Incremental Computation via

Partial Evaluation

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
‘in Candidacy for the Degree of
Doctor of Philosophy

by

Raman Srinivas Sundaresh

May 1992

Abstract

Incremental Computation via

Partial Evaluation

Raman Srinivas Sundaresh
Yale University
1992

Incremental programs — programs which do not recompute their answer from
scratch when the input changes slightly — are an important component of a
modern programming environment. There has been considerable research into
building incremental programs for important problems (e.g. data flow analysis).
As programming environments grow in size and complexity, there is a need for a
general framework to build incremental programs. Other researchers have recog-
nized this need and constructed frameworks based on function caching, attribute
grammars etc. We present a framework based on partial evaluation.

We show a relationship between incremental programs and partial evaluation.
The theoretical foundations of this framework are explored. The basis of our
approach is the operation of combining residual functions (the results of partial
evaluation). The algebraic properties of such an operator are identified. We
then present an implementation based on the partial evaluator Schism. The
implementation is presented by means of a series of examples with performance

results.

Contents

Acknowledgements

1 Introduction
Il Overview. o i
1.2 Partial Evaluation
1.3 Example
1.4 Incremental Computation
1.5 Other Applications of Partial Evaluation
1.6 Related Work in Incremental Computation
1.T. Outline.

Incremental Computation and Partial Evaluation

2.1 Partial Evaluation

Algebraic Properties of Residual Functions

3.1 Projection Algebras,
3.1.1 Projection Domains.
3.1.2 Properties of D L s
3.1.3 Algebraic Properties of D POAD .

3.2 Residual Function Algebras

Combining Residual Functions

12

13
14
16

19
20
20
25
29
31

34

CONTENTS i

4.1 Binding timeanalysiso L. 35
4.2 Algorithm for Least Upper Bound of Residual Expressions 37
4.3 Proofs of Correctness and Efficiency 40
4.3.1 A Two-Level First Order Language 43
43.2 The LUB Algorithm 43
4.3.3 Proof of Correctness 45
4.3.4 A Two-Level Higher Order Language 52
4.3.5 Proof of Correctness 52

5 Applications 58
5.1 Schism e 58
52 AnOverviewof Haskell. 61
5.3 Compiled Incremental Programs 64
54 Data Flow Analysis 67
5.4.1 Comparison with known algorithms 73
54.2 Performance. 74

5.5 Attribute Evaluation 75
5.5.1 Comparison with known algorithms 84
55.2 Performance. 84

5.6 Strictness Analysis oL 86
5.6.1 Performance. 89

5.7 Typelnference 90
57.1 Performance. 93

58 Conclusions e 93
6 Conclusions and Future Work 96
6.1 Conclusions 96
6.2 Future Work 97

A Code for Algorithm LUB 107

Acknowledgements

I would like to thank my advisor Paul Hudak for his support and encouragement
throughout my graduate student years. His insight and guidance have been
invaluable.

Thanks are also due to my readers: Olivier Danvy and Marina Chen, for their
meticulous reading and thoughtful suggestions. Charles Consel introduced me to
partial evaluation and provided me with his partial evaluator Schism.

My friends at the Yale Computer Science Department made my years at Yale
a little more bearable. They are too numerous to name, but they know who
they are. Kannan Parthasarathy and Abhay Deshpande helped me spend many
enjoyable hours outside of Yale.

None of this would have been possible without the help of my family: My
mother, father, my sister Suchitra and my wife Aparna.

Finally I would like to thank my old friends G. Ramalingam and S. Narayan.
They helped me pull through when the going got tough.

This research was supported in part by grant DCR-8451415 from the National

Science Foundation and an IBM graduate fellowship.

Chapter 1

Introduction

1.1 Overview

It is a common occurrence in a programming environment to apply a software
tool to a series of similar inputs. Examples include compilers, interpreters, text
formatters, etc., whose inputs are usually incrementally modified text files. Thus
programming environment researchers have recognized the importance of build-
ing incremental versions of these tools — i.e. ones which can efficiently update
the result of a computation when the input changes only slightly.

There seems to be some consensus tha.t. incremental algorithms are hard to
derive, debug and maintain [Pug88, YS91, FT90], and as we attempt to create
incremental programs for larger tasks, this problem will only get worse. Thus
there is an increasing need for a framework for incremental computation which
will facilitate the construction of incremental programs. We have developed
such a framework based on partial evaluation (a.k.a. program specialization).
Partial evaluation is a general program transformation technique used to produce
specialized versions of programs when given some of the program’s inputs. We
describe an incremental program as a combination of a non-incremental program
and a partition of the input data structure. Then we describe a methodology

to generate an incremental program from this description. Thus an important

Chapter 1. Introduction 3

design step in this process is to determine a partition of the input domain. This
controls both the “granularity” of the incrementality as well as overall efficiency.
We also provide a formal algebraic basis for reasoning about the correctness of
the incremental programs thus generated. The framework relies partially on
the notion of a Brouwerian algebra. Finally we describe an implementation of
this framework incorporating methods to overcome the overhead of “incremental
interpretation,” and generate “compiled” incremental programs using Futamura
projections.

This chapter describes the concept of partial evaluation, briefly discusses its
connection with incremental computation, discusses related work and outlines

the rest of the thesis.

1.2 Partial Evaluation

Consider a program which accepts many inputs. If this program is used re-
peatedly with one of the inputs set to a fixed value, then it is advantageous to
precompute a “specialized” program — one in which computations depending on
the fixed input are carried out ahead of time. The goal of partial evaluation is
to produce (automatically) such a specialized program.

Many applications are more naturally expressed in an “interpretive” style —
one where all the arguments are presented at the same time. While this results
in clearer programs, efficiency is sacrificed because many more computations
are performed at run time. Partial evaluation attempts to present us with the
best of both worlds: we retain clarity and maintainability by writing highly
parametrized programs, and obtain efficiency by automatically specializing these
programs using known inputs. The result of partial evaluation is called a residual
program. The arguments supplied ahead of time are referred to as static. The
arguments supplied at run time are referred to as dynamic.

The correctness criterion for a partial evaluator is a simple one: the result of

running the program when given all its inputs must be the same as running the

Chapter 1. Introduction 4

residual program on the dynamic input. We call a program representing function
f as f. The partial evaluator will be called PE. So the correctness criterion can

be stated as:
prog’ y = prog z y where prog’ = PE prog z

The earliest use of the term “partial evaluation” was in a paper by Lombardi
and Raphael [LR64]. Since then there has been a great deal of activity in the
- area. For a good survey of the field, see [JSS89]. Because of the general nature
of partial evaluation, applications have been found in diverse fields, ranging from
artificial intelligence to computer graphics. One of the more interesting applica-
tions of partial evaluation was put forth by Futamura [Fut71] when he suggested
a method of deriving compilers from interpreters. Consider an interpreter int
for a language L. Assume that int is written in language M. Furthermore, let
PE be a partial evaluator for programs in language M. Then, consider the first

Futamura projection:
obj = PE int prog

where prog is a program written in L. By the correctness criterion for partial

evaluation,
obj data = int prog data

This can be interpreted as saying that obj is a “compiled” version of prog.
Consider the second Futamura projection: (note that this requires that the partial

evaluator be written in the same language that it specializes)

Again, the correctness criterion for partial evaluation states:

comp prog = PE& int prog = obj

Chapter 1. Introduction 5

This can be interpreted as saying that comp is compiler from language L to

language M. The third Futamura projection states:
cocom = PE PE PE
Again, the correctness criterion for partial evaluation states:

cocom int = PE P& int = comp

This can be interpreted as saying that cocom is a compiler generator for inter-
preters written in language M generating compilers which compile into language
M. Note that we have not touched upon the topic of implementation of partial
evaluation. The techniques necessary to achieve the Futamura projections are

non trivial and were first discovered by Neil Jones and his associates at DIKU

[J5S89).

1.3 Example

In this section we explain some of the techniques used to implement self-applicable
partial evaluation (i.e. partial evaluators capable of carrying out the Futamura
projections by means of an example. Partial evaluators are usually split into two
stages: a preprocessing stage where program transformation decisions are made
for each subexpression in the program and a specialization stage where these
transformations are actually carried out. Just what are these transformations?

The basic techniques of partial evaluation for a functional language are:

o Symbolic Computation: manipulating symbolic expressions even if all the

subcomponents are not static.

e Function Call Unfolding: replacing a call to a function by its body with

arguments substituted.

¢ Function Specialization: replacing a function with a version specialized on

some arguments.

Chapter 1. Introduction 6

We use the example of Ackerman’s function to illustrate these techniques:

ack m n = if (m == 0)
then n+1
else if (n == 0)
then ack (m-1) 1
else ack (m-1) (ack m (n-1))

If we partially evaluate ack with m static (equal to 2) and n as dynamic, then

we obtain the following:

ack2 n = if (n == 0)

then 3

else ackl (ack2 (n-1))
ackl n = if (n == 0)

then 2

else ack0 (ackl (n-1))
ack0O n = n+1

Each one of the bodies is obtained by simplifying the right hand side with the
static value of m (namely 2, 1 and 0). Simplifications are performed at each stage.
These are either symbolic computations (e.g. reducing conditional statements)

or function unfolding. Specialization is used to produce ack2, ackl and ackO.

1.4 Incremental Computation

Lombardi and Raphael’s pioneering paper [LR64] coined the term “partial eval-
uation” for the purpose of “incremental computation.” However, their notion of
incremental computation was to monotonically add information about the input
| to a function, and to do as much computation as possible at each step. Our defi-
nition of incremental computation (and what is generally understood by the term -
today) is more general than this in that changes to the input need not always be

in the form of adding information — information can change non-monotonically.

Chapter 1. Introduction 7

Also, the partial evaluation referred to by Lombardi and Raphael was restricted
to intra-procedural constant propagation.
Consider the simple example of the exponentiation function:
power x n = if (n == 0)
then 1
else if (even? n)

then (power x (n/2)) ** 2
else x * (power x (n-1))

We examine the efficient recomputation of this function as x and n change.
First let us assume that n remains fixed (say 3) and that x varies. What sort of
information would we like like to store so as not to redo the computations which
depend only on n? We suggest that this information take the form of a residual
function — the result of partial evaluation. Specifically, consider the result of

specializing power with x as unknown and n as known (equal to 3):

power3 x = x * ((x * 1) %% 2

Now if the value of x varies, we can recompute power by simply applying
the residual function to the new value of x. This saves the computation which
depends only on the value of n. Similarly we can compute another residual
function to handle the case of x being fixed (equal to 5) and n varying.
power5 n = if (n == 0)

then 1
else if (even? n)

then (power5 (n/2)) *x 2
else 5 * (power5 (n-1))

Note that there may be more efficient ways of carrying out the incremental com-
putation in this case. These would take advantage of the following property of

power:

(power x n) * (power x m) = power x (m+n)

Chapter 1. Introduction 8

We do not make use of this, but rather we concentrate on saving those compu-
tations in the function which depend only on the unchanged portion. In this
example, obtaining the answer from the residual function was easy; one simply
needed to apply the residual function to the changed argument. But consider the

following function:
f xnym= (power x n) + (power y m)

In this case we would have four different residual functions, one for each argument
being known and all the others being unknown. How do we synthesize the answer
from four different residuals? This is one of the important questions that this

thesis will address.

1.5 Other Applications of Partial Evaluation

Partial Evaluation is a general program specialization technique which has found
application in a variety of areas. To give some idea of the generality of the con-
cept, we describe some of these applications. We have already looked at partial
evaluation as applied to compiler generation [Fut71]. This area has received a
great deal of attention [JSS89]. The DIKU group, led by Neil Jones, was the
first group to be achieve the Futamura projections. They worked with a purely
functional subset of Lisp, and were able to transform interpreters into compilers
for a number of small example languages. The compiled code produced good
speedup (5 to 20) over the interpreted code.

Partial evaluation had been used in specific applications such as theorem
proving as early as in 1975 [BM75]. One of the early attempts to provide a
general purpose partial evaluator was by a team from Linképing University who
built a partial evaluator for Lisp [BHOS76]. This partial evaluator utilized simple
on the fly techniques, and did not use any static program analysis. Consequently

it was not self-applicable.

Chapter 1. Introduction 9

Emanuelson and Haraldsson used partial evaluation to compile extensions to
Lisp [EH80]. The method used was to construct an interpreter for the extensions
and then specialize programs in the extended language. The paper details an ex-
periment carried out in adding pattern matching to Lisp. Their results compared
favorably with those of a commercial compiler.

Mogensen [Mog86] describes the use of partial evaluation in optimizing ray-
tracing programs. A raytracer takes two arguments: a scene description and a
viewpoint. The output of the raytracer is a picture of the scene as it appears from
the desired viewpoint. Specializing the ray tracer with respect to a given scene
produces a specialized ray tracer which (relatively) inexpensively computes the
picture of a given scene from various viewpoints. Interestingly, Mogensen found
that speedups were produced even if only one view was necessary. The reason
for this is that in the original ray tracer, the same scene is examined many times,
entailing repeated computations. This does not occur in the specialized version.

Consel and Danvy [CD89] describe an experiment where a naive (but easy to
understand) pattern matcher is specialized with a fixed text string. They show
how to make this specialization process achieve the automatic generation of the

Knuth-Morris-Pratt algorithm.

1.6 Related Work in Incremental Computation

Readers familiar with the literature of partial evaluation will recall Lombardi and
Raphael’s pioneering paper [LR64], which coined the term “partial evaluation”
in the context of doing “incremental computation.” However, their notion of
incremental computation was to monotonically add information about the input
to a function, and to do as much computation as possible at each step. This is
achieved by computing a series of residual functions each of which is the result of
partially evaluating the previous one with the additional input. Our definition of
incremental computation (and what is generally understood by the term today)

is more general than this in that changes to the input need not always be in the

Chapter 1. Introduction 10

form of adding information — information can change non-monotonically. Thus
our work can be seen as a generalization of the work which originally introduced
partial evaluation.

Modern programming environments incorporate incremental techniques in
many different components. An important incremental activity is the program-
ming activity itself. Frequently programs are modified many times before the
program is deemed correct. Thus compilers are frequently presented with a
series of closely related inputs. The most well known example of this is the
Cornell Synthesizer Generator [Rep84, RTD83], which incorporates a general
attribute reevaluation algorithm to incrementally reattribute a modified parse
tree. Another compiler related area is data flow analysis, a task for which
many incremental algorithms have been developed (e.g. [MR90]). This area
has given rise to many general approaches to the incremental computation prob-
lem [Ryd82, RC86, RP86]. Other compiler related areas are incremental parser
generation [HKRA9].

Spreadsheets have also made use of incremental evaluation to take advantage
of the common pattern of usage — compute answer, change constraints, compute
answer, change constraints Other areas where there has been work done in
designing incremental programs includes: document formatting [Bro88], graphic
editing [Ase87, Nel85]. In each of these areas, the output is a visual object
while the input is a instruction sequence. Every time the instruction sequence
is modified, the output needs to be recomputed. There has been work done on
general systems — ones which are not dedicated to a single task. The Cornell
Synthesizer Generator is one of these. The VisiProg environment [HW88] also
provides incrementality. Constraint languages [Lel88] where constraints can be
retracted face the same problem.

