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Abstract

We present a unified approach to several methods for computing eigenvalues and eigenvectors of
large sparse matrices. The methods considered are projection methods, i.e. Galerkin type methods,
and include the most commonly used algorithms for solving large sparse eigenproblems like the
Lanczos algorithm, Arnoldi’s method, the subspace iteration, etc.. We first derive some a priori error
bounds for general projection methods, in terms of the distance of the exact eigenvector from the
subspace of approximation. Then this distance is estimated for some typical methods, particularly

those for unsymmetric problems.



1. Introduction

In the previous few years a fairly important effort has been devoted to solving large sparse
eigenvalue problems. Although more attention has been directed towards symmetric eigenvalue
problems, many applications are now encountered where one requires the eigenvalues of a large

unsymmetric matrix.

The purpose of this paper is to attempt to present a unified view of the most commonly used
algorithms for solving large sparse eigenproblems. We will start by reviewing the general framework
of projection methods and describe orthogonal as well as oblique projection methods. A projection
method consists in approximating the exact eigenvector u, by a vector i belonging to some subspace
K, referred to as the right subspace, by requiring that the residual vector of 1 satisfies the Petrov-
Galerkin condition that it is orthogonal to some subspace L, possibly different from K, often rederred
to as the left subspace. When L=K we have an orthogonal projection method otherwise we say that
the method is an oblique projection method. As it turns out most methods for solving large sparse
eigensystems can be formulated in terms of projection methods . As will be seen, the common feature
which makes these methods work, is that the exact eigenvector is well approximated by some vector
of the subspace K. It becomes then important to analyse the distance between the exact eigenvector
and the subspace of approximation. This will be done for several methods with emphasis on those

for solving unsymmetric problems, including the subspace iteration, the method of Arnoldi, etc..

Concerning the subspace iteration method we will see that Chebyshev acceleration can also be

efficiently used and we will derive some estimates of the convergence factor.

Throughout the paper, the norm || || represents the Euclidean.norm. The spectrum of a matrix is
denoted by o{A). The matrices treated may be complex and the transpose conjugate of A is denoted
by AH

2. General projection methods for matrix eigenvalue problems.
In this section we present the general projection methods which provide a unified approach to

many methods for computing eigenvalues and eigenvectors of large matrices.



2.1. Orthogonal projection methods.

The material of this subsection summarizes part of the previous paper [11]. Let A be an NxN
complex matrix and K be an m-dimensional subspace of CN. We will make the notational
convention of representing by the same symbol A the matrix and the linear operator represented by

the matrix A.

Consider the eigenvalue problem
Au=1A\u (1)

An orthogonal projection method on the subspace K seeks an approximate eigenpair X\, @ to
problem (1), which belongs to the subspace K and such that the following Galerkin condition is

satisfied.

Af-3id | K (2)
In terms of projection operators, if Il represents the orthogonal projector onto the subsapce K, then

the above Galerkin condition (2) can be rewritten as

N(Ad-\di)=0 (3)

We will refer to (2) or (3) as the approximate problem. Assuming that we have an orthonormal
basis V = [vl,vz,..vm] of K we can solve the approximate problem (2) by expressing the
approximation i in the basis V as

i=Vy (4)

in which case X and y constitute an eigenpair of the m dimensional eigenproblem derived from (2):

B ,y=2\y (5)
with

_yH
B, =VHAV (6)

We will denote by A  the linear application of rank m, defined by A_=IIATl . Note that the
restriction of A to K is represented by the matrix B with respect to the basis V. An important
quantity for the convergence properties of the method is the distance ||(I-IT)u]| of the exact

eigenvector u, which is supposed of norm 1, from the subspace K. First it is clear that the




eigenvector u cannot be well approximated from K if ||(I-IT)u || is not small , because

|u-g[| 2> [|(I-TT)ul|
The fundamental distance ||(I-IT)u|| can also be interpreted as the sine of the acute angle between the
eigenvector u and the subspace of approximation. In [11] it was shown that if we consider the exact
eigenvector u as an approximate eigenvector of A then the corresponding residual vector satisfies

the inequality:
Ay - M) ull S (AE+ )2 M ull ™
where

v = || TA(L-T)]]

