without fill-in exist, but they allow little parallelism. Cyclic reduction (or,
equivalently for this case, nested dissection) yields a balanced tree with only log,n levels and much
potential for parallelism for the solution of a system of order n. However, this ordering causes fill-in
and about doubles the number of floating-point operations. The cyclic reduction algorithm eliminates
the maximum number of variables at each stage. However, such algorithms are in general not optimal
with respect to solution time even if the parallelism is unbounded (J ohnsson 1985 a). Furthermore, as
will be demonstrated in Section 4, an ordering with a lower maximum number of pivot steps along any
path from a leaf node to the root of the elimination tree than another ordering does not necessarily have
the lowest maximum number of arithmetic operations along any path in the two elimination trees (and
certainly not the total amount of arithmetic, as is the case for cyclic reduction).

In addition to the minimum degree and nested dissection orderings, we also consider orderings that
are specifically designed to enhance the parallelism in the tree. Since the height of the tree strongly
affects the amount of sequential computation required, we try an ordering that artempts to minimize
the tree height. For this ordering we represent the matrix by a supervariable graph where each vertex
can represent one or more variables (see, for example, Duff and Reid 1983). Pivots corresponding to
variables in a supervariable will be eliminated at the same node of the elimination tree with
amalgamated nodes. The ordering procedure starts by setting the depth of all vertices in the
supervariable graph to 1, selecting one of these vertices (using minimum degree as a te-breaker), and
assigning a depth of two to all vertices to which this vertex is connected. We continue choosing




vertices of depth 1 until all are exhausted and then search for vertices of depth 2 and so on. In each
case, uneliminated vertices adjacent to vertices being eliminated are assigned a depth equal to the
maximum of their current depth and one more than the vertex being eliminated. As in the case of the
minimum degree ordering, the heuristic just described is local and will not necessarily minimize the
tree height over all orderings, although, as we see from our results in Section 4, it usually does a very
effective job.

The use of the elimination tree height as a measure of parallelism is rather crude, since the
assumption is that all nodes are equal. A simple extension is to account for amalgamation and weight a
node by its number of pivots. The ordering proceeds by setting the depth of a vertex to the maximum
of its current depth and the depth of the vertex being eliminated plus the number of variables in the
supervariable at that vertex. We study the effect of this modification in Section 4.

On the regular grid problems from a five-point discretization of the Laplacian operator, using one
step of elimination according to a red-black ordering followed by, for instance, a minimum degree or a
nested dissection ordering may yield a better result than either ordering alone, because we will have
maximized the number of leaf nodes in the elimination tree. We also include this one-step greedy
ordering for the grid problems. Note that the first step of the minimum depth ordering may give a
red-black ordering depending on the order selected by the minimum degree tie-breaker.

4 Results

The (partial) orderings of the variable eliminations in the sample problems have been obtained using
general ordering routines. The minimum degree ordering routines are from the Harwell MA37
package (Duff and Reid 1984) and the nested dissecton routines from Sparspak (George and Ng
1984). Our minimum height heuristic was obtained from a minor modification to the minimum degree
code of MA37. The sample problems are chosen to represent both regularly structured (five-point
discretization of the Laplacian on a two-dimensional grid) and less structured examples from the
Harwell-Boeing test collection (Duff, Grimes, and Lewis 1989).

30x30 10x100 LUNDA ERIS1176 BCSSTK24
Outer 2.4 2.1 1.9 1.3 2.7
Quter + 1 inner 46 18 25 40 310
1 inner 12 6 12 20 81
2 inner 65 25 80 38 2093
Quter + 2 inner 421 104 173 468 - 12375

Table 4.1. Speed-ups due to various levels of parailelism on our ideal machine. Minimum
degree ordering used throughout.

For NxN and NXNXN grid problems the number of arithmetic operations at the root of the
elimination tree is of the same order as the total number of operations. It follows that the parallelism
that can be achieved from concurrent elimination of different pivots is O(1). Thus exploiting sparsity




aloné for parallelism may yield very limited speed-ups. But the speed-up from exploiting CONCUITENCY
in one inner loop is O(N) for a two dimensional problem and O(N®) in three dimensions. If
concurrency is obtained over both inner loops the speed-ups are O(NV*/1og.V) and O(N*10g,V) in two
and three dimensions, respectively. For a problem of order » that can be represented as a banded
——E/m,—) from exploiting concurrency in the outer
logy(nim) .

loop, while one inner loop yields a speed-up of O(m) and both inner loops a speed-up of O(m*log,m).
The results in Table 4.1 confirm that for the test cases only a small speed-up can be obtained from

matrix with bandwidth m <« n the speed-up is O(

sparsity alone. When combined with sparsity within the nodes a more encouraging speed-up is
obtained, as expected. The speed-up for one inner loop is always greater than the relative speed-up
from parallelizing also the second loop, and sometimes significantly so. The concurrency in sparse
elimination Is substantial even in problems of small to moderate size, if all three loop levels are
parallelized. Although the full “outer + 2 inner” figure may be difficult to obtain on an actual machine,
the target can be viewed as an attractive goal for machines designed to work well at that fine a

granularity.
Ordering MD ND GMD1 GMD2 RB-MD RB-ND
Height 24 13 11 11 20 12
Total ops (x10% 415 514 894 1046 472 457
Counts on longest path
Number of pivots 124 80 118 112 119 76
Number operations (x10% 172 129 415 604 194 123
Row ops (x10% 9 6 14 16 9
Elim ops 985 643 1008 977 951 613

Table 4.2. Statistics for 30x30 grid problem.