Considerable work has gone into building incremental programs using the de-
pendency graph approach. Here nodes represent computations and directed edges
represent dependencies between the computations. The goal of the incremental

evaluator here is to reevaluate the smallest number of nodes possible when the

Chapter 1. Introduction 11

input changes [AI—fR+90]. The emphasis here is on very efficient and accurate
change propagation, not on reusing the computations within a node. [Pug88] has
pointed out certain restrictions imposed by this approach — the framework is not
expressive enough to handle problems whose solution requires more than linear
time.

In [Pai86, PK82] an approach to building incremental programs caﬂed finite
differencing is presented. This approach has its origins in the compiler optimiza-
tion technique of strength reduction. Under this framework a function is made
incremental by applying a series of transformations chosen from a prescribed set.
The transformations can be linked together using the chain rule.

[HT86b] describes extensions to the Cornell Synthesizer which enable the
incremental updating of relational database views. This is important since many
programming environment tasks can make profitable use of a relational database.
Another extension to the Cornell Synthesizer Generator is the work described in
[HT86a], where the aggregate update problem is tackled. The aggregate update
problem occurs when a small change to an aggregate data structure causes an
unnecessarily large amount of recomputation.

Yellin and Strom [YS91] describe a restricted functional language for incre-
mental computation. The main data structure in the language is a bag. Programs
written in the language make use of certain combining forms which are guaran-
teed to have efficient incremental performance. The emphasis in this work has
been to design efficient incremental algorithms for the various operations in the
language. These algorithms are expressed in the form of compile time trans-
formations. The framework incorporates techniques to evaluate the incremental
complezity of programs.

Pugh [Pug88] tackles the problem of caching results of function calls to achieve
incrementality. The scheme depends crucially on clever run-time support. Pro-
grams are written using stable decompositions [Pug88] of data structures to obtain
good performance. To this end [Pug88] presents techniques for representing sets

and sequences in an applicative manner and also presents techniques to efficiently

Chapter 1. Introduction 12

update and test for equality.

In [FT90] Field and Teitelbaum construct an incremental evaluator for the
A-calculus. It keeps track of exactly which reductions did not depend on the
part of the A-term which changed. For this purpose the parts of the term which
can change are marked. A notion of overlapping reductions on similar terms is
defined. This enables [FT90] to present an optimality criterion: The incremental

evaluator is guaranteed to perform non-overlapping reductions.

1.7 Outline

o Chapter 2 describes the notation for partial evaluation which will be used
in the rest of the thesis and introduces the relationship between incremental

computation and partial evaluation.

e Chapter 3 presents the formal basis for our framework by describing inter-
esting algebraic properties of residual functions. This makes the framework

described in Chapter 2 more precise.

o Chapter 4 presents algorithms for combining residual functions. This forms
the computational core of the framework. The correctness and efficiency of

these algorithms are also discussed.

o Chapter 5 describes the implementation by means of examples. Perfor-

mance results for these examples are also presented.

o Chapter 6: Conclusions, Related work and Future Work.

Chapter 2

Incremental Computation and

Partial Evaluation

This chapter describes the relationship between incremental computation and
partial evaluation. This relationship forms the basis of our framework. In the
process of presenting this relationship we raise a number of questions. The an-
swers to these questions form the subject matter of later chapters. First we
introduce the formal notation for partial evaluation which we will be using in
this thesis. This framework was introduced by John Launchbury [Lau88)]. In this
framework projections are used to represent partially static data.

After having introduced the formal framework for partial evaluation, we
present an overview of our methodology to build incremental programs. First
this is done informally, then we formalize the framework in the form of an In-
cremental Interpreter. This interpreter takes specially crafted non incremental
programs, information about how to make them incremental, and runs these pro-
grams incrementally. The additional information is in the form of a partition of

the input data structure.

13

Chapter 2. Incremental Computation and Partial Evaluation 14

2.1 Partial Evaluation

Following Launchbury [Lau88], we give a precise definition of partial evaluation
using projections.

For purposes of generality, all functions are assumed to take just one argu-
ment. For first order functions which take more than one argument, this condition
can be satisfied by simply tupling the arguments together. Projections are then

used to capture the information about the static portion of the argument.

Definition 2.1.1 A projection on a domain D is a continuous mapping p
D — D such that:

e p C ID (no information addition)
e pop=p (idempotence)

Note that ID (the identity function) is the greatest projection and ABSENT
(the constant function with value L) the least (under the standard information
ordering on functions). The first condition in the above definition simply states
that projections always remove information from their argument. In our context
this is interpreted as saying that projections remove the dynamic parts of their
arguments and leave behind the static parts. The second condition states that
the projection removes all the dynamic information in a single application to
its argument. Projections are a special case of a more general class of functions
called retractions, which are simply continuous idempotent functions. Projections

have been also been used to carry out backwards strictness analysis of functional
programs [Hug88, HWS87].

Definition 2.1.2 Ifp and g are projections and pU g = ID, then q is a comple-
ment of p.

Note that by the above definition the complement of a projection may not

be unique (for example, ID is a complement of every projection). We tighten

Chapter 2. Incremental Computation and Partial Evaluation 15

this definition in Chapter 3 to achieve uniqueness by choosing the “least” of
these projections. Indeed, a major goal of that chapter is to define domains of
projections where such a construction always exists. We write p to denote the
unique (to be defined later) complement of p. Intuitively projection complements
represent the dynamic information which a residual function needs at run time.
In [Lau90] Launchbury has extended this framework by showing how the type of
the residual function depends on the static value used to produce it. Using the
notion of dependent sum and dependent product domain constructions, he shows
how the residual function can be made to take as little information as possible.

We now define partial evaluation in terms of projections:

Definition 2.1.3 A partial evaluator P& is a function which takes representa-
tions of a function f, a projection p, and a value a, and produces a representation

of the residual function, f,,, defined as follows:

PEfpa = fr
such that
fpaﬁa= fa

This can be seen extensionally as a restatement of Kleene’s S theorem from

recursive function theory.

When there is no ambiguity we use r, to denote PE f p a. ID is the identity
projection (function). ABSENT is the projection which removes all information.
Given this notation, note that r;p = f a and rspsent = f.

Although the partial evaluator really takes representations of its arguments
and not actual values, hereafter we treat it as taking values as arguments (primar-
ily to avoid having to propagate underlinings). On the other hand, the algorithm
for “combining” residual functions in Subsection 5 depends crucially on manip-

ulating the representations.

Chapter 2. Incremental Computation and Partial Evaluation 16

—ry
=]
=)

> Result
d|c
f m > Result’

(=7
(g}

Figure 2.1: Incremental computation

2.2 Incremental Computation

Returning now to the problem of incremental computation, we can summarize
the situation as in Figure 2.1. Here the function f (which may be a compiler,
text formatter, etc.) is being applied to a structured argument to give the result.
If only part of the argument changes, such as part b, we would like to compute
the new result without having to redo the entire computation; in other words,
we would like to avoid having f reprocess parts a, ¢, and d.

Now, here’s the connection to partial evaluation, and the basis of our frame-
work: The partitioning of the input domain can be described using a set of
projections as defined in the previous section; let’s call them p., ps, pc, and pg
for the example in Figure 2.1. If we then compute the residual functions r,,, 7p,,
Tpes and 7p,, we have essentially “cached” those portions of the computation that
depend only on parts a, b, ¢, and d of the input, respectively.

Recalling that r;p = apply f a, all we need now to compute the final result is
a (presumably efficient) way to construct r;p from the set of residual functions
— for now, let’s assume that such a technique exists. If part of the input were to
change, say b changes to b’, then all we have to do is recompute rp,; computation
of ryp then takes place with this new residual function in place.

An alternative way to describe this process is as follows: At the point when
b changes to b’, suppose we had by some means already computed rz; — then

all we need to do to compute the new result is to apply rs; to b’. We can thus

Chapter 2. Incremental Computation and Partial Evaluation 17

‘view the problem as an attempt to find (at least a conservative approximation
to) ry by combining existing residual functions.

To summarize: all incremental methods maintain some form of auxiliary in-
formation. This auxiliary information represents the results of subcomputations
of the original program. We propose that this auxiliary information be stored in
the form of the results of partial evaluation: residual functions. We have raised
many questions, which we frame after defining the approach more formally. First

we formalize the notion of a partition as a set of projections:

Definition 2.2.1 A partition P of a domain D is a set of projections {p;} on
D such that U{p;} = ID.

Given this definition of a partition, we can capture all the information needed

to specify an incremental program.

Definition 2.2.2 An incremental program specification is a pair (f, P) where

f:D — & is the function to be incrementalized and P is a partition of D.

Note that the program to be incrementalized may need to be specially crafted
in certain ways. This is the topic of discussion in the chapter on applications.
Now we are ready to formalize the intuitive description of our methodology. We
do this in the form of an “incremental interpreter,” denoted Z. Z has function-
ality:

I:(f,P) - ao — (bo,61,...) — {bo,b1,...)

(f, P) is the incremental program specification, and ag is the initial argument.
The §s are functions capturing “small” changes to the input, and the bs are the
successive output results.

The main purpose of 7 is to maintain the invariant: r,, = PE f p; a for all

p; € P, and in so doing satisfies the following correctness criterion:

b; = f a; where a; = 6;_1 a;_1

Chapter 2. Incremental Computation and Partial Evaluation 18

We now give a high level description of Z. Note that some of the parts of 7
have been left unspecified.
Algorithm I:

o Setup: Compute r,, = PE f p; a for each p; in the partition P.

¢ Reestablish: If a changes to o’ (= § a), recompute all r,, for which p; a #

/

pia.

o Combine: The new result rjp is obtained from {r,,} using appropriate

combining operations.

We have so far made many assumptions that require fleshing out. In partic-

ular:

1. How do we combine residual functions to get “larger” ones? Does the
construction even exist? If so, is it unique? What are the formal properties

of such a construction? This is the subject matter of Chapter 3.

2. Assuming that the construction to combine residual functions exists, can
we design correct and efficient algorithms to actually carry out the com-
bination. In particular, the efficiency requirement is crucial - we must
make sure that in combining two residual functions we do not redo the
computations done in either one of them. This is crucial for incremental

performance in the system. Chapter 4 discusses this issue.

3. What is the basis for choosing a good partition of the input domain? If
it is too coarse, even small changes trigger massive recomputation; if too
fine, the “stored” residual functions each capture very little computation
and excessive work will be done in the combining phase. We examine this

in Chapter 5 by means of examples.

Chapter 3

Algebraic Properties of Residual

Functions

In this chapter we address the first of the questions we asked at the end of the
last chapter: How do we combine residual functions to get “larger” ones? Does
the construction even exist? If so, is it unique? What are the formal properties
of such a construction? We can rephrase the question as follows: What are the
properties of the combining operator which given r, and r, produces rp,,?

To answer this question we first examine the domains of projections we will
be using. The aim of this to make sure that these domains contain suitable
well-defined combining operators. To do this we consider various domains of
projections, finally choosing one based on the intuition that we need projections
which depend only on the structure of their arguments and not on the actual
values of the subcomponents. Having chosen this domain we investigate alge-
braic properties of projections belonging to the domain. Then we see how partial
evaluation induces the same properties in the domain of residual functions cor-

responding (via partial evaluation) to this (chosen) domain of projections.

19

Chapter 3. Algebraic Properties of Residual Functions 20

3.1 Projection Algebras

To construct domains of projections, we must first define the underlying domain
of objects under consideration. We begin with a set of domains and domain for-
mers that are adequate in capturing most of the domains found in conventional

programming languages.

t := 1(the unit domain), Nat,... base domains
| = type parameter
| 1+t separated sum
| t1 Xt » non-strict product
| pm.t recursive domain

The structure described above can be easily generalized to more than one type
parameter. In what follows we assume that standard domains such as lists, pairs,
and natural numbers have been pre-defined, and we use conventional notation
(Nil, Cons, 1, 2 etc.) when referring to elements of the domains. For example,

polymorphic lists and pairs can be defined by:

List(’rl) = UTo. 1+ (Tl X'Tz)

Pair(m,72) =11 X T2

3.1.1 Projection Domains

Consider a domain of projections [Lau90] under the standard information order-
ing of functions — this domain is not closed with respect to greatest lower bound.
This is because p; M p; = Az. (p1z) M (p2z) is not necessarily idempotent, and
therefore may not be a projection. A simple example should convince the reader

of this:

Example 3.1.1 Consider projections on the domain of pairs of natural numbers.

Let p; and p, be defined as follows:

b (:c,y) = if z =2 then (L,y) else (z,y)

Chapter 3. Algebraic Properties of Residual Functions 21

p2 (z,y) = if £ =L then (z,1) else (z,y)

Let p be Az.(p1z) M (p2z). It is easy to verify that p (2,3) = (L,3) which is not
the same as pop (2,3) = (L,L). Thus p is not idempotent, and is therefore not

a projection.

This problem arises because the domain of all projections is too large. We are
interested (for purposes of partial evaluation) in projections which only depend
on the structure of the object they are manipulating and not on the wvalues of
its components. Launchbury [Lau88] describes a smaller (finite) domain of pro-
jections, but his domain does not serve our purpose because it does not contain
useful projections such as the following one on the domain of lists:

p Nil = Nil
p (Cons z zs) = Cons L zs

Here is a first attempt at constructing a domain of projections small enough

to possess properties of interest to us yet large enough to contain examples such

as the one above.

Definition 3.1.1 A polymorphic projection on a domain F(7) is a collection of
instances fa : F(A) — F(A), such that for any strict function o : A — B, the
diagram in Figure 3.1 commutes; i.e. fg omapF(a) = mapF(a)o fa. By mapF

we mean the appropriate map function for the datatype F.

Example 3.1.2 Define two projections over the domain of pairs:
p(L,0)=(L,1),
p (a,b) = (a,d);

LEFT (z,y) = (z,L1).
p is not polymorphic (as can be seen from the fact that the diagram in Figure 3.2
does not commute) , but LEFT is.

Chapter 3. Algebraic Properties of Residual Functions

s
F(A) >F (A)
mapF (o) ‘ mapF (o)
Y Y
F(B) >F(B)
f
B

Figure 3.1: Polymorphic projections

23) 5 ~(2,3)
mapPair(g) l mapPair(g)
(L3)
(L,3)— (L 1) ?
P

Figure 3.2: p is not polymorphic, g n = if (n==2) then L else n

22

Chapter 3. Algebraic Properties of Residual Functions 23

Example 3.1.3 Consider the domain of lists defined earlier. Projections which
can be formed using ID, ABSENT, PCons and PMap (defined below) are

polymorphic:

IDz = =z

ABSENT z = L

(PCons p q) Nil = Nil

(PCons p q) (Cons z zs) = Cons (p z) (g zs)
(PMap p) Nil = Nil

(PMap p) (Cons z zs) = Cons (p z) (PMap p) zs)

The first argument to PCons is a projection on the domain of the list element (for
our purposes either ID or ABSENT). The second argument is a polymorphic
projection on lists. Thus PCons constructs new polymorphic projections from
known ones. Polymorphic projections are ezactly those projections which can
differentiate only between elements of different “structure”, and not the values

that make up the structure.