Note that 4 can be bounded by ||A||, and this indicates that we can obtain a good approximation
provided that the distance ||(I-IT)u]| is small. Among the methods which are of the type described
above let us mention the symmetric Lanczos method (see e.g. [7]) , some of the Subspace iteration

methods [7, 16], the method of Arnoldi [1, 11].

2.2. Oblique projection methods.

Several methods for large matrices can be interpreted in terms of oblique projection methods, or
Petrov-Galerkin methods. In these methods we are given a second subspace L which may be
different from K, and we seek an approximation i belonging to K and satisfting the Petrov Galerkin

condition:

Ad-\d | L (8)

The subsapce K is often referred to as the right subspace and L as the left subspace. In order to
interpret the above condition in terms of operators we require the oblique projector Q onto K and

orthogonal to L which is defined by:
Qx €K

x-Qx | L
Note that the vector Qx is uniquely defined only under the assumption that no vector of L is

orthogonal to K. It is easy to see that this fundamental assumption is equivalent to:




Assumption: For any two bases V and W of K and L respectively we have

Det( WHV ) £ 0 9
The projector Q is illustrated in figure (2-1).

We can rewrite equation (8) as

QAT-NT)=0 (10)
which again can be translated matricially by expressing the approximate eigenvector @ in an
appropriate basis of K. Assume that a basis V of K and a basis W of L can be found such that V
and W form a biorthogonal pair i.e. such that

VHw =1
where [ is the identity matrix. Then if we write U=Vy , the Petrov-Galerkin condition (8) gives the

same approximate problem as (5) except that the matrix B_ is this time defined by:
— wH
B, =W'AYV

We should however emphasize that in order for a biorthogonal pair V, W to exist we must make

the above assumption (9).
We can establish the following theorem which generalizes the result (7) of [11] .
Theorem 1: Let y=||Q(A-NI)(I-T1}||. Then the following two inequalities hold:
D) lAL-MMu|| < v (EMul| (11)
2)  NAL-MullSYPNE++4 ([T u]l (12)
Proof:
1) Since Iy belongs to K for any vector y, we have QII=II and
(Ap - M) TIu = Q(A-A)u
= Q(A-M)(Tu - u)

—= - Q(A-NYI-TT)u (13)

and since (I-II) is a projector

(A - M) Mu = - QUA-N)(I-TT).(I-)u



Figure 2-1: The oblique proj=ctor Q




Taking the Euclidean norms of both sides we immediately obtain the result (11)

- 2) We have
(A, - Nu= (A - N\)[Mu + (I-M)y]

= (A_ - M\)Tu + (A_ - N)--Mu
Noticing that A_(I-II)=0, this becomes:

(A - MN)u = (A - \)Tu -MI-T)u

Since the two terms of the right hand side are orthogonal we obtain

(A - XDull? = [I(A, - A)MTul? + [A(-TT)u]?
Using inequality (11) this immediatly gives the result (12). O

Note that (12) is a simple generalization of (7). In the case of orthogonal projection methods we
have ||Q||=1 and v may be bounded by ||A]|l. It may seem that since we obtain very similar error
bounds for both the orthogonal projection method and the oblique projection method we are likely to
get similar errors when we use the same subspace K. This is unfortunately not the case because
unlike in the orthogonal projection method, the scalar v can no longer be bounded by ||A]|, since we
have ||Q||>1 and ||Q|| is unknown in general. In fact the constant v might very well be a large
number even if A is a matrix with a moderate norm. Besides v we also have the difficulty that we do

not have any information about the conditioning of the approximate problem.

