P. T. Woo is at Chevron 0il Field Research Company, La Habra, California 90631.

A. H. Sherman is at the Department of Computer Science, University of Illinois,
Urbana, Illinois 61801.

Application of Sparse Matrix Techniques
to Reservoir Simulation

P. T. Woo, S. C. Eisenstat,
M. H. Schultz, and A. H. Sherman

Research Report #53

This work was partially supported by ONR Grant NOO0l4—67-A-0097-0016.

Introduction

The purpose of this paper is to show how sparse Gaussian elimination is applied to the
numerical simulation of petroleum reservoirs. Our emphasis will be on this particular
application, somewhat in the style of [10], rather than on theoretical or implementation
questions, which are treated in other papers in this series, [3] and [4]. In particular,
we shall present the work and computing-time requirements of sparse Gaussian elimination
for some typical problems of reservoir simulation.

In many reservoir simulation problems, we seek the solution of a system of
nonlinear parabolic partial differential equations describing multiphése flow in two or
three space dimensions. In this paper, we restrict our attention to two-dimensional
problems.* The most common technique is to approximate the domain by a rectilinear mesh
or grid and to approximate the partial differential equations by five-point difference
equations together with suitable linearizations. The result is a sequence of systems of

linear equations
Ax=b (€

where entries in the matrix A and the vector b vary from time step to time step. A
simulation problem may involve up to a thousand or more such systems.

In reservoir simulation, systems of the form (1) have usually been solved with
iterative rather than elimination methods. This was thought to save both time and
storage. But selecting an efficient iterative method, optimal acceleration parameters,
and a good stopping criterion is soﬁetimes difficult and expensivé. Moreover, recently we
have found that in some situations iterative methods will not converge to an acceptable
solution within a reasonable number of iterations because of the increasing complexity of
simulation problems.

Classical elimination methods, though inefficient in terms of both speed and

* See [8] and [10] for computational results for coarse three-dimensional grid problems.
Sparse Gaussian elimination for fine three-dimensional grids is prohibitively expensive
[2,3].

storage, have avoided these difficulties and have always yielded satisfactory solutionms.
Recently, sparse matrix techniques have greatly improved the computing speed and storage
efficiency of elimination methods, and they have become an important tool in reservoir
simulation.

The computing mesh in reservoir simulation is customarily numbered row by row or
column by column (the grid row ordering). Depending on the derivation of the difference

equations, the system (1) can be in one of the two forms described below.

Type 1: 1In this case, x represents unknown reservoir pressures at the grid points.
A is a diagonally dominant band matrix, which is usually nonsymmetric, although its
incidence matrix is symmetric. As an example, a 3x4 grid and a corresponding matrix A are

shown in Figure 1.

X X X
X X X X
X X
1] 1 10 b X X
X X X X X
2 5 8 1" x XX X
X X X X
36 |3 |n X X xX X
X X X X
X X
' X X X
i X X X
Figure 1:

Type 1 Matrix from a 3x4 Grid.

Type 2: 1In this case, x represents unknown reservoir pressures and/or fluid
saturations (volumetric fractions) at the mesh points. If the unknowns at each grid point
"are numbered consecutively, the elements of A cluster in blocks as in Figure 2, Some of
the matrix entries within each block may be zero. Both A and its incidence matrix are
usually nonsymmetric, and A is not always diagonally dominant, although pivoting is not
required for numerical stability. This type of matrix will be referred to as a block

matrix.

1
J
A
'

X XX x x X
H ' :
10X XA X X X X X!
X X XX X X. X x x'
—————a o prmem el DT ,—_———a
XX X X X X X X X X x
XX XX X XX x X' X x x!
X x'X X X'x x X, 'X X X
[iaieiigibagiiod e d [S
XX XX X X, X X X,
XX X'X X X X X x!
XX XX X X REES
l aale el ot i S A [F RS
XXX XXX XK XX X
X x x: XX XX X X XX X
! ;
Lxxx} XX XX X X! X X X
P pRgi [S R e N
(X X X! XX XXX KK X X XX X,
‘X X x: XX XIX X X'X X X' XX X!
XX X X X X'X X X, X X X! X X X!
bee e 202 PR A brmm e mm e oy
X X X, (X X X, X X X X X x
X X X, "X X X!X X X. XX X
' !
X X x! X X XX X X, X X x
e i ek ey NN e B
X X X XX XX XX X X X
X X X, XX X X X X X X X
X X X. X X X! X X X. X X X
P AT
X x x. XX XX X XX X X X X X,
X X X XX XIX X XX X X, X X X!
, !
X X X XX XX X X X X X X X X
- e e m e e e e
X X X A AR X X X X X X
X X X XX X X X X XX X,
X X X, X X XX X X X X X,
[A Mode e DT
X X X, XX XX X X,
X X x! (XX XX X X!
XX X, SX X X X X X,
P [AP S
XX X XX XX X X X X X
; .
X X X TXOX X X X X X X X
X X X, XX X X X X, X X X,
Rt il Tt R
XX X! XX XX X X
X X x: XX XX X X!
X X X XX XX X X
| PP L P |
Figure 2:

Type 2 (Block) Matrix from a 3x4 Grid

The application of sparse matrix techniques to reservoir simulation consists of two
steps. First, we renumber or reorder the grid to minimize the fill-in during elimination
and to minimize the number of arithmetic operations involving nonzeroes. This reordering
is equivalent to a symmetric permutation of the matrix A of the form PAPY where P is the
permutation matrix corresponding to the reordering of the grid. Second, we solve the
permuted system using Gaussian elimination where we store and operate on only ﬁhe
nonzeroes of A plus the new nonzeroes that occur during elimination. In our experience
with reservoir simulation, the grids are relatively coarse because of the lack of detailed
geological data describing the reservoir or because of the need for only "engineering"
estimates of the unknowns. Hence, we will assume that in-core storage is not a critical
issue and will emphasize an implementation designed for maximum efficiency with respect to

computing time rather than computer storage. For a discussion of related implementations

designed to optimize storage rather than speed, see [4]. We will first describe the
ordering techniques and second present the sparse matrix algorithms that we have found

effective in reservoir simulation.

Ordering Schemes

For Type 1 matrices is has been our experience that the alternate diagonal (AD) and the
minimum degree (MD) orderings described below yield good results. The application of the
alternate diagonal ordering to reservoir simulation was first reported in [8]. Instead of
numbering a two-dimensional grid row by row, it numbers the grid along alternate diagonals.

An example of this ordering and the corresponding matrix are shown in Figure 3.

X X X]
X X
X X X X
T 8 4 n x xoXxx
X X X X
1 s o e X X xx
X X X X
2 s s | x XX X
X X X X
X X X X X
X X X
X X x
= -
Figure 3:

Alternate Diagonal Ordering and Its Type 1 Matrix

The application of the minimum degree (MD) ordering scheme to reservoir simulation
was discussed in [10]. The general‘idea is that at any stage of the elimination procedure
we select as pivot row that row with the fewest nonzero off-diagonal elements. In case
of a tie, we select any row from the tie. In the minimum degree ordering, we can start

& with a matrix that corresponds to either the grid row ordering or the alternate diagonal

ordering. (The only effect is to modify the breaking of ties.) The latter sometimes

results in as many as 157 fewer multiplications than the former.
For Type 2 matrices, we have found that it is convenient and effective to number
the grid or permute the matrix blocks according to one of the schemes above. The relative

positions within each block are unchanged.

Work Requirement

We define the work requirement as the number of multiplications and divisions required to
solve the system (1) by sparse elimination. For Type 1 linear systems, the work
requirement of the alternate diagonal ordering was given in [8]. For large two-dimensional
grids with dimensions I and J (I 2 J), the work requirement with AD ordering is

3 4
1J J (2)

LN i i ¥
while for large IXI squares it is
4

wAD = . | (3)

The AD ordering is not asymptotically optimal, since the work required with an optimal
ordering scheme is 0(13) foritwo—dimensional square grids [6]. In practice, however, the
AD ordering works fairly well.

We do not know of any formulas for calculating the work required with the minimum
degree ordering. The observed work requirement for several typical problems will be given
later. This ordering seems to work as well as or better than the alternate diagonal
ordering.

The work requirements with various orderings for some rectangular grids are given
in Table 1. GR, AD, and MD designate respectively the grid row, alternate diagonal, and
minimum degree orderings. We observe from this table that reorde¥ing the grid

substantially reduces the work requirement, with the greatest reduction for square grids.

Grid Grid
Dimensgions Ordering Row Algorithm Dimensions Ordering Row Algorithm
10x10 GR 11,696 10x20 GR 24,896
AD 5,504 AD 13,504
MD 4,936 MD 13,562
30%30 GR 855,096 20x60 GR 541,796
AD 261,104 AD 255,604
MD 189,276 MD 232,372
50x50 GR 6,458,496
AD 1,809,504
MD 1,149,772
Table 1:

Work Requirements for Type 1 Equatioms

Reordering is less effective in reducing the work requirement of elongated rectangular

grids, though such grids require considerably less work than square grids with the same

number of grid points.

Table 2 shows the work requirement of three two-dimensional grids from actual

reservoir simulation problems.