Unfortunately, the domain of polymorphic projections does not exactly cap-
ture the intuition of depending only on the structure of the input. Consider:
g Nil = Nil,
g (Consz L)= Cons L L,
gz==z

g is a polymorphic projection (as can be seen by observing that there is no o
in the definition of polymorphic projections which can cause the diagram not to
commute) but still depends on the values of subcomponents of its input (in this
case L as the tail).

To eliminate projections such as g, we take a completely different approach
to defining the projection domain, building it constructively rather than placing

constraints on the full function space:

Chapter 3. Algebraic Properties of Residual Functions 24

P(d) = {IDy, ABSENT;} (dis a base domain)
P(r) = {ID,, ABSENT,}
P(di+ds) = {pi+p2|p €P(dr), p2 € P(de) }
P(dixda) = {p1xp2|p €Pld1),p2 €Pldo) }
P (pr.T(r)) = PT(pr.T(r)))U{ ABSENT,r 1(+) }

P maps from domains to domains. Any domain that is constructed using P,
starting with base domains d, is a valid projection domain. The subscript to ID
or ABSENT refers to the domain of definition. + and X are defined for functions
as follows: (f x g)(a,b) =(f a,gb)and (f+9)L =L, (f+g)inla)=1inl(f a),
(f + g)(inr b) = inr(g b). Note the case of the recursive domain where the
ABSENT projection can be invoked (say) on any tail of the list. In general, this
allows us to treat different levels of a list differently.

We have discussed the case of first order languages. We do not know of any
extension of Launchbury’s work to higher order languages.

We use D Z% D to denote the domain defined above (using P), under the
standard information ordering. In the next section we show how the domain
DA D enjoys many properties like least upper bound, greatest lower bound

etc. Based on this we can show that D Z% Dis a pointed complete partial order.

Lemma 3.1.1 D Z% D isa pointed cpo.

Proof: First the existence of a least element is established (ABSENT). Next
we need to prove that every chain has a least upper bound in the domain. Proof
by contradiction: Assume that a chain z; has two incomparable upper bounds
r1 and r,. Further assume that there is no r such that »r C r; and r C ry. Now
glbs exist in the domain (proof is in the next section), and thus r; M r; is an r
which is an upper bound less than both r; and r,. Contradiction. If there are
an infinite number of r;, consider the decreasing chain, 71, r; M 7y, 7y M 72 N
T3,.... oince the domain has no infinite decreasing chains, the infinite glb exists.

Contradiction. O

Chapter 3. Algebraic Properties of Residual Functions 25

ID

LEFT RIGHT

P

Figure 3.3: Projections on the domain of pairs

Note that any element of D o Dis guaranteed to be a polymorphic projec-
tion. This can be seen from the fact that the projections as defined by D 2% D
do not examine the substructure modified by the strict function a (in the defini-

tion of polymorphism).

Example 3.1.4 Consider projections on the domain of pairs.
Pair(r, 72) Proj Pair(ry,7y) is shown in Figure 3.8, where LEFT(z,y) = (z, 1)
and RIGHT (z,y) = (L,y).

3.1.2 Properties of D 2o p

In this section we investigate algebraic properties of D 2% D like commutativity,
distributivity, and so on. This enables us to establish the existence of operators

like LI, M and to provide a precise definition of the unique complement.

Definition 3.1.2 A commutative function domain is one whose elements com-

mute wrt function composition.

Lemma 3.1.2 D Z% D is a commutative domain for any domain D.

Proof: The proof is by induction on the structure of domains. The base pro-
jection domains are commutative (because they only contain projections ID and
ABSENT). Assume that d; pre d, and d, prog d, are commutative domains, p;, p3

€ dy 2 di; p2,ps € d B ds.

Chapter 3. Algebraic Properties of Residual Functions 26

o (p1 xp2)o(ps X psg) = (p1ops) X (pz0ps) = (paop1) X (paopz) = (p3 X

P4) 0 (p1 X p2). Thus dy x dy prog dy X dy is commutative.

o (Pr+p2)o(ps+pa) = (Pr0ps)+(p20pa) = (p3op1)+(psop2) = (p3+pa)o(pi+p2).

Thus d; + d» prog d; + d, 1s commutative.

In the case of the recursive domain, if one of the projections chosen is ABSENT
commutativity holds since poqis ABSENT if either por ¢ is ABSENT. If both
of the projections are in P(u7.T(7)) (i.e. in the branch other than ABSENT
in the recursive domain definition of P), then whether or not the projections
commute depends on whether the elements of P(u7.7(7)) chosen commute. By
the induction hypothesis, T'(7) commutes whenever T does. Repeating the earlier
argument, if ABSENT is chosen for either of the projections, we are done.
By repeating this argument, as long as ABSENT is chosen at some level of
recursion, the projections commute. The other case is when ABSENT is never
chosen. This represents the single projection pp.T(p). In this case since both the

projections have to be the same, they commute. O

We prove the following properties (Lemmas 3.1.2 through 3.1.4) for any p, ¢

from a commutative projection domain.

Lemma 3.1.3 po ¢ is a projection.
Proof: No information addition: p C ID and ¢ C ID = pogq C ID. Idempo-

tence: (pog)o(pog)=po(gop)og=po(pog)og=(pop)o(gog)=pog.
O

Lemma 3.1.4 The greatest lower bound (glb) of p and ¢ ezists and is pogq.
Proof: Note that since p C ID and ¢ C ID, pog C p and po ¢ C g. Let r be
any projection such that »r C p and » C ¢. Then by monotonicity, ror E pogq
and by the definition of projection, r C pogq. O

Lemma 3.1.5 The least upper bound (lub) ezists.
Proof: (By contradiction.) Suppose that there exists p and ¢ such that pU g

Chapter 3. Algebraic Properties of Residual Functions 27

does not exist. Since ID is the top element, this implies that there exist two
incomparable upper bounds /; and /3, and that there is no upper bound less than
both /; and [s.

(This is because there are no infinite descending chains in D 2% D: From the
definition of D 2% D, it can be shown that for any projection p, there are only
finitely many projections ¢ such that g is C p. Proof by induction: Base case is
the case of primitive domain, where the domains involved are finite. In the case
of sums, if the proposition holds for P(d;) and P(d;), it must hold for P(d; + ds)
because p; + p2 C ps + py iff py C p3 and p; C py. Similarly for products. In the
case of the recursive domain, any projection is constructed with a finite number
of applications of the recursive application followed by a single insertion of the
ABSENT projection. Thus there can only be finitely many projections less than
a given projection.)

But since glbs exist, /; 0l is an upper bound of p and ¢ which is (by definition
of glb) less than both /; and /5. Contradiction. O

Commutative domains with the additional property of distributivity are of

special interest.

Definition 3.1.3 A domain is said to be distributive iff for all elements p,q,r
of the domain, pU (¢Mr) = (pUq)M(pUr) and pN(qgUr)=(pMg)U(pnr).

Lemma 3.1.6 D 2% D is a distributive domain for any domain D.

Proof: The proof is by induction on the domain structure. We detail the proof
of pU(gNr)=(pUq)N(pUr); the proof of pM (gUr) = (pMg)U (pMNr) is
similar. The distributivity properties of the base projection domains are easy to
verify because they only conyain ID and ABSENT. Assume that d; reg d; and

d, prog dy are distributive, and p;, q1, 71 € dy and po, g2, T2 € d2. In what follows

we write (f,g) for f x g.

e (p1,p2) U ((g1,¢2) M (r1,7m2)) = (p1,p2) U (10 71,2072) = (p1 U (qa 0
r1),paU(gor)) = (mUag)N(pUr),(p2Ug) N (p2Ur2)) = (p1 U

Chapter 3. Algebraic Properties of Residual Functions 28

q1,p2U¢q2) N (py Ury, po Urs) = ((p1,p2) U(q1,42)) M ((p1,p2) U (r1,72)). Thus

dy x dp 2% d; x d, is distributive.
o The proof for d; + dy works similarly.

e In the case of the recursive domain construction, first note that if any of p,
q or r is chosen as ABSENT, the distributivity property holds. If none of
them are ABSENT, then each of them must be in P(u7.T(7)) (definition
of the recursive domain in P. Now by the induction hypothesis, , we know
that T'(7) commutes whenever 7 does. Thus if any of the 7s are chosen as
ABSENT then we are done. We can repeat this argument to show that
as long as ABSENT is chosen at some level of recursion, commutativity
holds. The other case (when ABSENT is never chosen) represents the
single projection up.T(p). In this case since the three projections are the

same, distributivity holds.

O

Lemma 3.1.7 For any p, q in a commutative distributive domain, there exists
a least r such that p C qUr.

Proof: Clearly there is always at least one r which satisfies the definition (take
r = ID). Assume we have two incomparable elements r; and 7, such that p C
gUr; and p C gUr,. Also assume that there is no element smaller than both
ry and r; satisfying the difference condition. Then p C qUr; and p E qU ry,
implies (from definition of glb) p C (¢ U) M (¢ U r2) and by distributivity:
p C qU (ry Mry). But r; Mry is less than r; and 7, and it satisfies the difference
equation. Contradiction. (In case there are an infinite number of r; satisfying
the above condition, the existence of the infinite glb needs to be shown. The
infinite glb exists because we know that the domain has no infinite decreasing
chains and ry, 7y M re, 7y M 72 Mrs,... is a decreasing chain. It is also easy to see

that lub distributes over the infinite glb.) O

Chapter 3. Algebraic Properties of Residual Functions 29

For domains which are distributive in addition to being commutative, we define

the difference operation as follows:

Definition 3.1.4 Ifp and q are elements of a commutative distributive domain,

the difference of p and g (written p — q) is the least r such that pC qU .

Lemma 3.1.6 ensures that the difference is uniquely and well defined. This leads

us, as promised, to a unique definition of complement.

Definition 3.1.5 The complement p of an element p in a commutative distribu-

tive domain is ID — p.

3.1.3 Algebraic Properties of D Z% D

The properties that we have thus far defined were motivated by our context.

Interestingly, they form what is known as a Brouwerian algebra.

Definition 3.1.6 A Brouwerian algebra is a 5-tuple (L,U,N, —, T) where (L, U, M)

is a lattice with greatest element T, L is closed under —, and a—b C c iff a T bUe.

A Brouwerian algebra can be seen as a generalization of a Boolean algebra where
the following equation need not hold: ID — (ID — p) = p. This allows us to

succintly summarize the properties of D ol p,

Theorem 3.1.1 (D proj D,U,N,—,ID) is a Brouwerian algebra.
Proof: Follows directly from lemmas 3.1.3 through 3.1.6. O

Knowing that we are dealing with a Brouwerian algebra allows us to use known
properties of such algebras for reasoning about our projection domains. For
example, when specifying an incremental program, the partition we are interested
in may only be a subset of D ik D, and thus we may need to extend the domain
to make it Brouwerian; it is a known theorem that such “completions” always
exist. Our use of Brouwerian algebras is inspired by an interesting and much

more extensive application of the concept: the modelling of program integration

Chapter 3. Algebraic Properties of Residual Functions 30

ID
MAP(LEFT) MAP(RIGHT)

MAP(ABSENT)

ABSENT

Figure 3.4: Projections on the domain of lists of pairs

[Rep90]. The following theorem partially addresses this problem, quoted without
proof from [MT46]: V

Theorem 3.1.2 If (L,U,MN,—, T) is a Brouwerian algebra, and M is a finite
subset of L containing n elements, then there exists a subset L of L and an

operation — with the following properties:
o (£,U,N,—',T) is a Brouwerian algebra.
o L' contains at most 22" elements.
o M is a subset of L.
o Ifz,yandz—yarein L, thenz - y=2 —y.

One possible £ is the set of all elements of £ which are expressible as Us and Ms

of elements of M.

Example 3.1.5 Consider projections on the domain of lists of pairs. D =
List(Pair(a,b)). A finite subdomain of D 2% D is shown in Figure 8.4. LEFT,
RIGHT and ABSENT are projections on pairs. Here £ = D P D and L' and
M are the subdomain shown in the figure. However, if ID were not one of the

projections, then the algebra would not be Brouwerian.

Chapter 3. Algebraic Properties of Residual Functions 31

Restricting ourselves to polymorphic projections enables us to show other
simple and desirable properties of partial evaluation, for example that the order

of partial evaluation is immaterial:

Theorem 3.1.3 If partial evaluation terminates, the order of partial evaluation
is immaterial: If projections p and q belong to a commutative distributive domain,
PE(PE f pa)ga=PE(PE f qa)p a, where f is the function being specialized,

and a is its argument.

Proof: By the definition of partial evaluation the two residual functions in the
equation above (call them r; and r;) (assuming all the specializations terminate)
need to satisfy: r; ((7o p)a) = f a and ry ((Po §)a) = f a. But, since our

projections commute, jop=po g. Thusr; =r,. O

3.2 Residual Function Algebras

Now that we have obtained these properties about the domain of projections, let
us see how they affect the domain of residual functions. We demonstrate that
the domain of projections in the last section induces an homomorphic domain
of residual functions. This makes precise the notion of “combining” residual
functions which was referred to earlier. Before we can proceed, we define the

domain of residual functions under consideration:

Definition 3.2.1 The domain R of residual functions for a function f, its ar-
gument a, and a commutative, distributive domain of projections P is defined as
R={r|r=PE fpa, pe P }. The ordering relation on R is defined as
follows: r, T rq iff p C q.

It is easy to verify that the ordering on residuals is a partial order. This ordering
is intimately related to the standard information ordering. If the type of f is
A — B, the type of a residual function for a fixed argument a is A" — B where

A’ is the subdomain of A of elements C a. The monotonicity of the PE implies:

Chapter 3. Algebraic Properties of Residual Functions 32

pEg = Ly

Thus, the least upper bound, greatest lower bound and the difference of residual

functions are:

rpUry = Tpug
rp Ty = Tpng and
Tp —Tqg = Tp—q

We now relate the domain of projections and the domain of residual functions

using partial evaluation:

Lemma 3.2.1 Given a commutative, distributive projection domain P and its
corresponding domain of residual functions R, Ap. PE f p a is a homomorphism
from (P,U,N,—,ID) to (R,U,N,—,rip). Here f is a function to be specialized
and a is an element of its domain.

Proof: Clearly PE preserves the identities of Ui, M and —. It follows directly
from the lub, glb and difference identities that PE satisfies:

PEf(pUq)a=(PE fpa)Uu(PE fqa)
PEf(pNg)a=(PE fpa)N(PE f qa)
PEf(p—q)a=(PE fpa)—(PE fqa)

To complete the sequence, we quote the following theorem from [MT46]:

Theorem 3.2.1 Any homomorphic image of a Brouwerian algebra is a Brouvw-

ertan algebra.

Since the domain of residuals is a homomorphic image of the projection do-

main, we can state that:

Corollary 3.2.1 (R,U,N, —,7r1p) is a Brouwerian algebra.