2.3. Application: orthogonal projection methods for symmetric problems

We will now restrict ourself to the case where an orthogonal; projection method is applied to a
symmetric problem and will establish a few consequences of theorem 1. First notice the important
fact that the first inequality can be matricially translated in the subspace K by expressing the vector
ITu and the operator A_ in a certain basis V:={vl,v2,..vm} of K. Assuming V is orthonormal let us

set TTu/|| ITu ||=Vy and define B_ as in (3). Then inequality (11) translates itself into:

(B -y [l <~ (-) u|/]| Mu || (14)
where B_ is the representation of the restriction of A  into K as defined by (8).

As mentioned above when A is unsymmetric and Q is oblique then we may encounter some



difficulties because we have little information on the conditioning of the approximate eigenvalue
problem and because the constant 4 may be large. However, in the symmetric case and when L=K,
* the situation is somehow simpler, and we are able to give more precise bounds. We would like to
apply the following well-known result , in conjunction with our result (11).
Theorem 2: Let B be any symmetric matriz, and y a vector of norm 1. Consider the
Rayleigh quotient p=(By,y) and let p be the norm of the residual vector associated with y,

i.e. p=|| (B-pl)y || Then there exists an eigenvaluce X\ of B with associated eigenvector i

such that:
lp-N|<o/6 (15)
sin[f(u,d)] < p /6 (16)

where § is the distance between p and o(B}{}} i.e.

§=min{ |p-X], N €0(B), N #£ ).

and 8(u,ii) denotes the acute angle between u and 1.

For the proof see e.g. [7] or [2]. The above fundamental result shows in particular the well known
fact that the error for the Rayleigh quotient as an eigenvalue is of order the square of the residua!l
norm. Our next objective is naturally to show that the Rayleigh quotient of ITu is not too different
from the exact eigenvalue A when ||(I-[T)u || is small.

Lemma 3: The Rayleigh quotient i of the vector Tlu, where u s the exact esgenvector of

A assoctated with \, 18 such that:
IN- Al < AN (-Da |12/ | Ta ] (17)
Proof: We have
(CA-XNDIT u, T W ((A-AD) (I-IMMu , (I-IDu)

(T u, T V) (T u, M)

Hence the result by use of the Cauchy Schwartz inequality. O

With the help of the above two results we can prove:



Theorem 4: Let \ be an eigenvalue of A, with associated eigenvector u of norm 1 and let

¢ = || (I-M)u ||/]| Mu ||

Then there ezxists an eigenvalue \o f the approzimate problem satis fying:

IN-X] < ré? (18)
in which r = ||A-M||+ (v/5F, with v defined in theorem 1 and where § is the distance
from p, the Rayleigh quotient of Tu, to the approzimate eigenvalues X’ ds fferent from \.

Proof: The result is a consequence of the triangle inequality

NN IN-pl+p-K
and lemma (3), theoerm (2) , and inequality (14). O

The above result expresses the error in the eigenvalue directly in terms of he distance between the
exact eigenvector u and the subspace of approximants and shows that this error is of order the square
of this distance. A somehow weaker but more general inequality can be derived from the well known
result [7]:

Lemma 5: Let B be any symmetric matriz, y a vector of norm 1 and \ any scalar. Let p

be the norm of the residual vector associated with y and X i.e.

r=|| (B-Al)y ||

Then there ezxists an esgenvalue A of B such that:

X=X <o (19)

This with inequality (11) immediately proves the theorem:
Theorem B8: Let \ be an eigenvalue of A. Then there exists an eigenvalue X of the

approzsmate problem such that :