These grids are characterized by irregular boundaries as

shown in Figures 4, 5, and 6. Clearly reordering is also effective in reducing the work

Simulation Grid Number Work Requirement
Problem Dimensions of Equations GR ' AD MD
1 8x69 390 20,726 15,218 16,110
2 23x37 507 174,974 62,430 51,766
3 55x72 2,347 ~7,200,000 2,037,432 709,442
Table 2:
Work Requirements for Type 1 Equations
Simulation Problems 1, 2, and 3
at T o8 89
FHH THH Hin

bt d

Figure 4:

Simulation Problem 1, 8x69, 390 Equations

Figure 5:
Simulation Problem 2, 23x37, 507 Equations

Figure 6:
Simulation Problem 3, 55x72, 2,347 Equations

requirement for such grids. In simulation problem 3, the AD ordering reduces the work
requirement by a factor of about 4, and the MD ordering reduces it by a factor of about 10.

For Type 2 systems, suppose there are k unknowns per mesh point. The simplest way
of applying sparsé matrix techniques to the system (1) is to assume that each block of
matrix A has dimensions kxk and contains kz nonzeroes. The work requirement for a Type 2
matrix in this simple situation is then approximately equal to k3 times that of the Type 1
matrix based on the same ordering.

As an example, we give the work requirement for a block matrix A arising from

reservoir simulation problem 4 with a 7x9 grid as shown in Figure 7. There are three

-8-

Figure 7:
Simulation Problem 4, 7x9, 189 Equations
unknowns per mesh point resulting in a system with 189 equations. If each block of A is
assumed to be dense, then A has 2,547 nonzeroes and the work requirement 15791,640 for the

GR ordering; 52,290 for the AD ordering; and 51,894 for the MD ordering (Table 3).

Nonzeroes Alternate Minimum

in 4 Grid Row Diagonal Degree

2,547 91,640 52,290 51,894

1,061 15,213 11,611 17,767
Table 3:

Work Requirements for Simulation Problem 4

Actually each block of A may contain fewer than nine nonzeroes. In this example, A has
only 1,061 actual nonzeroes at the start of the simulation, and the number gradually
increases to 2,547 nonzeroes in the limit, as the number of time steps becomes very large.
.The work requirement corresponding to 1,061 nonzeroes in A is 15,213‘for the GR ordering,
11,611 for the AD ordering, and 17,767 for the MD ordering (minimum degree with respect to
the grid). By using a good grid ordering and taking into account all the zeroes in A, the
work requirement is substantially reduced from 91,640 to 11,611, Thus, it is advantageous

to account for the change in the number of nonzeroes in A during simulation, when an

efficient code is available to do so.

Sparse Matrix Codes

The basic sparse matrix coding techniques have been described in [1] and [7]. We have
found the symbolic and numeric (SYMFAC-NUMFAC) factorization technique to be extremely
efficient in solving the linear equations in reservoir simulation. A subroutine SYMFAC is
used to generate pointers to the nonzeroes of the triangular factors L and U of the LU
factorization of A. Given these pointers, a subroutine NUMFAC is used to factor A (or to
convert it to U). A version of SYMFAC-NUMFAC that is particularly well suited for
reservoir simulation has been developed here at Yale [5].)

For Type 1 linear systems, we apply SYMFAC once per simulation grid and NUMFAC once
each time step. In the case of Type 2 linear systems there are two options. First, we
cén assume that the matrix blocks (see Figure 2) contain only nonzeroes. (The incidence
matrix is symmetric as a result.) This allows us to apply SYMFAC once per grid and NUMFAC
once per time step as before. Second, we can take inﬁo account the zeroes within the
matrix blocks at each time step. Then we must apply both SYMFAC and NUMFAC at every time
' step. The relative advantage of the two options depends on the relative quantities of
zeroes and nonzeroes in the matrix blocks and the relative efficiency of the SYMFAC and
the NUMFAC subroutines. As a general rule, it would pay to assume that all the matrix
blocks are dense for the first time step Just to find out the cost of NUMFAC for this case;
at subsequent time steps, one would take into account zeroes within the matrix blocks
until the combined cost of SYMFAC and NUMFAC exceeded the cost of NUMFAC assuming the
dense blocks.

We have made a series of computer timing studies to determine the CPU time
requirements of the Yale code when applied to reservoir simulation problems. The computer

used for the timing studies was an IBM 370/158 with virtual storage. The timing runs were

~10-

made without background jobs to avoid interference. The programs were compiled by using
the IBM FORTRAN IV Level H Extended Compiler, with OPT = 2, Selected single precision

floating point instruction speeds for the 370/158 are given in Table 4. Table 5 gives the

Average Floating Point

Instruction Instruction Speed in Microseconds
Add 2.0
Load 0.70
Multiply 2.0
Store 0.88
Table 4:

Selected Average Instruction Speeds on the IBM 370/158

Nonzeroes NUMFAC
Grid of U Work SYMFAC Time per Multiply
30x30 8,915 189,276 .62 sec 1.8 sec 9.4 pysec -
50x50 33,961 1,149,772 2.2 sec 10. sec 9.1 usec
. 20%60 11,701 232,372 .78 sec 2.2 sec 9.6 psec
55x72 26,514 709,442 1.8 sec 6.6 sec 9.3 usec
7x9 913% 11,611 .10 sec .14 sec 12. usec
7x9 2,664 51,894 .23 sec .49 sec 9.4 usec

Table 5:

CPU Time Requirement of SYMFAC and NUMFAC
CPU time requirement of the Yale codes for several typical cases of Type 1 and Type 2
matrices. In each case, we used the best of the three grid orderings. Note that except
for the smallest system, the Yale code requires about 9.5 microseconds per multiplication
for NUMFAC, while a band algorithm using the grid row ordering requires about 7.2
microseconds per multiplication. AThe band algorithm, which does not do any pivoting, is
the most efficient of the codes we tested in terms of CPU time per muitiplication. But

overall the Yale NUMFAC code is considerably faster. For example, it is approximately

* Nonzeroes of L is 1,355.

-11-

eight times faster in the case of the 55x72 grid in simulation problem 3. This favorable
comparison is due to the reduced number of multiplications (a factor of about ten).

The computer time required to reorder the grid is unimportant relative to the time
required to perform the numeric elimination, since in most cases the grid is reordered
only once and the system (1) is solved many times in a simulation study. Typically, the
computer time to reorder the grid is 0.5 to 4.0 times that required for one numeric
elimination.

Storage requirements for sparse elimination are discussed in [4]. It should be
noted that the storage required increases very rapidly with increasing grid dimensions.
See Table 5 for the actual number of nonzeroes in U for the test problems.

Since we are solving a time-dependent problem and are primarily concerned with
speed and not storage, we use a SYMFAC subroutine that returns pointers to the nonzeroes
of L and U and a NUMFAC subroutine that returns the numeric values of U only. If we were
more concerned about storage (because of hardware limitations), we could use the SYMFAC
subroutine described in [9], which returns the "compressed" pointers for the nonzeroes of
t and U. Or, going one step further, we could use the TRKSLV subroutine described in [4],
which combines the SYMFAC and NUMFAC subroutines and requires storage for only the

"compressed" pointers and numeric values for the nonzeroes of U.

Conclusions

1. Sparse Gaussian elimination is a powerful engineering tool that can be used to solve
economically many systems of linear equations arising in reservoir simulation.

2. Reordering significantly reduces the number of multiplications required for elimination. 3
For a Type 1 matrix, when a two-dimensional grid is nearly square, the minimum degree |
ordering is significantly better than the alternate diagonal ordering. The improvement

is further enhanced if the grid is irregularly shaped.

-12-

3. Sparse Gaussian elimination can be considerably faster than band elimination algorithms.
For a 55x72 grid with 2,347 equations, the Yale code reduces computing time by a factor

of eight over a band elimination algorithm.

References

1. A. Chang.
Application of sparse matrix methods in electric power analysis.
In R. A. Willoughby, editor, Sparse Matrix Proceedings, 113-122. 1IBM, 1968.

2. S. C. Eisenstat.
Complexity bounds for Gaussian elimination.
To appear.

3. S. C. Eisenstat, M. H. Schultz, and A. H. Sherman.
Applications of an element model for Gaussian elimination.
Symposium on Sparse Matrix Computations, Argonne National Laboratory, 1975.

4., S. C. Eisenstat, M. H. Schultz, and A. H. Sherman.
Considerations in the design of software for sparse Gaussian elimination.
Symposium on Sparse Matrix Computations, Argonne National Laboratory, 1975.

5. S. C. Eisenstat, M. H. Schultz, and A. H. Sherman.
A user's guide to the Yale sparse matrix package.
To appear.

6. J. A. George.
Nested dissection of a regular finite element mesh.
SIAM Journal of Numerical Analysis 10:345-363, 1973.

7. F. G. Gustavson.
Some basic techniques for solving sparse systems of linear equationms.
In D. J. Rose and R. A. Willoughby, editors, Sparse Matrices and Their Applications,
41-52. Plenum Press, 1972.

8. H. S. Price and K. H. Coats.
Direct methods in reservoir simulation.
Soctiety of Petroleum Engineers Journal 14:295-308, 1974.

9. A. H. Sherman.
On the Efficient Solution of Sparse Systems of Linear and Nonlinear Equations.
PhD thesis, Yale, 1975.

10. P, T. Woo, S. J. Roberts, and F. G. Gustavson.
Application of sparse matrix techniques in reservoir simulation.
SPE 4544, 48th Annual Fall Meeting of the Society of Petroleum Engineers, Las Vegas,
Nevada, 1973.