Chapter 3. Algebraic Properties of Residual Functions 33

Thus the domain of residual functions enjoys the same properties as D o p.
In our context, namely the incremental interpreter, we identify the U operation
with the combining operation on residual functions. This not only assures us
that the operation is well defined and unique, but also that the operation is
commutative and associative. This implies that when the interpreter carries out
combining operations in the cache of residual functions, it can carry them out in
any order it chooses. ! Also we can view the problem of incremental computation
in a different light: trying to approximate the difference operator using the least
upper bound. This is so since if the difference operator on residual functions is
available, then when the input changes, we can simply apply the appropriately
“differenced” residual function to the changed input: If projection p describes

the change in the input, then we need to apply r;p-, to the changed input.

!Based on a similar property, C. Consel and O. Danvy have investigated partial evaluation

in parallel (i.e. on a multiprocessor) [CD90b]

Chapter 4
Combining Residual Functions

In this chapter we present an algorithm to combine residual expressions and
present proofs of its correctness and efficiency. The last chapter described three
binary operations on residual functions: U, M and —, but did not describe algo-
rithms for them. If we had an efficient algorithm for —, the whole problem of
incremental computation as we have stated it would be solved!

But this is a difficult operation to compute since it involves “backing up” of
computation: identifying which computations have to be undone, and moving to
a state where these computations have not yet been performed.

Our methods can be seen as trying to approximate — by using the other two
operations. In this thesis (and in all applications that we have investigated to
date) we only use U, and thus in this chapter we develop an efficient algorithm
for it.

Since we know that P& is a homomorphism from the domain of projections

to the domain of residual functions, the following equality holds:
PE f(pUq)a=(PE fpa)u(PE fqa)

While this gives us a simple method to compute the lub, it is obviously inefficient,
since it ignores the work already done in computing r, and r,. A good algorithm
avoids redoing any reductions already done to compute 7, and r,. Indeed if our

incremental interpreter is to achieve good performance, this is essential.

34

Chapter 4. Combining Residual Functions 35

TpLg

N/

TABSENT

Figure 4.1: Least upper bound of residual functions

In what follows, we assume that the partial evaluator is implemented using
binding time analysis. This technique has been shown to be crucial in achieving
self-application of partial evaluators [JSS89]. Thus we begin this chapter with an
overview of the binding time analysis technique. We also describe an interpreta-
tion of the binding time analysis information: actions [CD90a]. We then describe
the least upper bound algorithm based on the binding time analysis information.
Finally we close with proofs of correctness of the algorithm for the first order and
higher order cases. Note that while the original projection based framework fits
only first order programs, the least upper bound algorithm itself can be stated
for arbitrary lambda expressions. Indeed, the correctness criterion for the higher
order case is stated without any reference to projections. The correctness proofs
are stated using a “two level language notation” (borrowed from [Nie89]). This
notation is more conducive to proofs. The action based algorithm is restated in

this framework both for first order and for higher order languages.

4.1 Binding time analysis

It has been found useful to split the process of partial evaluation into two stages
[JSS89]. The first stage is a preprocessing stage called binding time analysis. The

second stage is the specialization phase. This two fold separation has been found,

Chapter 4. Combining Residual Functions 36

for example, to be essential in achieving efficient self-application.

The only information known during binding time analysis is: which arguments
are static 7. The actual values of the static arguments are not known. The
main aims of the analysis are to discover all program variables and expressions
whose values depend only on static data and to discover which operations can be
performed using only the static data.

The result of the binding time analysis phase is an annotated source program -
annotated with binding time information about which operations can be executed
at specialization time. This information is meant to be used by the specializer.
The specializer takes two inputs: the annotated subject program and the static
program inputs.

In [CD90a], this framework is extended by annotating the source program
with an énterpretation of the binding time information. These interpretations are
in the form of program transformations and the binding time information is used
to actually choose a program transformation prior to the actual specialization.
[CD90a] has called these transformations actions. In what follows we describe
a subset of the actions actually used in the partial evaluator SCHISM [Con90a,
Con90b, Con88] which has been built using the action framework.

The source program (a A-term) is represented as a tree with the following
kinds of nodes: application, lambda abstraction, variable, constant and condi-
tional. Given a source program and a description of the binding time of its input
(in the form of a projection), the result of binding time analysis is an action tree,

isomorphic to the source program, with the following nodes:

e Reduce An action tree which says “process the children of the syntax tree
according to the action subtrees rooted at this node and then Reduce the

node.”

¢ Rebuild An action tree which says “process the children of the syntax tree
according to the action subtrees rooted at this node and then Rebuild the

node.”

Chapter 4. Combining Residual Functions 37

o Eval. Fully evaluate the subtree rooted at this node (complete reduction).
e Id. Rebuild completely the subtree rooted at this node (no reductions).

The specializer simply processes each node of the source program by executing
the corresponding action.

Eval and Id are not strictly necessary (other than for optimization purposes),
since a subtree with root marked Eval can be translated into a subtree with all
nodes marked Reduce and similarly for Id. Thus in the discussion which follows

we only consider Reduce and Rebuild.

4.2 Algorithm for Least Upper Bound of Resid-

ual Expressions

We now present an algorithm for the least upper bound of two residual functions.
We assume that the binding time information for each function (in the form of
an action tree) is available. We describe the algorithm in the context of the call-
by-value A-calculus; it can easily be adapted to languages with more syntactic
sugar. Also, we assume that the functions have first been a-converted to avoid
any name clashes.

A residual function is described by a triple (r,a,e) where r is the A-term
representing the residual function, a is the isomorphic action tree which produced
the residual function, and e is an associated environment which is initially empty.
The environment maps variables to pairs of the form (¢,a), where ¢ is a A-term
and a is the associated action tree.

Algorithm LUB((ry,a1,e1) , (r2,az,€3))

e Apply rewrite rules in Figures 4.2 and 4.3 to (r1, a1, e1) U (re,az,€z) until

all U symbols are removed from the term.

e Reduce nodes all of whose children are reduced. This is needed to perform

reductions not performed by either of the two residual functions but made

Chapter 4. Combining Residual Functions 38

possible by their combination.

To reduce the number of rules, symmetric cases have been omitted from
Figures 4.2 and 4.3. The main motivation behind the construction of the rules
is to avoid doing any reduction which has already been done in any one of the
other residual functions. For example in rule 1, an application has been reduced
in one residual function but has been left residual in another. The rule reduces
this to taking the U of the bodies of the abstractions, but also updates the
environment of the second residual function so as not to lose reductions performed
in the argument. The rules are designed so as to pattern match on action trees
corresponding to each residual function. Each rule chooses the more evaluated
over the less evaluated so as to construct the least upper bound from fragments
of each residual function. The question marks in some of the rules indicate “dont
cares” conditions. Constants in the rules are denoted by c.

The main complication arises from the case where an application is reduced
in one residual and rebuilt in another. In this case it does not suffice to simply
choose the more evaluated term. This is because the argument portion of the
rebuilt application may incorporate some reductions which we do not wish to
lose. This can be achieved by saving the argument in an environment. The
environment is looked up when the variable is reached in the least upper bound
process.

The rules for conditional reflect the fact that for the algorithm to proceed,
we need to know which way the condition was resolved. This information can be
stored by the partial evaluator during specialization.

Finally, there is a post-processing step to be executed, which we explain by
an example:

g (x,y) = if (x == 0) then f (x,y) else f (x,y) - 5
f (x,y) = x¥x - y*y

Specializing g with the projection LEFT and argument (0,2) gives:!

INote that since residual functions have the same type as the function being specialized, g1

Chapter 4. Combining Residual Functions 39

gl (x,y) = 0 - y*y
Specializing g with the projection RIGHT and the same argument (0,2) gives:

g2 (x,y) = if (x == 0) then x*x - 4 else x*x - 9

The action tree for g corresponding to gi (written as an annotation to the
source code) is:

if Reduce (== Reduce x Reduce 0 Reduce)
(f Reduce x Reduce y Rebuild)
(- Rebuild (f Reduce x Reduce y Rebuild)
5 Reduce)

The action tree for g corresponding to g2 (written as an annotation to the source
code) is: :

if Rebuild (== Rebuild x Rebuild O Reduce)
(f Reduce x Rebuild y Reduce)
(- Rebuild (f Reduce x Rebuild y Reduce)
5 Reduce)

gl U g2 according to the above algorithm is: (the action tree corresponding
to g1 marks the conditional as STATIC and the action tree corresponding to
g2 marks it as DYNAMIC) |

gl2 (x,y) =0 - 4

The first step in applying the LUB algorithm is to use the rule for the condi-
tional. This rule forces us to choose the left hand branch of both the conditionals,
because g1 resolves the conditional to the consequent branch. The two residuals
at this point of the computation are as follows:

gl: 0 - y*y
g2: x*x - 4

still takes a pair as argument. It simply ignores the left element of the pair. A similar comment

applies to g2.

Chapter 4. Combining Residual Functions 40

The next step is to use the function application rule. Since both the residuals
unroll the function application, the algorithm moves to the body of £. At this
point, the algorithm rebuilds the - since it is rebuilt in both the residuals. The
process moves on to comparing the arms of the -, selecting one arm from each
residual. At this point in the computation, there are two least upper bound
processes:

gl: 0 ; g2: x*x
gl: yxy ; g2: 4

Note how the algorithm selects the more evaluated parts of each residual: the
conditional from g2, the x*x from g1 and so on.

Clearly this can be further reduced; i.e., there may be reductions in the least
upper bound which are neither in g1 nor g2. These can be performed through

another phase of partial evaluation with no arguments.

4.3 Proofs of Correctness and Efficiency

Note that as long as there is still a U in a term, one of the rules apply. Termination
of the first phase of the algorithm is not difficult to verify: each rule reduces the
size of the A-term under consideration, until the base case is reached. The second
phase may not terminate when the source program contains non-terminating
computations, but this is common among partial evaluators, so we won’t be

concerned about it here.

Theorem 4.3.1 Algorithm LUB correctly computes the least upper bound.
Proof:

To carry out these proofs we use the two level lambda calculus notation first
used by Nielson [Nie89], which is more conducive to proofs. To carry out the
proofs, we restate the algorithms in the two level framework. The proofs are

then carried out for the first order and the higher order cases. The proof is given

Chapter 4. Combining Residual Functions 41

< ¢, Reducec, p; > U <c¢, Reducec, p; >=c¢
< ¢, Reducec, p; >U <c, Rebuild ¢, p: >= ¢
< ¢, Rebuild ¢, p; > U < ¢, Rebuild ¢, p; >= ¢

(T, Reduce(au)(au), €1)U
(tgltzz, Rebuild(azl)(agz), €9)

= (ATry, ai1, €1) U {(t21, a21, €[?/(taz,a22)])

(A?.r1, Reduce(a;), e;) U
(/\.’L’.tz, Rebuild(ag), 82[?/< tzg,agg)])

=> (11, a1, e1) U(ts, az, ex[z/(ta2,a22)])

(r1, Reduce(a1)(a12), eifz/(t1,a1)]) U
(z, Rebuild()(), ea[z/(t2,a2)])
E—= (1,01, €1) | (tz, as, 62)

(1, Reduce(au)(alg), e1) U
(r2, Reduce(as)(az2), €2)

= (71, an1, €1) U (ry, az, e2) (If the node reduced was an application)

(r1, Reduce(a;)(az), ei[z/{ t1,a1)]) U
(r2, Reduce(an)(az), efz/(ts,az)])

= (71, a1, €1) U {72, az, e)(If the node reduced was a variable x)

(tutlz, Rebuild(au)(alg), €1) (]
(tzltzz, Rebuild(am)(agg), €9)

= ((t11, a1, e1) U t21, 21, €2)) ({ t12, a2, €1) U (t22, a22, €2))

Figure 4.2: Rewrite rules for algorithm LUB

Chapter 4. Combining Residual Functions 42

o (z, Rebuild()(), ei[z/(t1,a1)]) U
(z, Rebuild()(), e2z/(t2,a2)]) = (t1,a1,e1) U (22, a2, e2)

o (z, Rebuild()(), ¢) U
(z, Rebuild()(), ez) = z (if both e; and e; do not have bindings for

e (Az.t;, Rebuild(ay), e;) U (Az.t;, Rebuild(a;), e,)
= /\27((tl,al,el) U (tg,dz,&z))

o (Az.t;, Reduce(a;), e;) U (Az.12, Reduce(ag), e2)
= /\(E((tl,a1,61> u (tz,az,ez))

e (r1, Reduce e1; €12 e13, p1) U (r;, Reduce ey ez, €23, p2) =

(r1, choose(eis,ei3), p1) U (ry, choose(ess,€z3), p2)

[] (rl,Reduce €11 €12 €13, Pl) L (Zf T91 T22 r23,Rebuild €21 €22 €23, ,02) =

(r1, choose(erz, €13), p1) U (choose(rag,Te3), choose(eqz, e23), p2)

o (if r11 712 713, Rebuild ey; €15 €13, p1) U
(¢f ro1 T2z To3, Rebuild eq; ez €23, p2) =
of ({r11,e11,01) U (raa, €21, 02))

((r12, €12, 1) U (ra2, €22, p2))
((r13, €13, p1) U (73, €23, p2))

Figure 4.3: Rewrite rules for algorithm LUB

Chapter 4. Combining Residual Functions 43

for two different cases: for a first order language and for a higher order language.
Although the higher order case subsumes the first order case, we include both for
completeness. For the first order language, we first restate the rules for algorithm

LUB. The proofs are carried out by structural induction.

4.3.1 A Two-Level First Order Language

The abstract syntax for a first order language is given below. Note that each
expression arises in two forms, underlined and plain. The underlined expressions
represent expressions which are rebuilt while plain expressions represent reduced
expressions. The result of the binding time analysis phase is such a two-level
expression. This notation is borrowed from the two level lambda calculus notation

found in [JGB*90].

¢ € Con constants

z € Bv bound variables

p € Pf primitive functions
f € Fv function variables
e € FEzp expressions, where

e =2cC l z l p(ela-“aen) l Zf €1 €2 €3 I f(el7""en)
c l z | E(el,"'7en) l _zi €1 €2 €3 I i(ela"wen)

pr € Prog programs, where

pr = {fi(ziy....zn) = €}
4.3.2 The LUB Algorithm

In this section we state the rules for the LUB algorithm for the first order lan-

guage. We begin with the case of constants:

<e¢, ¢, m> U <e¢ ¢ p2> = ¢
<¢, ¢, pp> U <¢ ¢ p2> = ¢
<c ¢, pp> U <c¢,e,p2> = ¢

Chapter 4. Combining Residual Functions 44
We then present the rules for variables:

<ry, 2, pilz/(t,a)] > U <ry z, polz/(t2,c)] > =
<7riy €, p1 > U <rg ¢y p2 >
<ry, z, pilz/(t,a)] > U <ro z, polz/(t2,)] > =
<mr, €, p1 > U <t2, c2y, p2 >

u

<ri, z, pifz/(t1,e)] > <1, Z, polz/(t2,c2)] > = =z

We make the assumption that a primitive can be reduced only if each of its
arguments is completely static (free from underlining). Symmetric cases have

been omitted.