IN-X] < e (20)

where 18 defined in theorem 1, and € is as in theorem 4.
Clearly inequality (20) is weaker than the previous result (18). It has, however, its own
importance. Most projection methods use a sequence a sequence of subspaces K for which it is
known that || (I-I1_)u|| converges to zero when m tends to infinity. Thus (20) proves the global

convergence of an approximate eigenvalue towards the exact eigenvalue \ in this situation. As an
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example for the symmetric Lanczos algorithm it is known that || (I-TI_)u|| converges to zero under
the assumption that the initial vector in the Lanczos algorithm is not deficient in the direction u , see
[12]. Therefore there will be at least one sequence of eigenvalues converging towards the exact
eigenvalue. Note however that in this particular case there are alternative a priori error bounds

which are more accurate, see [12]

We now turn to the problem of estimating the error in the eigenvector.
Theorem 7: Let u be a unit eigenvector of A and let 0(u,K) be the acute angle between u
and the subspace K, defined by

sin[f(u,K)] = || (I-Mu || (21)

Then there exists an esgenvector G of the approzimate problem such that

sin[ 0(u,3)] < V 1 + 2/d? sin[f(u,K)] (22)
where v defined in theorem 1 and where d s the distance between \ and the set of
approzimate eigenvalues other than A

Proof: This result was shown in [12] in the context of the Lanczos algorithm , i.e. K is a Krylov
subspace, see also [7] for an elegant presentation. It is transparent from the proofs presented there
that we do not make use at any time of the fact that the subspace of approximation is a Krylov

subspace. The result is therefore true for any orthogonal projection method. O

These results do not extend immediately to unsymmetric problems or to oblique projection
methods. The main reason is that we do not have at our disposal the powerful theorem 2. In a
recent article, Kahan, Parlett and Jiang have derived alternative error bounds genéralizing (2) but
using a residual norm of the right and the left approximate eigenvectors [4]. Their idea may be used
in our context and this remains to be done. Without the knowledge of the left eigenvector , the best
we can hope for is some partial information whereby the bound contains parameters from the
approximate problem which are not known a priori. As an example the inequality (20) becomes in

the unsymmetric case, assuming B_ diagonalizable [18]:

IN-X <A X (D]
where X is a matrix which diagonalizes B_. Clearly the global condition number || X || || X1l is

not known a priori. Note that even in the symmetric case many a priori error bounds use some a
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posteriori knowledge on the eigenvalues like for example the distance § in theorem (2). The result

(20) is an exception. Finally we mention that some analysis of the norm of the projector Q is

proposed in [14].

3. The subspace iteration for nonsymmetric eigenvalue problems.

In this class of methods the space of approximants is a subspace S spanned by a system S_ given
by S = A™ S, where S_ is some initial system of r linearly independent vectors. There are two
main versions of the method, both originally due to Bauer. The first uses two subspaces and is an
oblique projection method [3] known originally under the name of bi-iteration. The second uses one
subspace and is an orthogonal projection method, originally named treppeniteration. We will restrict
ourself to this second class of methods which require less work in general. An efficient way of
implementing the method has been presented by Stewart [16] and an analysis of the convergence was
made by Parlett and Poole [9], and by Stewart [16]. We would like to show how our results of

section 1 can be applied here.

We will denote by Il the orthogonal projector onto the subspace S and will assume that the

eigenvalues of A are labelled in decreasing order of magnitude and that [\ _ |<|\ | i.e.

r+1
N 22 gl 2N > Dyl 2 2 Ay
Again u; denotes an eigenvector of A of norm unity associated with X.. The spectral projector
associated with the invariant subspace corresponding to A;,..\ will be denoted by P. We can then
establish the following theorem concerning the distance ||(I-IT_)u;||
Theorem 8: Let S = {zI, z,.. z,} and assume that S, is such that the system of

vectors {P z, } is lincarly independent . Then for each u, i=1,2.r there ecists at

1=]1..r
least one vector s; in the subspace S =span{A™S } such that Ps; = u,. Moreover the

following inequality is satis fied:

ORI Jug 1< s T A ey /N + e )™ (23)
where ¢ tends to zero as m tends to in finity.