In Table 4.2, the orderings are designated by MD (minimum degree), ND (nested dissection),
GMD1 and GMD?2 for the minimum height algorithms using tree height and weighted tree height
respectively, and RB-MD and RB-ND for red-black followed by minimum degree and nested
dissection, respectively. The good performance of minimum degree as a sequential ordering for
reducing the operation count is illustrated in Table 4.2, where it gives the lowest total operation count
among the orderings used. The operations count includes arithmetic operations for assembly, pivoting,
and elimination. The number of operations in sequence for parallel assembly, parailel pivoting, and
parallel elimination in the case of parailelization by “Outer + 2 inner” is labelled “Elim ops” in the
table. The nested dissection ordering has a fairly good performance as a sequential ordering and its
power as an ordering scheme for parallel elimination is seen in the last three rows of Table 4.2. The
combination with a red-black ordering gives some improvement in the parallel orderings, although
RB-MD is worse as a sequential ordering than minimum degree by itself. The two minimum height
orderings reduce the height well, but even GMD?2 is not as good as nested dissection at reducing the
number of pivots on the longest path. Indeed GMD2 shows no real advance over GMD1 although it
yields slightly fewer operations at the finest level of granularity. For this regular grid problem neither
of them are as successful as nested dissection (or RB-ND) for exploiting parallelism.




Ordering MD ND GMD1 GMD2 RB-MD RB-ND
Outer 24 4.0 2.1 1.7 2.4 34

Outer + 1 inner 46 30 ' 66 67 50 75

1 inner 12 3 20 23 13 13

2 inner 65 79 138 161 74 71

Outer + 2 inner 421 799 887 1070 496 746

Relative to best ordering

Outer + 1 inner 46 69 29 26 46 69

. Table 4.3. Speed-ups for 30x30 grid problem.

Most of the speed-ups in Table 4.3 are relative to the sequential operations for the same ordering.
The speed-up relative to the best sequential ordering is included for the “outer + 1 inner” ordering in
the last row of the table, where we show the speed-ups relative to the total number of operations for the
minimum degree ordering, the best sequential ordering. The better parallelization properties of nested
dissection mean that it may be the best algorithm on a parallel machine, even if the number of
sequential operations is higher than for the minimum degree ordering. This is evident from the last row
of Table 4.3. It is clear that nested dissection (or RB-ND) is the best parallel ordering in spite of its
poorer sequential performance.

Ordering - MD ND GMD1 GMD2
Height 50 66 12 17
Total ops (x10% 618 373 645 636
Counts on longest path
Number of pivots 175 111 103 32
Number operations (x 10% 478 362 356 349
Row ops (x10% 16 12 1 10
Elim ops 1319 947 841 692

Table 4.4. Statistics for ERIS1176 matrix from test collection.

For the less regular problem from circuit analysis, the results in Tables 4.4 and 4.5 show a different
performance to that for the regular grid problem. The minimum degree ordéring is sdll the best
sequential ordering, but nested dissection is now much poorer as a sequential orderihg although it sull
beats minimum degree at exploiting sparsity. However, the minimum height algorithms are more
effective here at reducing tree height and the number of pivots on the longest path, and GMD2 is the

best ordering for the parallel operation counts, in spite of producing a tree with greater height than
GMDL1.




Ordering MD ND GMD1 GMD2
Outer 1.3 24 1.8 1.8
Quter + 1 inner 40 75 61 63
1 inner 20 21 20 20
2 inner 38 118 92 91
Outer + 2 inner 468 922 767 912
Relative to. best ordering

Outer + 1 inner 40 52 36 62

Table 4.5. Speed-ups for ERIS1176 problem.

5 Conclusions

In a multiprocessor architecture with few processing elements relative to the number of variables in
the problem an “optimum” ordering is likely to be “close” to an ordering that is desirable for a
sequential machine, even if communication complexity is included. For an architecture in which the
number of processing elements is of an order comparable to the number of variables, the parallelism
with respect to concurrent elimination of different pivots is bounded only for the first few levels of the
elimination tree. With the number of processing elements falling in the intermediate range there is a
choice of exploiting various combinations. These findings are in broad agreement with the work of
Duff, Gould, Lescrenier, and Reid (1987) who examined orderings on symmetric and positive-definite
finite-element problems.

Our results in Section 4 confirm that the nested dissection ordering is very effective for exploiting
parallelism in regular grid problems, but our new orderings based on minimizing the tree height show
great promise for less regular problems.

In conclusion, there is much scope for exploiting concurrency in sparse elimination for any
ordering, although it is important to utilize the parallelism both within the elimination tree nodes as
well as across the nodes. If fine granularity working, at the level of a couple of arithmetic operations, is
feasible, extremely high parallelism is available.
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