<7, plery.esCn), p1 > U <7 plery.tn), p2 >
=T

<nr, p(Cn,...,Cln), p1 > U < 7o, 2(621, ...,Czn), p2 >
=T

< p(e1n, .-, €1n), B(cll""acln)a p1> U <p(ea,-.., em), _22(021,---,0271), p2 >
=

p(<em,ar,pm > U <ex,ca,p2> 5 ooy < €nyCin,p1 > U < €2nyCony p2 >)

The rules for the if construct are given below. It is assumed that the infor-
mation about which way the if was reduced is available. This is reflected in the

choose function:

Chapter 4. Combining Residual Functions 45

<y, if e e €13, p1 > U <o if e ez €3, p2 >
=
< r1, choose(ez,e13), p1 > U < ry, choose(esr,ers), p2 >
<71, if e erz €13, p1 > U < of ro1 rog T3, 1f €21 €22 €23, p2 >
=
< 11, choose(ers, €13), p1 > U < choose(raz,re3), choose(eqs, es), p2 >
<if ri 2 rs, of en e €13, p1 > U <if rarog ros, 1f €21 €22 €23, p2 >
=
if (K rie,pr> U <rogyea,pr >) (< riz,€12,01 > U < 7oz, €20,p2 >)

(< r13, €13, 01 > U < 7o3, €23, p2 >)

erpy; is the two level expression corresponding to the body of the function f;

using the first binding time information.

< T1, fi(elly"ﬁ eln)) P> < T2, fi(eﬂ,"-) 621’1), P2 >

<12, expai, pazi/ (-, e2)] >
< f,-(rn, ...,Tgn), ii(en, ceey 62n), p2 >

<7Ti, €TP1;, P1 [xi/('7 311’)] >
< T1, fi(en, ...,eln), P1 >

< exPyi, €xTPzi, p2|zif(rai,eai)] >
< fi(T‘n, ~-,7”2n), _f;z-(6217 ey 62n), p2 >

<1, expu, pfzi/(en)] >
< filriry s 71n), fi(e11505€10), p1 >

 cc coc | c

fil<ri, e, pr > U <rogyen,p2> oy, <Tiny€in,p1 > U < Top,e2q,p2 >)

4.3.3 Proof of Correctness

The function ¢ erases the underlinings of a two-level term. We first define a

relation which helps us state the correctness criterion more precisely.

Definition 4.3.1 We define a relation £ defined as follows: L(t1,ts,p1,p2) if
and only if

<t e > U <rg ity p0 > = PE[L @ t2]] (01 © p2)

Chapter 4. Combining Residual Functions 46
provided
e = ,Pgﬂt]_]]pl

¢ T = 775[[t2]]p2

¢(t) = 4(t2)

ty @ ty is defined as the two level term such that ¢(t1 @ t2) = ¢(t1) = ¢(t2)

and having a subcomponent underlined if it is underlined both in t; and t,.

If both p; and p; have bindings for z then L(snd(p1(z)), snd(p2(z)), p1\ z, p2\).

o (01 @ p2)(z) = if pi(z) = error® then pa(z) elseif pa(z) = error then pi(z) else
(< fst(p(z)), snd(pr(z)), p1\ > U < fst(pa(z)), snd(pa(z)), p2\ T >)

Now the correctness criterion we wish to prove is:

Theorem 4.3.2 If §(t1) = (t2) then L(t1,t2).

Proof: Follows from the following Lemmas.

The proof proceeds by structural induction. The base case is verified first.
In each of the cases the induction hypothesis is assumed to hold: namely that
the theorem hold true for the corresponding subcomponents. First we handle

constants:

Lemma 4.3.1 If ¢(t1) = ¢(t2) = c then L(t1,1,).

Proof: There are four possible cases:

l.t4 = cand t; = c.
<ecec,pp > U <cep> =
c =
PElc & c](pr & p2)

%j.e. p does not have a binding for z

Chapter 4. Combining Residual Functions

2.

t; = cand i, = c.
<cepr> U <cgpr>=
c =

PElc & cJ(p1 @ p2)

ti = candt; = c.

Proof is analogous to the last case.

ti, = cand t, = c.
<& p > u <66 p2> =
c =

PElc @ cl(pr @ p2)

Then we handle variables:

Lemma 4.3.2 If ¢(t1) = ¢(t2) = z then L(t1,12).

Proof: There are four possible cases:

1.

ty = zand t, = =z.

PElz & z] (p1lz/(t1,c1)] & p2lz/(t2,¢2)]) = (Definition of @)
(prlz/(t1,e1)] @ pa2lz/(t2,c2)])z = (Definition of @)

<ty ea,pm\ > U <tye,p2\ > = (Algorithm LUB)

<ty z,pilz/(t,a)] > U <t2,z,pfz/(t2, c2)] >

ty, = zandt, = z.

PEz & z] (p1lz/(t1,c1)] & palz/(t2,c2)]) = (Definition of @)
(p1[z/(t1,¢1)] ® p2lz/(t2,c2)])z = (Definition of @)

<ty a,p\ > U <tiyc,p2\ > = (Algorithm LUB)

<ty z,plz/(t,a)] > U <z,z,p2(z/(t2,c2)] >

ty = zand t, = =z.

Proof is analogous to the last case.

ty = zand t, = z.

Pelz & z] (p1lz/(t1,¢1)] & p2z/(t2,¢2)]) = (Definition of @)

47

Chapter 4. Combining Residual Functions ' 48

z = (Algorithm LUB)
<z,z, pl[x/(thcl)] > U < z,z, p?[z/(t27c2)] >

Define the function 3 which erases underlinings at only one level. Next we

handle primitives:

Lemma 4.3.3 If’(b(tl) = p(tu, ---)tln) and ib(tg) = p(tn, ...,tzn) and [:(tli,tgi)
then E(tl,tg).

Proof: There are four possible cases:

1. t, = p(tu,...,tln) and g = p(tzl,...,tgn).
PE[t; @ t2](pr ® p2) = (Since both t; and ¢, are free of underlinings)
¢ = (Algorithm LUB)

< C,p(tn, ...,tln),p1 > U < C,p(tzl,...,tgn),pz >

2. t1 = p(ti1,...,t1n) and t2 = p(ta1, ..., 12n).
- PE[ty & t2](p1 @ p2) = (Since both ¢, is free of underlinings)
¢ = (Algorithm LUB)
< ¢, p(tiny oy tin)s p1 > U <1, p(tan, ..., t2n), p2 >

3. t1 = B(tu,...,tln) and tz = p(tzl,---,th)-

Proof is analogous to the last case.

4.ty = p(tn,....t1n) and t3 = p(tar, ..., t2n).
PE[ty & t2](pr @ p2) = (Definition of partial evaluation)
p(PE[t & tall(pr @ p2), -, PE[t1n @ t2n](p1 @ p2)) = (L(t1i,t2:))
p(< e, ti, p1 > U < earyta1, P2 >y ey < E1nybin, p1 > U < €20y t2n, p2 >)
= (Algorithm LUB)

< p(eu, ...em),g(tu, ooy tln)y p1 > U< p(egl, . ezn),z(tzl, ceey t2n), p2 >
Next we handle conditional statements:

Lemma 4.3.4 Iflp(tl) = Zf tn t12 t13 and ¢(t2) = Zf t21 t22 t23 and ﬁ(tu,tz{)
then £(t1, tz)

Chapter 4. Combining Residual Functions 49

Proof:

There are four possible cases:

1. &ty = if ty1 tig tisand to = if a1 Lo tos.
PE[t1 & t2(p1 @ p2) = (Definition of partial evaluation)
choose(PE[t1y @ t2](pr @ p2),PE[tis ® tas](p1 @ p2)) = (L(ti,t2))
choose(< r12,t12,p1 > U < rog,ta, p2 >, < T3, t13,p1 > U < 1oz, tes, p2 >
) =
< r1,choose(tya,t22),p1 > U < 73,choose(tys, tas), p2 > = (Algorithm
LUB)
<ry,if tin tie tas, p1 > U < ro,if o tag ta3, p2 >

2.ty = if tiy tis tisand 8y = if to1 tor tas.
PEt1 & t2(p1 & p2) = (Definition of partial evaluation)
choose(PE[t1z @ t2](p1 © p2), PE[tia @ tas](p1 © p2)) = (L(tw,t2))
choose(< 12,112, p1 > U < rog,ten, p2 >, < T13,t13, 01 > U < 73, ta3, p2 >
) =
< ry,choose(tiz,t13),p1 > U < choose(rag, mo3), choose(tzs, t23), p2 > =
(Algorithm LUB)

<ryyef ti tig tis, o1 > U <if ron o2 Tas, if a1 tao tos, p2 >

3. t1 = if tiy tiothizand By = if to; tar tas.

Proof is analogous to the last case.

4.ty = if tin tiotizand £y = if to1 tos toa.
PEt1 @ t2(p1 @ p2) = (Definition of partial evaluation)
if PE[t11 @ taall(pr @ p2) PE[t12 & t22](p1 @ p2) PEft1z @ tas](p1 & p2)
= (L(t1i,t2))
tf (< rintin, p1 > U < rapytor, p2 >) (< rig,tiz, 01 > U < rog,ton, p2 >)
(< riz,t13, p1 > U < 1oz, tes, p2 >) = (Algorithm LUB)
<ryif ti tie tis, p1 > U < ro,if gyt tas, p2 >

Finally we come to the case of function application:

Chapter 4. Combining Residual Functions 50

Lemma 4.3.5 IfY(t1) = f(t11,...,t1n) and ®(t2) = f(ta1, ..., t2n) and L(t1;,12)
then L(t1,12).

Proof:

There are four possible cases. In each of the cases we carry out a fixpoint induc-
tion. This is necessary since f may be recursively defined. We do not consider
mutual recursion since it can be translated in a straightforward manner into di-
rect recursion. F' is the functional such that f = fiz F. Note that the only

function calls in the body of F' are recursive calls.

1. t3 = f(ti,-,tln) and t2 = f(ta1,..., ton)
Base case: L((A Z1,...; T L)(E11y oy t1n)y (A Z1y ooy Tne L)(E21, 005 E20))
Proof:
<L,(AZ1yeeey Zne L)(t11,yeeestin)ypr > U <Ly (AZ1yeeey Zne L)(E21, 0005 t2n), P2

L

PE((A 1y eees Tne L)(F11y o5 t1n) B (A Z1,y ety Tne L) (B21, o0y E2n))
Induction Step: L(z(t11,...,t1n), 2(t215 -, T2n)) =

L(F1(z)(t11, -5 t1n), F2(2)(t21, .-y t2n)) (where Fy and F; are two differently
underlined versions of F')

Proof:

< r, Fi(z)(t1n, ees tin))y 1 > U < 1o, Fo(2)(R21, ooy ton), p2 > = (Algo-
rithm LUB)

<ry,ezpi[f/a], pulzi/(f1i)] > U < 1o, exps(f/a], polzi/(t2:)] > = (Induc-
tion hypotheses, note that the updated environments are still compatible
since L(t1:,t2:))

Pé(ezp[f/z] & ezpalf/z])(prlzi/(t1i)] @ palzi/(t2i)]) = (Definition of
partial evaluation)

Pg(F(Qi)(tn, ceey tln) @ F(x)(tzl, ,tgn))

2. t, = f(tn,...,tln) and t, = i(t217---7t2n)-
Base case: L((X z1,..c;Zn- L)(t11y s t1n)y (A Z1,y ey Tne L) (21, ooy E2n))

Chapter 4. Combining Residual Functions 51

Proof:
<.L, (/\ TL1yeeey Ty _L)(tu, ceey t1n), P1 > U <.L, (/\ T1yeeey Ly _L)(tzh veey tgn),pz >

L

PE((X z1,y ey Tne L)(B11, s t1n) @ (A Z1y ooy Tne L) (B21, -0y E2n)
Induction Step: L(z(t11,...,t1n), Z(t21, -es t2n)) =

L(Fi(z)(t11, .., tin), Fo(z)(t21, .-, t2n)) (where Fy and F; are two differently
underlined versions of F)

Proof:

< L, Fi(2) (B, o tin))s o1 > U < 1o, Fy(2)(R21, -0y t2n), p2 > = (Algo-
rithm LUB)

<ry,expi[f/z], pr[zi/ (1)) > U < ezpy[f/z], expslf/z], palzif (€2, tai)] >
= (Induction hypotheses, note that the updated environments are still
compatible since L£(t14,12))

Pé(ezpi[f/z] & exps[f/z])(pilzi/(t1i)] ® pofzi/(eai,tai)]) = (Definition
of partial evaluation)

PE(F(z)(t11y -y t1n) ® F(z)(t21,---,t2n))

3. t1 = f(ti,...,tln) and t3 = f(ta1,...,%2n)-

Proof is analogous to the last case.

4. t; = f(tu,...,tln) and t, = f(ta1, ...y tan).
Base case: L((A 21,...,Zn. L)(t115 0y t1n)s (A Z1,eeey Tne L)(B21, -0, E2n))
Proof:
<L, Az, e L)(E115 00 tin)y p1 > U <L, (A @1y eeey Tne L)(E21, o0y t2n), p2 >

1

Pg(()\ L1500y Ty .L)(tn,...,tln) D (A T1yeeeyTh. _L)(tzl, ...,tzn))
Induction Step: L£(z(t11,...,t1n), Z(t21y ey ton)) =

L(F(z)(t11, ..., tin), Fa(z)(t21, ..., t2n)) (where Fy and F; are two differently

underlined versions of F')

Chapter 4. Combining Residual Functjons 52

Proof:

< r, Fi(2)(tiny oo tin))s o1 > U < 1o, Fo(z)(t21, o0y tan), p2 > = (Algo-
rithm LUB)

F(z)(< e ti,pr > U < e2l,ty1,p2 >,..y< €1nytin,p1 > U <
€2ny tan, p2 >) = (Induction hypotheses)

F(z)(PE(t11 & ta1)(p1 @D p2)s-y PE(t1n & t2n)(p1 @ p2)) = (Definition
of partial evaluation)

PE(F(z)(t11,--rt1n) ® F(z)(ta1,.- t2n))

4.3.4 A Two-Level Higher Order Language

Although the projection framework is defined only for first order programs, the
least upper bound algorithm itself can be stated for higher order expressions
(as has already been done). In this section we prove the general higher order
least upper bound algorithm correct. We now present the proof of correctness
for Algorithm LUB for higher order programs. To do this we first define a
higher order two level language (essentially a call-by-value lambda calculus with

constants).

¢ € Con constants
z € Bv bound variables
e € FEzp expresstons, where
e =clz|ifeee|lz.e|le@e

clz|ifeeeldz.e|eQe
The LUB algorithm for this case is presented in figures 4.2, 4.3. The algo-

rithm can be read in two level notation by simply replacing the Rebuilds by

underlinings leaving the Reduced expressions untouched.

4.3.5 Proof of Correctness

Again we define a relation £ which enables us to state the correctness criterion

in a manner more amenable to proof. The function ¢ erases the underlinings of

Chapter 4. Combining Residual Functions 53

a two-level term.