Proof: Let us write any vector s of S_ as

14
s=}.31 fjxj

Projecting this onto the invariant subspace associated with X,,..\_we get
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4
Ps =X €. Px.
j:l J ]
Since the ij’s are assumed linearly independent and since u; belongs to the invariant subspace

associated with \,.\ , there exists at least one vector s, such that Ps,.=u,. Then the vector s, is such

that

s,;=u,+w (24)
where w=(I-P)s,. Note that s, is not unique, since adding to s, any vector of the intersection of S
and (I-P)(’JN would still give a vector satifying the requirement Ps;=u,. Next consider the vector y

of S; defined by y=(1/ A\)™ A™s,. We have from (24) that
u -y =(1/3)" A"w (25)
Denoting by W the invariant subspace corresponding to the remaining eigenvalues X\ +l’")‘N , and

noticing that w belongs to W, we clearly have

-y = (1/3)" [Alw]m w
Hence
o=y S 1 Al w (26)
Since the eigenvalues of AIW are Xj with j>r, the spectral radius of X;l AIW is simply |\ +l/ A;| and
from a well known result [17] we have
I AW = [ Bga/M + e I° (27)
where ¢ tends to zero as m — oo. Using the fact that

G- [l = min { fls-w, [l s€ S, }
the inequality (26), and equality (27) yield the desired result (23). O

A few remarks are in order. First notice that we can take advantage of the nonuniqueness of the
vector s, to improve the bound (23) by replacing s; in the theorem by the vector §; satisfying Ps;=u,

for which the norm || 's; - u; || is minimum.

A second remark concerns the sequence ¢_ for which we can be more specific by using the more
precise bound for || B™ || given in [17]
I|B™ || < ap™ m™! (28)

where B is any matrix, p represents the spectral radius of B, 5 is the dimension of its largest Jordan
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block, and a is some constant sndependent of m. We may assume without loss of generality that
a>1 (otherwise we can consider the weaker bound obtained by replacing @ by a’=1). Thus in the
case where A is diagonalizable! we have =1, and after taking the m-th root of both sides of (28)
the above inequality (23) becomes simply

Il (I'nm)“i 1< al| U, - S; Il XH.[ / xil ™ (29)

In the diagonalizable case s, is a vector having the eigenexpansion

N
s;=uy + I '3

u.
jer+1 L

T .
and letting A= X Ej| the proof of theorem 8 cun be repeated to yield the inequality
j=r+1

Il (I-Hm)ui H< 8l xr...l / X;l )

In case A]W is not diagonalizable, then fron the result (28) we can majorize € as follows:

€, < I>‘i/)‘r+ll [al/"l mD/m ]

which tends to zero as m tends to infinity.

Finally we would like to interpret the assumption of the theorem. It can be easily shown that the

assumption that {Pxi} is a linearly independent system, is equivalent to the condition
H
det(U™ S ) # 0

in which U is any basis of the invariant subspace. Clearly this is a generalization of a similar

condition required for the convergence of the power method.

An experiment described in [11] indicated that even in the’ unsymmetric case the Chebyshev
polynomials can often be efficiently used to accelerate the convergence of the subspace iteration. Let
us assume that we can find an ellipse of center d and eccentrencity e which contains all the

eigenvalues of A except the r domiminant ones X ,,...\ , see figure 3-1

Then Rutishauser’s symmetric subspace iteration can be generalized to unsymmetric problems by

In fact we only need that the restriction of A to W defined in the above proof to be diagonalizable.