Definition 4.3.2 We define a relation L defined as follows: L(t1,ts, p1,p2) if
and only if

<rt,p > U <yt pp > = PE[L @ ta](p1 D p2)
provided
o ry = PEtilp:

o o = Pg[[tz]]p-z

¢(t1) = ¢(t2)

t1 @ 13 is defined as the two level term such that §(t; D t2) = (t1) = B(t2)

and having a subcomponent underlined if it is underlined both in t; and t,.

If both p and p; have bindings for x then L(snd(p1(z)), snd(p2(z)), p1\ z, p2\ z).

® (p1 @ p2)(z) = if pri(z) = error then py(x) elseif po(z) = error then py(z) else
(< fst(pr(2)), snd(pa(2)), 1\ 2> U < fst(pa(z)), snd(pa(z)), 2\ >)

Theorem 4.3.3 If ¢(t1) = ¢(t2) then ﬁ(tl,tg).

Proof: Follows from following Lemmas.

The proof proceeds by structural induction. The induction hypothesis in each
case states that the theorem under consideration holds for the corresponding
subcomponents of the current expressions. First we prove the base case for

constants:

Lemma 4.3.6 If ¢(t1) = ¢(t2) = c then L(t1,1,).

Proof: There are four possible cases:

1. {, = cand t, = ¢
<c¢ecp1> U <cep>=
cC =
PElc @ cJ(p1 & p2)

Chapter 4. Combining Residual Functions 54

2.

t7; = cand t, = c
<cec,p1r> U <cepr>=
c =

PEle & c](p1 @ p2)

t;, = candt; = e

Proof is analogous to the last case.

ty, = candt; = ¢
<cc,p1> U <cep>=
c=

PElc ® (o1 © p2)

Then we prove the base case for variables:

Lemma 4.3.7 If §(t1) = ¢(t2) = x then L(t1,13).

Proof: There are four possible cases:

1.

ti = zandt, = =z.

PElz & z] (p]z/(t1,c1)] @ p2lz/(t2,c2)]) = (Definition of @)
(p1[z/(t1,e1)] @ p2[z/(t2,c2)])z = (Definition of @)

<t c,p\z> U <t e p2\ 2> = (Algorithm LUB)

<t z,plz/(t,a)] > U <t z,pfz/(t2, c2)] >

ty, = zand t, = z. »

PElz & z] (pr[z/(t1,c1)] & p2lz/(t2,¢2)]) = (Definition of @)
(p1[z/(t1,¢1)] @ p2lz/(t2,c2)])z = (Definition of @)

<t e,m\ > U <tyep2\ 2> = (Algorithm LUB)

<ty z,plz/(t,a)] > U <z,z,p2(z/(t2, 02)] >

.ty = zand t, = «z.

Proof is analogous to the last case.

ti; = zand t; = z.

Pelz & z] (mlz/(t1,c1)] & polz/(t2,c2)]) = (Definition of @)

Chapter 4. Combining Residual Functions 55

z = (Algorithm LUB)
<zz, pl[x/(tl’ C1)] > U <z,z, p2[$/(t2, 62)] >

Define the function ¢ which erases underlinings at only one level. We then

handle the case of abstractions:

Lemma 4.3.8 If ’l,b(tl) = Ax.tu and 'l,b(tg) = A(E.tgl and ,C(tn,tn) then
L(t1,1t2).

Proof: There are four possible cases:

1. ¢4 = Az.ty; and ¢t = Az.ty
PEty @ t2](pr ® p2) = (Definition of partial evaluation)
Az PE[(tn ® ta)l(pr @ p2) PE[(t1z & t22)](pr @ p2) = (L(t1irta))
Az. < 1,11, p1 > U < 19,191, p2 > = (Algorithm LUB)
< 11, Az A1, p1 > U < ro, Aztog, po >

2.ty = MAz.ty; and t, = Az.ty
PE[t1 & to](pr ® p2) = (Definition of partial evaluation)
Az PE[(t1n @ tar)](p1 & p2) = (L(t1i,12))
Az. < 1,1, p1 > U < to1,to1, p2[?/ < to, 22 >] > = (Algorithm LUB)
< ry, Azt pr > U < 1o, Aztog, po >

3. t1 = Azt and t; = Az.ty; (Proof analogous to the previous case)

4. tl = A.’B.tn and tg = _{_l‘.tg]
PE[t1 @ to](pr @ p2) = (Definition of partial evaluation)

Az PE[(t1n @ tar)[(pr @ p2) = (L(t11,t21))
Az. < 71, b1, p1 > U < 1o1, 891, p2 > = (Algorithm LUB)
<711, Az 81,01 > U < 1o, Az oy, p2 >

Next we handle conditional statements:

Lemma 4.3.9 If’l,b(tl) = Zf tn t12 t13 and ’gb(tz) = Zf t21 t22 t23 and ,C(tli,tgi)
then L:(tl,tz), 1 € 1,2.

Proof: There are four possible cases:

Chapter 4. Combining Residual Functions 56

1.ty = ¢f tyy tip tizand &y = ¢f 131 122 tos.
PEty & t2(p1 ® p2) = (Definition of partial evaluation)
choose(PE[t1z @ ta2](p1 @ p2), PElt1z @ tas](p1 @& p2)) = (L(t1i,t2))
choose(< riz,t12,p1 > U < Tog, b2, p2 >, < T3, t13, 01 > U < 1oz, ta3, p2 >
) =
< ry,choose(tia, tae), p1 > U < r2,choose(tis, ta3), p2 > = (Algorithm
LUB)
<ryif ta tig tis, p1 > U < ro,if tor t22 23,02 >

2.t = if tiy tiptizand £y = if to) 120 toa.
PEty & t2(p1 ® p2) = (Definition of partial evaluation)
choose(PE[t1a @ taa](p1 @ p2),PE[t1s @ taa](pr @ p2)) = (L(t1i,12:))
choose(< Ty, t12, p1 > U < Togyta0, p2 >, < i3, ti3,p1 > U < 7a3,t23, p2 >
) =
< 7r1,choose(tiz, t13), p1 > U < choose(rag, T23), choose(ta, taz), p2 > =
(Algorithm LUB)

<ri,if i tie tis, p1 > U < if roy Tog o3, if ton1 t2o t23, p2 >

3. t1 = if tyy tiz tizand tp = if 2 222 toa.

Proof is analogous to the last case.

4.t = if tin tip tizand ¢y = if B2 to2 toa.
PEt1 @ t2](p1 © p2) = (Definition of partial evaluation)
if Pt @ taal(pr @ p2) PE[t12 @ t2](p1r ® p2) PE[t13 © tas](o1 @ p2)
= (L(t1i,t2))
if (K ri,ti,pr > U < rapytor, p2 >) (< miz,tiz, p1 > U < 72,102, p2 >)
(< r13,t13,p1 > U < 793,03, p2 >) = (Algorithm LUB)
<ry,if tin tig tis, p1 > U <o, if tor a2 tas, p2 >

Finally we handle the case of application:

Lemma 4.3.10 If9(t1) = t11 @ t12 and Y(t2) = ta1 @ 19y and L(t1;, 1) then
L(t1,12).

Chapter 4. Combining Residual Functions 57

Proof: There are four possible cases:

1.ty = 11 @tjpand ty = t9 @ty
PEft1 @ t2](pr ® p2) = (Definition of partial evaluation)
PE[(t1 @ ta1)l(p1 @ p2) PE[(t1z @ t22)](p1 @ p2) = (Substitution)
PEl(t1r @ ta1)](p11 & p21) = (L(f1i5t2:))
< 7,11, p11 > U < 1, t91,p21 > = (Algorithm LUB)
<7r1,t1 @ityg,p10 > U < 7oyt @ tgg,pe >

2. t1 = t1;1 @tipandty, = ty Q ity
PE[ty @ t2](pr ® p2) = (Definition of partial evaluation)
PE[(ti1 @ ta)](p1 ® p2[?/ < taz, €22 >]) = (L(t1i, t2))
< ri,tin, p1 > U < B, ta1, p2[?/ < tag,co0 >] > = (Algorithm LUB)
<7t @tig, p1r > U < o1 @ cpo, b1 @ tos,p0 >

3. t1 = t11 @tip andty = ty; @ tyy (Proof analogous to the previous case)

4.t = t13 Qtipand ity = ty Q iy
PE[t1 & to](pr ® p2) = (Definition of partial evaluation)
PE[(tin @& ta)l(p1 ® p2) @ PE[(t1z ® ta2)l(o1 & p2) = (L(t1i,t2i))
< rint,pr > U < rogytan, pr > @ < rigytio, 010 > U < rog,tan, 00 >
(Algorithm LUB)
<71yt @iz, p1r > U <oty @ tog, 00 >

Theorem 4.3.4 Algorithm LUB does not re-perform any reduction already per-
formed in the computation of either r, or r,.

Proof: During the application of the rewrite rules, no reductions are done (all
of them are done in the post-processing phase). At the end of this phase, the
term has the action tree at, U at,. This means that all reductions in r, and r,

are already incorporated. O

Chapter 5

Applications

In this chapter we present several examples of incremental programs. In each case
we present the non-incremental program and the associated input partition. We
also discuss the special transformations required to bring the non-incremental
program into a form amenable to partial evaluation. Anyone who has used a
present day partial evaluator is familiar with the fact that the source program
frequently needs to undergo certain meaning preserving transformations in order
to specialize well; understanding and automating these transformations is the
subject of ongoing work (see [CD91] for some progress). Once these transfor-
mations are done, the incremental program is derived automatically using the
techniques described in previous chapters. The implementation is carried out us-
ing the Schism partial evaluator [Con90a, Con90b, Con88]. Performance figures
are also presented for each of these programs. Before we proceed, we give an
introduction to Schism - in particular we discuss the user annotation mechanism

called filters, and an intoduction to our source language Haskell.

5.1 Schism

Schism [Con90a, Con90b, Con88] is a partial evaluator for a side-effect free sub-

set of Scheme. It is able to specialize programs containing higher order functions

58

Chapter 5. Applications 59

and data structures. Schism is self-applicable — compilers can be obtained by
specializing Schism with respect to a program. The system has three phases:
preprocessing, specialization and postprocessing. Preprocessing has been dis-
cussed in the last chapter. This phase produces an annotated source program
where each subexpression has been marked with an action.

Schism incorporates a feature called filters which specifies how to treat calls
to a procedure; i.e., should the call be unfolded or specialized? If a call is to
be made residual, the filter also specifies the arguments with respect to which
the specialization is to take place. Thus a filter has two components: the first
decides how to treat function calls and the second decides which arguments are
to be used in the specialization process. As an example, consider the function
append:

(define (append 11 12)
(filter (if (stat? 11) UNFOLD SPECIALIZE) (list 11 12))
(if (null? 11)
12

(cons (car 11)
(append (cdr 11) 12))))

The predicate stat? returns true if its argument is static, and false otherwise.
The predicate dyn? returns true if its argument is dynamic and false otherwise.
The filter in the example above states that calls to append must be unfolded when
the first argument is static. Otherwise it states that the call must be specialized
with respect to both the arguments. If it is desired not to specialize a call with
respect to an argument, then the filter simply states DYNAMIC corresponding to
the argument.

The implementation we are about to describe works on Haskell programs.
Haskell programs are first translated into stand alone Schism programs, and are
then specialized using Schism. The translation is semantics preserving in the
sense that laziness is preserved by adding delays. The delay and force mecha-

nism is implemented using the Schism primitive mechanism. This avoids the use

Chapter 5. Applications 60

of explicit lambdas to represent the delays, which is desirable since lambdas be-
ing higher order objects cannot be tested for static or dynamic nature in Schism
filters. Filters can be attached to specific Haskell functions. Thus, while the
implementation itself is based on Schism, we see no reason why the implementa-
tion should not be based on a partial evaluator which performs source to source
transformations on Haskell.!

The binding time analysis of Schism is monovariant; i.e., each function can
only have one binding time signature.? This loss of information is unacceptable
in our case where we wish to do binding time analysis with one of the components
known and the rest being unknown. This problem can be solved by replicating
the function for each binding time pattern of its arguments.

The filters in Schism can only test for completely static or dynamic informa-
tion. Therefore, partially static arguments may sometimes have to be split into
static and dynamic components for purposes of writing the appropriate filters.

Since the time of these experiments, Schism is being extended to provide the

following features:

e Predicates which make it unnecessary to separate binding times and split

partially static objects.

e Polyvariant binding time analysis, which will be more convenient for its
users since they won’t need to duplicate source procedures by hand as we

needed to.

In the rest of the chapter we use the terms “known” and STATIC interchange-

ably, and similarly the terms “unknown” and DYNAMIC.

1The problem of avoiding non-termination during specialization for lazy languages is still
an open one.
2A binding time signature is a description of the binding times for the arguments and the

result of a function.

Chapter 5. Applications 61

5.2 An Overview of Haskell

Haskell is a new functional programming language, named after the logician
Haskell B. Curry [HWe90]. It is a purely functional language, and has non-strict
semantics (i.e., lazy evaluation) ,and a rich type system including user-defined
concrete and abstract datatypes and strong static type inference. Non-strict
semantics was popularized by languages such as SASL [Tur81, Tur82], and the
type discipline was popularized by languages such as ML [Mil84, Wik88].

Haskell is purely functional, which means that it has no constructs inducing
side effects to an implicit store (such as found in “almost-functional” languages
such as ML). The language contains many of the recent innovations in program-
ming language research, including higher-order functions, non-strict functions
and data structures, static polymorphic type inference, user-definable concrete
and abstract datatypes, pattern-matching, list comprehensions, a module system,
and a rich set of primitive datatypes, including arbitrary and fixed precision in-
tegers, and complex, rational, and floating-point numbers. In addition it has
several novel features that give it additional expressiveness, including an ele-
gant form of overloading using a notion of type classes, a flexible I/O system
that unifies the two most popular functional I/O models, and an array datatype
that allows purely functional, monolithic arrays to be constructed using “array
comprehensions.”

Syntactically, Haskell has an “equational feel.” A function is defined by a set
of equations, each stating a different set of constraints on the arguments for the
equation to be valid. These constraints primarily concern the structure of the
arguments, and thus the process is called pattern matching. For example, lists
are written [a,b,c] with [] being the empty list, and a list whose first element
is x and whose rest is xs is denoted x:xs. Thus to define a function that tests

for membership in a list, we can write:

member x [] = False
member x (y:ys) = if x==y then True
else member x ys

Chapter 5. Applications | : 62

Given this definition, the expression member 2 [1,2,3] returns True, whereas
the expression member 0 [1,2,3] returns False. Any data structure may be
pattern-matched against, including user-defined ones. Also note that function
application is “curried” and associates to the left; in a conventional language
without currying one might write member(2,[1,2,3]).

A functionf x = x+1 may also be defined “anonymously” with a lambda ab-

straction having form \x -> x+1;thus (\x -> x+1) 2 returns 3. In addition,
any infix operator may be turned into a value by surrounding it in parentheses;

thus, for example, the following equivalence holds:
) xy == x+y

List comprehensions are a concise way to define lists and are best explained

by example:
[(x,y) | x<-xs, y<-ys, x>y]

This expression designates the list of all pairs whose first element is from xs
and second is from ys, but such that the first element is always greater than
the second. Pairs are examples of tuples, which in Haskell are constructed in
arbitrary but finite length > 2 by writing “(a,b, ..., c)” (the parentheses are
mandatory). Tuples may be pattern-matched like lists.

“Infinite lists” may also be defined, and thanks to lazy evaluation, only that
portion of the list that is needed by some other part of the program is actually

computed. For example, the infinite list of ones can be defined by
ones = 1 : ones

Thus member 1 ones returns True, whereas member 2 ones does not terminate.

The notation [a..b] denotes the list of integers from a to b, inclusive, and
[a..] is the infinite ascending list of integers beginning with a. Two lists
may be appended together using the infix operator ++, as in 11++12. There are
also many other standard utility functions defined on lists. Aside from the ones

already discussed, the ones we need in this dissertation are the following:

Chapter 5. Applications 63

head (x:xs) = x -- head and tail of list
tail (x:xs) = xs

fst (x,y) =x -- first and second of pair
snd (x,y) =y

map £ [] =[] -- maps function f down list
map f (x:xs) = f x : map f xs '
(] ++ ys = ys -- infix append

(x:x8) ++ ys = x : (xs++ys)

a -- folds list from left
foldl £ (f a x) xs

foldl £ a []
foldl f a (x:xs)

foldr f a []
foldr f a (x:xs)

a == folds list from right
f x (foldr £ a xs)

L[}

? and continue to the

Note that comments in Haskell are preceeded with “--
end of the line. Function application always has higher precedence than any infix
operator; thus “f x : map f xs” is parsed as “(f x) : (map f xs).” Note

that for foldl and foldr the following relationships hold:

foldl f a [x1, x2, ..., xn] ==

(f ... (f (f ax1) x2) ... zn)
foldr f a [x1, %2, ..., xn] ==
(fx1 (£fx2 ... (fxna ...))

Haskell’s fundamental block structuring mechanism (aside from those intro-
duced by modules, which are beyond the scope of our discussion) is the where

clause. For example,

X where x =y
y=1
The declarations in a where clause are lexically scoped and mutually recursive;

thus their order does not matter, and the above example evaluates to 1. Also

note the use of a “layout” strategy for parsing declarations. There is no need

Chapter 5. Applications 64

for a semicolon, or some other syntactic device, to terminate a declaration. The
simple rule is that the first characters in the declarations must line up vertically

with each other. For example,

x+y where x = atb
where a = 1
b=2
y=3

parses in the “natural way,” and evaluates to 6.

For more information on Haskell, see [HWe90].

5.3 Compiled Incremental Programs

Shown below is an incremental interpreter, i.e. it takes a specification of an
incremental program (a non-incremental program and a partition of the input),
an initial argument and a series of small changes to the input and “incrementally”
produces a series of answers. The function setup computes the residual functions
corresponding to prog on each element of the partition. reestablish takes a
set of residual functions, a small change to the argument of the program and

recomputes only those residuals affected by the change.

(define (Inc prog part init_arg deltas)
(I (setup prog part init_arg) deltas))

(define (I residuals deltas)
(cond
((null? deltas)
(cons (eval (ast->t (combine residuals))
(repl-env)) *()))
(else
(let* ((delta (car deltas))
(residuals’ (reestablish residuals delta)))
(cons
(eval (ast->t (combine residuals’)) (repl-env))
(I residuals’ (cdr deltas)))))))

Chapter 5. Applications 65

That the use of an interpreter entails a performance overhead is well known.
Partial evaluation has been used to capture the essence of compilation by special-
izing an interpreter with respect to a program yielding a compiled program. We
can use this idea profitably to specialize the incremental interpreter (Inc) wrt
a incremental program specification (prog and part). This yields a “compiled
incremental program” which can yield substantial performance benefits over the
interpreted version. We have actually carried out such a specialization for many
problems. This can be described precisely as follows: If f is the function to be
incrementalized, P is the input partition, Z is the incremental interpreter, fi,. is
the “compiled” incremental program, and [p] denotes the function corresponding

to the program p, then

Since the incremental interpreter itself makes liberal use of partial evaluation (in
the Setup and Reestablish phases), the abovementioned specialization entails
self application of the partial evaluator.

How exactly is increased performance achieved by this specialization? First,
binding time analysis of prog on each element of part can be carried out at
specialization time. Also, the specializer can be specialized with each result of
the binding time analyses to yield specialized specializers (the second Futamura
projection [Fut71]). The Combine phase does not benefit from this specializa-
tion because the conditional environment arguments to the lub function (cenvi
and cenv2) are both DYNAMIC (see Appendix A). The 1ub function has to be
left residual because the information about which way the conditionals in the
programs have been resolved is not statically available. It is available only at

partial evaluation time. The whole process is summarized in Figure 5.1.

Chapter 5. Applications

Haskell Program

Haskell to Schism
Translator

Schism Program

Binding Time
Analysis

Residual Cache

i

Specialize wrt
Incremental
Interpreter

Specialized Incremental Program

Scheme Compiler

Object Code

Figure 5.1: Incremental program generation.

66

Chapter 5. Applications 67

Figure 5.2: Example flow graph

5.4 Data Flow Analysis

As an example of compiler data flow analysis, consider the problem of determining
the set of “reaching definitions” at every program point. A definition of a variable
is said to “reach” a program point if there exists a path from the definition to the
program point which does not pass through a redefinition of the same variable.
For example, consider the flow graph in Figure 5.2 (taken from [MR90]). Each
of the circles denotes a basic block, where a label “z =” means that z is assigned
a value in that block. Arcs are labelled with sets L; of definitions which reach
that arc. For example, the set Lo = {(z,el), (y, €2)} means that the definition of
¢ at program point el and y at e2 reach the arc labelled Ly. For Figure 5.1, we
can then write the following equations (“?” refers to a wildcard, meaning that it

matches any name):

LO = {(m,el), (ya 62)}

Ly = LoULs

Ly = Li—{(z,7)}U{(=, B)}

Ly = (LiULy)—A{(y,)}U{(,C)}

The solution to these set equations is defined by a least fixpoint construction in

Chapter 5. Applications 68

the obvious manner, yielding:

Ly = {(z,el),(y,e2)}

L = {(z,€l),(y,€2),(z, B),(y,C)}
L, = {(y,€2),(y,0), (=, B)}

Ly = {(z,el),(z,B),(y,C)}

Recall that an incremental algorithm specification consists of a non-incremental
program plus a partition of the input domain. Therefore we first need to describe
a non-incremental algorithm. We assume the input to the algorithm to be a list
of strongly connected components of the set of data flow equations in topological
order (which can be produced by a standard dependency analysis). The solution
is then defined by the Haskell program in Figure 5.3.

solve is a function which takes an initial (empty) environment (mapping arc
labels to sets) and a set of mutually recursive equations. It then computes the
least fixpoint of the equations using the initial environment as the first approxi-
mation. Function nextapprox recomputes the identifiers defined by the equations
eqns using the old environment env to produce a new environment env’.

To complete the incremental program specification we specify the following

input partition. P = {p;} such that:

poll = [lpo(z:2s) = L

nl = Lp(z:zs) = (z:1)

pill = Lypi(z:28) = (L:(pi-1 z3))
This means that each strongly connected component is in a separate element of
the partition. This partition enables the fixpoint computation to go to completion
on each element of the partition (as will be seen in the following sections).

In the Setup and Reestablish phases of the incremental interpreter, the
computation of rp, is the main activity. In this section we see how to do this.
Before we use the incremental interpreter defined previously, we need to transform
the definition into a form amenable to partial evaluation. The projections which

form the partition describe partially static input. To make sure that the binding

Chapter 5. Applications

-- Data flow analysis

69

-- Expression data type representing the right hand side of a data

-- flow equation.
data Expr = Arc String
| Union Expr Expr
| Diff Expr Expr
| Const [(String, String)]
type Graph = [Comp]
type Comp = [Eqn]
type Eqn = (Arc, Expr)
type Env = [Binding]
type Binding = (Arc, [(String, String)])

dfa :: Graph -> Env -> Env
dfa graph env0 = foldl solve env0 graph

-- fix point finder

solve :: Env -> Comp -> Env
solve env scc =
if (env == env’) then env
else solve env’ scc
where env’ = nextapprox scc env
nextapprox :: Comp -> Env -> Env

nextapprox scc env = envupdate env bindings

where bindings = map (compute env) scc

compute :: Env -> Eqn -> Binding
compute env (arc, exp) = (arc, eval exp env)

-- evaluate an equation right hand side with an environment

eval :: Expr -> Env -> Val
eval (Arc s) env = envlookup s env

eval (Union e e2) env = listunion (eval e env) (eval e2 env)
listdiff (eval e env) (eval e2 env)

eval (Diff e e2) env =
eval (Const 1) env =1

Figure 5.3: Data Flow Analysis.

Chapter 5. Applications 70

times for arguments to the main function are not partially static, we carry out a
process similar to arity raising [Rom88, Ses86]. This implies fixing the number
of connected components a priori. If the graph grows to exceed this limit, we
may either redo this arity raising with a higher number of arguments or we may
group more connected components into a single argument. The latter solution
ends up using a “coarser” partition of the input and may yield poorer incremental
performance. In practice one may choose a sufficiently large arity to avoid this
problem. For the example here we choose to convert the list of components
into three arguments (The principles involved for a larger number of arguments

remain the same):

dfa sccl scc2 scc3 envl =
solve scc3
(solve scc2
(solve sccl env0))

During specialization, if the first argument to the function solve is STATIC,
we know that the solve function can be completely unrolled. This is because
the termination of the fixpoint computation does not depend on the environ-
ment argument. To convey this information to Schism we make use of the filter
mechanism. Filters in Schism provide the user with control over the special-
ization process. First the environment is split into two components: a static
and dynamic component. This is done since filters can only contain tests for
either STATIC or DYNAMIC. The fixpoint iteration is always started with the static
environment empty. The dynamic environment is the solution to the problem
flowing in to the component. Thus the termination of the unfolding process is
made to depend only on static information since the dynamic environment does
not change during iteration within this component. Given this knowledge, the
filter specifies that solve can be unfolded only if both scc and env_s are known:
solve env_s env_d scc =

if (enveq env_s env_s’)
then envunion env_d env_s

Chapter 5. Applications 71

else solve env_s’ env_d’ scc
where env_s’ = nextapprox scc env_s
env_d’ = nextapprox’ scc env_d

nextapprox scc env = envupdate env bindings
where bindings = map (compute env) scc

The filter associated with solve is (this filter is added manually to the trans-
lated Haskell program):

(filter (if (and (stat? scc) (stat? env_s)) UNFOLD SPECIALIZE)
(l1ist scc env_s env_d))

To avoid loss of information due to the monovariant nature of Schism, each
call to solve is made to a differently named copy. This entails duplication of
code, but can be done in a straightforward manner. The function applied to the
ith component is named solvei.

The result of specializing dfa with scc2 and env0 as STATIC is shown below.
The value used for scc2 is the graph shown in Figure 5.2 and the value used
for env0 is the empty environment. ® Note that solve2 has been completely
unrolled. The Expr data type is completely translated into Schism and appears
in the residual program. The static part of the result is completely computed.
The dynamic environment (flowing in from the result of the first component)
is processed before being combined with the static environment to yield the
environment to be passed to the next component in the topological order (note
that the residual function is stored in Scheme form because the Haskell program
is first translated into a Schism program, the solveis are the renamed versions
of solve):

(lambda (sccl scc3)
(solve3 scc3 (map31 (car scc3))
(env-union2

(next-approx scc2
(next-approx scc2

3The empty environment binds each name to a special placeholder.

Chapter 5. Applications 72

(next-approx scc2
(solvel sccl (mapii (car sccil))
7((1o) (11) (12) (@3))))
P((10 (x . el) (y . e2))
(11 (x . el) (y . e2)

(x .b) (y . c)
(12 (y . e2) (y . ©)
(x . b))
(13 (x . el) (x . b)
(y - N

The residual function corresponding to scc1 and env0 being STATIC is shown

below. Note the following:

e solvelis completely unfolded since all its arguments were static (the values

used are the same as in the last case).

e The Expr data type in the Haskell program appears as a list in the Scheme
code ((x . el) etc.). Only the Const portion of the data type is left.

(lambda (scc2 scc3)
(solve3 scc3 (map31l (car scc3))
(solve2 scc2 (map21 (car scc2))
7((10 (x . el) (y . e2))
(11 (x . el) (y . e2)

x.b) (y . <)
(12 (y . e2) (y . ©)
(x . b))
(13 (x . el) (x . b)
(y . NN

During the Setup phase of the incremental interpreter, residual functions
(including the ones shown above) are computed corresponding to each element of
the partition. The Reestablish phase simply entails recomputing those residual
functions affected by changes in the input.

During the third phase (Combine), the result is obtained by computing

the lub of all the residual functions, which effectively propagates information

Chapter 5. Applications 73

in topological order between the components. For example, the predecessor (in
topological order) of the component above supplies the value of Ly.

The cost of carrying fixpoint iteration (for this problem) to completion is
well known to be O(B x V) where B is the size of the component and V is
the number of variables of interest. For a fixed number of variables the cost is
O(B). Phase three simply combines residual functions using the U operation.
No fixpoint iteration is performed. The partition used in this example is based

on an incremental data flow analysis algorithm described in [MR90].

5.4.1 Comparison with known algorithms

An algorithm in the literature which is closely related to ours is the one described
in [MR90]. This algorithm exhibits better performance than ours in the follow-
ing respects: When a change is made to the input flow graph, the algorithm
in [MR90] only reexamines those components which are actually affected by the
change, and only these have their solutions recomputed. In our algorithm, while
the fix point computation for unaffected components is not redone, the Combine
phase is too heavy handed in that it propagates change information throughout
the graph. This is because the information stored in the form of residual func-
tions only incorporates information local to an element of the partition. This
causes the final solution for every component to be recomputed even if only one
changes. For example, in the first residual function we showed, observe the de-
pendencies on both sccl and sce3. This implies that if any of the other elements
of the partition change, this residual function causes recomputation. Also, the
algorithm in [MR90] can handle non structural changes, whereas our algorithm
cannot. This is because the entire partition may change due to a non-structural

change, causing recomputation from scratch.

Chapter 5. Applications T4

5.4.2 Performance

We now describe the performance results for the data flow analysis problem
discussed above. First we make some general comments which also apply to
the examples discussed later. The implementation runs under the T system (a
dialect of Scheme) using the partial evaluator Schism. In each case we compare
the performance of the “compiled incremental program” (as described in the last
section) with the non-incremental (batch) version.

The choice of input data has been done as follows. It is possible to show very
good performance by making the changing element of the partition very small
and the rest of the input arbitrarily large. Correspondingly it is possible to make
an incremental program perform poorly by making the changes very large, so
that the overhead of recomputing the solution becomes comparable to the batch
version. To present a more accurate picture, we have chosen input data where
the elements of the partition are of equal size. Thus if there are n elements in the
partition, one would expect the incremental version to show an n-fold speedup
over the batch version for changes which only affect one element of the partition.
In practice we observe that the overhead associated with the methodology gives
us speedups less than n (because of the overheads associated with the Combine
step).