A Im(z)

< - ¥

P o —
—

Figure 3-1: Optimal ellipse for the unsymmetric subspace iteration
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simply replacing the subspace S_ by the richer subspace R | defined by

R _ = span{ C_(A)S, }
in which C m is the shifted Chebyshev polynomial

Cpl(z) = T,l(z-d)/e]

Assuming that A is diagonalizable then theorem 8 can be extended as follows.
Theorem 9: Let S| = {z,, z,.. .} be such that the vectors {Pz E J=1,.r} are linecarly

independent . Assume that the esgenvalues \ A, ;oA are contained in an ellipse E of

r+l’
center d, eccentricity ¢ and major semi azis a. Then for each u; s=1,2..r there ezists at

least one vector s, in the subspace R =span{C, (A)S} such that

N
s, =u + Emfj Y : (30)
N
Moreover letting f=1X | fjl , the following inequality is satisfied:
JFFr+l
T (afe)
(M) IS f ——— (31)
o IT L [(A-d)/e)l

Proof: The existence of s, defined by (30) can be proved in the same way as for theorem 8.

Proceeding as in the proof of theorem 8, consider the vector y of R defined by

y=(C_(A)/C_(N\)) s,
Then it is clear that

N
y-u, = (I/Cm(ki)) Fg_lcm(xj) )El o
Taking the norm of both sides we obtain the bound

Iy-u, 1l € /G001 T] 01 g (32)

N
<m C_(z)/C_(N\) Z €
< max C,0/CN) E g
where E is the ellipse containing the eigenvalues X\ +p-AN- It is easy to show that the above
maximum is achieved for m different points on the boundary of the ellipse including the point on the
major semi axis d+a. Replacing this in (32) the proof can be completed in the same way as for

theorem 8 O

Again as in theorem 8, because of the nonuniqueness of s;, the constant # can be replaced by the
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smallest possible 3:

— N N
f = min{ E | fj | ; all Ej such that ui+j23 t'juj €ER_}

jer+l =T+l

The above bound is a generalization of Rutishauser’s result. In the case where all eigenvalues of A
are real we can take for E the degenerate ellipse which has eccentricity e=d, i.e. E is the interval
[d-e,d+e] and a=e. In this case, assuming the eigenvalues are labelled in increasing order, the

numerator of (31) becomes one and the denominator can be written as:
T, (1+27,)
with

%= ) i)
This is precisely the result obtained by Rutishauser in the symmetric case, see [7]. Note that
generally the result is more difficult to interpret in the presence of complex eigenvalues . It can be
shown that the right hand side of (31) always tends to zero, see [19, 8]. When the ellipse is flat, i.e.
when the eigenvalues have small imaginary parts , then the convergence will be faster because 5/e is

closer to one. The ideal case is when al! eigenvalues are real.

4. Methods using Krylov subspaces.

There are several techniques which realize a projection method on Krylov subspaces of the form
K = span{vl,Avl,..Am'lvl}. Unlike in the subspace iteration method where the dimension of the
subspace of approximation is fixed during the iteration, here the dimension of K _ increases by one at

every step, i.e. dim( K_ )=m .

Among the methods which use Krylov subspaces, we mention the following:

o The symmetric Lanczos algorithm, see e.g. [7].

e The method of Arnoldi for unsymmetric systems, |1, 11].
e The unsymmetric Lanczos method [5, 8]

e The method of incomplete orthogonalization [11, 14].

The first two methods are orthogonal projection methods while the last two are oblique projection

methods.
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We now show a characteristic property for all techniques which realize an orthogonal projection
method onto the Krylov subspace K .
Theorem 10: Assume that an orthogonal projection technique s applied to A using the
subspace K and let p_(t) be the characteristic polynomial of the approzimate problem.

Then p, minimzes the norm || p(A) v, || over all monic polynomials p of degree m.

Proof: By Cayley Hamilton’s theorem, we have p_(A ) = 0 so that clearly

(P (A, V) =0 foranyvin K (33)
It can easily shown by induction that for k<m we have the property

(A kv, =T_Akv, (34)
Therefore (33) becomes

(0, (A, v)=0, VvinK
or
(P, (A, [1, v)=0, VvinK_
which is equivalent to
(P,(A)v,,v)=0 V vinK
Now writing p_(t) as p_(t) = t™ - q(t), where q is a polynomial of degree less than m, we obtain the
equality
(A™v, - g(A)v, ,v)=0 V vinK (35)
which is equivalent to
(A™v, - o(A)v, , Alv, ) =0 j=0,1,2...m-1

In the above system of equations we recognize the normal equations for minimizing the Euclidean

norm of A™v,-s(A)v, over all polynomials s of degree <m-1 and the result is proved. O

The above characteristic property was shown in the particular context of the Lanczos algorithm for
symmetric problems in [15]. What we have just shown is that it holds for any orthogonal projection
method onto a Krylov subspace K and that it is independent of the particular algorithm applied.
It indicates that the method can be regarded as an optimization process whereby we attempt to
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mininize some norm of the minimal polynomial of v,. Indeed under the assumption that the minimal
polynomial of v, is of degree at least m the || P(A) v, || can be regarded as a discrete norm on the set

of polynomials of degree not exceeding m-1.

Let us now consider the distance of a particular exact eigenvector u, from the subspace of
approximation K_. It is simplifying to assume that A is diagonalizable and to denote by ci(m), the

quantity

(m) — i A

€\ == min max

! PEPL, ) oAF{N) e}

where P | represents the set of all polyomials p of degree not exceeding m-1 such that p(ki)=l.

It can be easily shown that || (I-IT )u, || is related to egm) by the following inequality, see [11]

m

Mo 0l < 1wy 1)y )
where || x ||, is the norm defined as the sum of the absolute values of the components of x in the
eigenbasis, assuming the eigenvectors are all of norm unity. This means that we will obtain an

estimate for || (I-I1_)u, || from an estimate of egm).

Without loss of generality we assume that i=1. In [13] a result similar to the following one was
stated without proof:
Theorem 11: Let m<N. Then there exists m esgenvalues which can be numbered

) WIS ¥ Iauch that

IS
m+1 m+1 l)‘k - >‘ll

eW=[3 o - 17!
j=2 k=2 N, -\

|

A proof of this equality is proposed in the appendix.

Let us suppose that all of the eigenvalues except X, lie inside a certain cercle see figure (4-1).
Then as m increases c(lm) becomes rapidely smaller. This can be made clear by only considering the
product term in (11) associated with the eigenvalue nearest to X, called >‘j in figure (4-1). As is seen
in fig. (4-1), we will have in general [\, - A, | > I)«j - A | and therefore the product



Im (2)

P Re(z)

Figure 4-1: Illustration of theorem 11
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Hllkk - xi'

k=2 |\ -\
in (11) will be lIarge in general, thus showing that e(l"‘) will be a small quantity. Unfortunately we do

not known in general what the eigenvalues X,,.. A\ +1 are. The interesting indication provided by
the theorem is that the convergence of e(lm) towards zero is fastest when ), is the outest part of the

spectrum. We now propose a few illustrations.

Example 1. Assume that A, = (k-1)/(N-1), k=1,2,..N (Uniform distribution), and take m=N-1.
Then e{™=1/(2™ - 1)

Proof: Since m=N-1 there is no choice for the )\j’s but the remaining eigenvalues \,,..A\\. We

have from (11)

(1 = E‘ I |k-1|/[k-j
[61 ] j=2  k=2mm+1, k#j ' I/I Jl
m+1

- Z m!
j=._,] -1iﬂm+l-ﬂ!
() =2"-1

Example 2. Let again m=N-1 and assume the following distribution of the eigenvalues:
Xk=ei 20-1)7/N '} =12 N. Then f(lm) =1/m

Proof: Here we have

| wkll | Iwk-1|
k=2m+1, k5j |wk‘1-w3‘1| T keim kst |wk-wi|
= [wi-1 II ky wi-1 I |wkw
T S VR ST LD

I |wk-1 L. o ekl
(T w1] /[ T e ]

Recalling that the wK's are the powers of the N-th root of umity, a simple renumbering of the
products in the denominator of the above expression shows that this expression has modulus one.

Thus taking the sum over the m different eigenvalues yields the result O
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In [13] we have shown a number of ways of bounding a quantity similar to f(lm) which occurs when
solving a system of linear equations by projection methods onto Krylov subspaces. Similar results
hold for the dominant eigenvalue X, in the context of the eigenvalue problem. For example we have

Proposition 12: Assume that all the eigenvalues of A ezcept X 1 lie snside the cllipse

having center d, focis d+e,d-¢c and major sems azis a. Then

g < w9
Tt [(A-d)/e] |

where T | is the Chebyshev polynomial of degree m-1 of the first kind.

Note that afe is a real positive number although for generality e may be complex , in case the

main axis of the ellipse is not on the real line.
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5. APPENDIX: Proof of theorem 11.
In this appendix we propose a proof of theorem 11. We need the following lemma from
approximation theory, see [10].
Lemma 13: Let § be the best uniform approzimation of a function f by a set of n
polynomsials satisfying the Haar conditions, on a compact set o consisting of at least n+1

points. Then there ezists at least n+1 critical points A\ of o such that if we set
&(z)=f(z)4(z) we have

Bl = max o)
Consider

(n) — ; \
€} == min max
! { PEP,, X oAr{)} Ip(M)|

Clearly eg") represents the smallest possible uniform norm on the set o(A) of polynomials of the
form 1-(z-),)s(z) with s of degree not excceeding n-2. Otherwise stated this means that we seek for
the best approximation of the constant function unity over the set o{A) by polynomials of degree

<n-1 which are linear combinations of the polynomials w,,w,,..w Where

wlz)=(z-\) 2! (38)
Since the set of polynomials (36) verifies the Haar conditions, from the above lemma there exists at
least n+1 critical points, i.e. points where the maximum error is reached. We will denote by p(z) the

optimal polynomial 1-3.

We can easily prove

Lemma 14: Let )\, XS’""\n+2

solution to the system of equations:

be the n+1 critical points. Then there exists a nontrivial

1+2
Ez wj(ki)zi =0, j=1,2..n )
Proof.This is a system of n equations with n+1 unknowns. Because of the Haar conditions when

we :solate one unknown, e.g. the last one, then the n by n resulting system is nonsingular O

Lemma 15: Let 2, j=2,..n+2 a certain solution of the system (37) and let us write

zk=6kc"'k, where §, 18 real positive. Then the best approzimation polynomsal p is :
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43 a+3
=\ i0 if
B =E e 1)/ £ el (38)
where 1,(z) is the Lagrange polynomial of degrec n at the points Aphg. N, o taking the
value one at \.:
z-X

()= M —
k(Z) j=2m+2, ,ﬂ Xk - XJ

Proof: Because of (37) for any v belonging to the space of polynomials Q =span{w,,.w } we

have:

2+3 .
T 6 ev(d,)=0 39
D 4 eTividy) (39)

Let p be defined by (38). We have to show that

Ne+vll,2pll, foranyvinQ, (40)

where ||.||_ represents the uniform norm on the set 0. Let us set

p=IE ehi ) (41)

Notice that |p| is precisely the uniform norm of p in 0. From (39) it is clear that for some k’ we have

Re [p ek v(A,)] >0

Therefore

15 +vI2= max { 5+ 2 B0 + 0 )P
= [B\) + )1 = lp €'x + V(AP

= [pl? + M) + 2 Re {pe e v(A )} 2 |of?

which shows that (40) is true and completes the proof of the lemma O

Proof of theorem 11. The system (37) can be solved by using Cramer’s rule and some

Vandermonde determinant equalities. Doing this it is possible to show that one particular solution of

(37) is z, = 1,(X,), k==2,.0+2. Hence

elfx = E()‘l) /1 lk(xl) |

replacing this in the expression (41) gives the desired result O
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