Shown in Figure 5.4, 5.5 are the performance figures. The tables show the
costs of recomputing the result in a non-incremental (batch) mode and using the
incremental program. In Figure 5.4, since we use a partition of three equal sized
components, we expect an ideal speedup of three. The overhead of the Combine
step forces us to settle for a lower speedup. Each row of the tables represents
a small change to the input in the previous row. The cost of the Combine
step grows slower than the cost of the Reestablish step. Thus as the input
partition size gets larger (more components in the data flow analysis example),
the speedup also increases. This can be seen from Figure 5.5 where we show the

results of running the same program with a partition containing five elements.

Chapter 5. Applications

Batch | Reestablish | Combine | Total | Speedup
115.32 31.24 26.39 |57.63| 2.00
116.97 29.26 2448 | 53.714| 2.18
118.35 29.57 24.90 | 5447 2.17
117.26 27.74 26.30 | 54.04 | 2.17

Figure 5.4: Data Flow Analysis: Reaching Definitions. A 120 node graph with 3

connected components of approximately equal size.

Batch | Reestablish | Combine | Total | Speedup
231.56 28.47 28.52 | 56.99 | 4.06
229.82 27.63 26.71 54.34 4.23
236.03 31.02 26.29 | 57.31| 4.12
233.98 29.73 28.81 | 58.54 | 3.99

Figure 5.5: Data Flow Analysis: Reaching Definitions. A 200 node graph with 5

connected components of approximately equal size.

The experiments could not be run for examples with partition sizes greater than
five, because the Schism programs thus generated were too large for the Scheme
compiler to handle. Although there is considerable overlap among the residual
functions and this provides many opportunities to share code, our system does
not perform this optimization. Therefore the code size is unnecessarily large. We

discuss this in the last chapter.

5.5 Attribute Evaluation

The use of attribute grammars [Knu68] to describe language specifications is

well known. These specifications have also been used as the starting point for

Chapter 5. Applications 76

N — SL {Lscale = 0
N.val = if S.neg then — L.val
elseL.val }
S = + {Sneg = false}
S - - {Sneg = true}
L - B { B.scale = L.scale
L.val = Bu.al}
Ly —» LB { Lj.scale = Lg.scale+1
B.scale = Lg.scale
Lowval = Lywal+ Buwal}
B — 0 {Bwal = 0}
B -1 { Bwal = 2B-scale}

Figure 5.6: Attribute grammar for signed binary numerals

the generation of language based programming environments [Rep84]. Programs
in this model are represented as attributed trees, i.e. syntax trees with attributes
carrying semantic values. The goal of incremental attribute evaluation is to
efficiently produce a well attributed tree after each editing operation. In what
follows, editing is modelled by subtree replacement, and we only consider non-
circular attribute grammars [Knu68].

As usual let us first describe a non-incremental algorithm, which we do by
means of an example. Consider the attribute grammar in Figure 5.6, which
describes the syntax for signed binary numerals, as well as the semantics: the
decimal value that the numeral denotes. For example, the parse tree for -110 is
shown in Figure 5.7 (we refer to this example later).

Given an attribute grammar and a parse tree, the non-incremental program
for attribute evaluation is given in Figure 5.8.

Note that the representation of the parse tree is in the form of a list of its
subtrees with the root being considered part of the first subtree. Each subtree
is represented by the list of equations generated from the tree. For example, the

tree in Figure 5.7 is represented by the following list in Haskell:

[[["valO", "negl", "yal2"]’

Chapter 5. Applications 7

~m

[IO e B mmmn N o Y e O s I v N v A s IO e TN e B e |

N (0)
/N
s @) L(2)
N
- L@ B (4)
N
L (5) B©)
¢
B (7) 1
¢
1

Figure 5.7: Parse tree for -110

"negl n]] s

"scale2"],

"val2", "val3", '"val4"],
"scale3", "scale2"],
"scaled4", "scale2"],
"vald"],

"val3d", "val5", “val6"],
"scale5", "scale3"],
"scale6", "scale3"],
"valé", '"scale6"],
"valb", "val7"],
"scale7", "scale5"],
"val7", "scale7"]1]]

The function solve takes a list of equations, sorts them in topological or-

der and evaluates all those variables whose values depend only on the subtree

under consideration. Thus, it returns an environment and a list of unsatisfied

equations. The function combine takes a list of these unevaluated equations and

evaluates them in topological order using the environment obtained by merging

the individual environments. It also returns any unevaluated equations if any.

Figure 5.9 shows the list of equations generated from the parse tree in Figure

Chapter 5. Applications 78

-- Attribute grammar evaluator
type Eqn = (Var, Expr)
type Env = [(Var, Val)]

attreval :: [Eqn] -> (Env, [Eqn])
attreval subtrees = foldl combine (nullenv, nulleqgns)
(map solve subtrees)

solve :: [Eqn] -> (Env, [Eqn])
solve tree = evallist (sched [] tree)

-- schedule a list of equations for solving by a topological sort
sched :: [Eqn] -> [Eqn] -> ([Eqn], [Eqnl])
sched readylist eqmns =
case vl of
[1 -> (readylist, v2)
(v, e) -> sched (v:readylist) v2
where (v1, v2) = removereadyeqn readylist eqns

-- find the next ready equation: an equation is ready if all the
-- variables it depends upon have been evaluated
removereadyeqn :: [Eqn] -> [Eqn] -> (Eqn, [Eqnl)
removereadyeqn readylist eqns =
removereadyeqn’ readylist [] eqms

removereadyeqn’ readylist acc [1 = ([], acc)
removereadyeqn’ readylist acc (eqn:eqns) =

if (ready eqn readylist)

then (eqn, acc ++ eqns)

else removereadyeqn’ readylist (eqn : acc) eqmns

-- check if an equation is ready by checking if all the variables it
-- depends upon have been evaluated

ready :: Eqn -> [Eqn] -> Bool

ready (v, e) readylist = allready e readylist

allready :: [Var] -> [Eqn] -> Bool

allready [] readylist = True

allready (var:vars) readylist =
if or (map (\ v -> v == var) readylist)
then allready vars readylist
else False

Figure 5.8: Attribute Grammar Evaluator.

Chapter 5. Applications 79

valp = 1if neg; then — valy else valy
scale; = 0

negq; = true

val, = wvals+ valy
scales = scaley +1
scaley, = scaley

valy, = 0

vals = wvals + valg
scales = scalez+1
scaleg = scales

’Uale — Qscalee

vals = wvaly
scale; = scales

'val7 — 2scale7

Figure 5.9: Attribute equations for the example parse tree

5.7. Figure 5.10 shows the result of topologically sorting the variables in these
equations.

Suppose p; is the projection reflecting the fact that only the descendants
of node 7 are known. Then p; is the projection where every node ezcept the

descendants of ¢ are known. A candidate partition is thus:
P = {p:} U {Fi}

Recall that the Setup phase computes the residual functions corresponding
to each projection in the partition. Using the above partition for Figure 5.7, let us
see what 75 looks like. The partial evaluator has knowledge of all nodes except
7. This corresponds to the modified dependency graph shown in Figure 5.11,
where the dotted portion is unknown. It is not difficult to see that the partial
evaluation of the batch program on a tree with these subtrees unknown results in
the evaluation of scale,, scales, scaley, scales, scales, valy, valg, and neg; (but
not valp, valy, val3, vals, valy and scaler).

The Reestablish and Combine phases work as follows. If we are given a

new subtree at (say) node 5, we compute r,, and take the lub of r& and rp,

Chapter 5. Applications 80

/sca162 \

scaleg scales
e !
scaleg scales
} {
valg scaler
{
valy
}
vals

/
vals

val
LA e

val, _—, valp

Figure 5.10: Dependency graph

Chapter 5. Applications

valg E scaler
vy
: valy
vals
vals

val
LA e

valy, _—, valp

Figure 5.11: Partial dependency graph

81

Chapter 5. Applications 82

to obtain the answer. But now the Reestablish phase can be unacceptably
expensive. Changing a subtree rooted at node 5 causes residual functions far
away from node 5 to be altered. This means that every time a subtree is changed,
unacceptably many residual functions have to be recomputed.

This problem leads us to seek a new partition. Consulting the literature, we
find in [RTD83] an incremental algorithm for the same problem which reduces
the amount of work done while updating the stored information. We can use
exactly the same method, described below in our framework.

The key idea is to make use of a restricted editing model, in which cursor

position is maintained:

o The cursor is at any given moment at one node in the parse tree, and can

be moved in one of two ways: to the parent node, or to one of the children.
o The only edit operation permitted is subtree replacement.

Thus at any given moment the nodes can be partitioned into three disjoint sets:
The first is the singleton set R consisti;lg of the cursor position r. The second
is the set S of nodes on the path from the root to the cursor position, including
the root. The third is the set T' of remaining nodes, which includes nodes below
the cursor.

Using this knowledge, the new input partition is as follows:
P={p,pi|lieR}U{p|ieT}U{pi|ieS}

- The Setup phase is similar to that described for the previous partition. The
Reestablish phase, however, is more interesting. Consider a node a with three

children b, ¢ and d. There can now be three kinds of changes.

e Move To Parent. The set T gets a new member (the old cursor position);
but since the old R had both r, and r; computed, there is no work to do.
The set S loses a member, so again their is no work to do. The set R gets a

new member for which we need to compute r,. Moving from child b (say) to

Chapter 5. Applications 83

parent a, the operation needed to Reestablish the invariant is (note that

combine is the function which forms part of the non incremental program):
(Tpa 4 1,75, | 2) = combine (rp, | 1,75, | 2) (rp. | Lirpe 1 2) (rps L 1,5, 1 2)

We use 7, | 1 to represent the environment produced by evaluating the
subtree corresponding to projection p. 7, | 2 represent the list of unsatisfied

equations in the subtree represented by projection p.

e Move to Child. By similar reasoning, the operation to be performed for

a move from parent a to child c is:

(rez L 1,r5 | 2) = combine (r57 | 1,r52 1 2) (rp, L 1,7, 1 2) (o, L 1,75, 1 2)

e Replace Subtree. Here we simply need to recompute r, for the current
cursor position. By virtue of the partition, nothing else needs to be changed

(cf. the previous partition).

When a subtree is replaced at node p, the new result is obtained by computing
rp U r5. The first observation we make concerns the computation of rz: any
attribute which does not depend on projection p of the tree gets a value during
the computation of r;. During the Reestablish stage, the work done is in
computing those attributes in the modified subtree which do not depend on the
rest of the tree. During the Combine phase the work done is in computing those
attributes in the modified subtree which depend on the rest of the tree. Thus the
total work done is exactly in recomputing those attributes which are potentially
affected by the subtree modification — only those attributes which depend on the
changed subtree get reevaluated. Since we are working within the context of a
functional language the time complexity of the topological sort is quadratic in
the number of attributes. This means that the time taken to update the parse

tree 1s actually proportional to the square of the attributes potentially affected.

Chapter 5. Applications 84

5.5.1 Comparison with known algorithms

The algorithm for incremental attribute evaluation in [RTD83] achieves a better
time complexity, namely that an attribute is re-evaluated only if the values of any
of the attributes it depends upon change. The algorithm we outlined re-evaluates
all attributes which depénd on the changed subtree. This algorithm thus achieves
an asymptotically linear time complexity in the number of attributes affected.
Our algorithm on the other hand is worst case quadratic in the number of at-
tributes potentially affected.

The reason for the quadratic factor is our use of a functional language - linear
topological sort cannot be expressed in a garden variety functional language. 4
The other inefficiency relates to our algorithm reevaluating all attributes which
may be potentially affected, not those which are affected. This is because the
algorithm we construct does not take into account a recomputation of an attribute
which results in the old value — this does not need to be propagated. This can
be seen as a “run-time check”, while our algorithm attempts only “compile-time
checks”.

During cursor movement, the algorithm in [RTD83] achieves unit cost per
move. The algorithm we have outlined takes time proportional to the number of

attributes whose values are resolved as a result of the combine operation.

5.5.2 Performance

Figure 5.12 shows the performance results of running the incremental program
on a tree generated by the attribute grammar L — L L L, L — a. The size of
the subtree modified is approximately a third of the whole tree. The speedups
are less than the “ideal” speedup of three, due to the overhead of the Combine
step. A similar experiment for a larger tree is shown in 5.13. Again this shows

less than the ideal speedup of five.

“Recent research [GH90], [SRI91], [Wad90] points to efficient ways of achieving side-effects

in a functional language. We have not used these methods.

Chapter 5. Applications 85

Batch | Reestablish | Combine | Total | Speedup
31.63 6.03 8.71 1474 | 2.15
30.43 6.29 7.51 13.80 | 2.20
30.17 5.92 8.20 14.12 | 2.14
32.79 4.85 7.53 12.38 | 2.65

Figure 5.12: Attribute Evaluation: L — L L L, L — a. A 100 node tree with

changes made to a subtree of approximately a third the size.

Batch | Reestablish | Combine | Total | Speedup
128.84 30.85 0.41 31.26 4.12
128.52 30.91 0.43 31.34 4.10
128.45 30.91 0.41 31.32 4.10
126.94 31.20 0.47 31.67 4.00
127.43 31.20 0.42 31.62 4.03

Figure 5.13: Attribute Evaluation: L — L L L, L — a. A 150 node tree with

changes made to a subtree of approximately a fifth the size.

Chapter 5. Applications 86

5.6 Strictness Analysis

Strictness analysis is a well known optimization technique in compilers for non-
strict functional languages. The purpose of the analysis is to determine which
arguments to a function are guaranteed to be evaluated (i.e. in which arguments
the function is strict), so that expensive closures do not have to be built for these
arguments. We examine the problem of strictness analysis of first order func-
tional programs. First let us examine a non incremental version of the program.
Given a set of (possibly recursive) function definitions, an abstract interpretation
can give us the desired strictness information [PJ87]. Here is an example:

foy=gxy
fxy=f@x-1y

[}

The abstract version of f is given by (abstract functions will be written in a

functional style):

f# x y = x AND ((g# x y) OR (f# x y))

The abstract version is over the domain of monotone boolean values where 0
C 1 and 0 stands for non-termination and 1 for “may terminate”. The solution to
this equation can be found by a least fix point construction using the ascending
Kleene chain of approximations. In this sense the example resembles the data
flow analysis example, the major difference being that the recursive equations
in that example involved set valued variables while here the equations involve

boolean valued functions. The solution to the above equation is (assuming that

gt xy=y):

feaxy=1ifx=y=1,
0 otherwise

Given an abstract function, the non-incremental program in Haskell is shown
in Figure 5.6 (again we assume that the input equations have been factored into
their strongly connected components, where the underlying graph is the function

dependency graph).

Chapter 5. Applications 87

-- abstract expressions
data Expression = Const
| Var Int
| If Expression Expression Expression
| App Fname [Expression]
| Prim [Expression]
| Eapp Fname [Expression]
-- abstract values
data Value = Constl Bool
| And [Value]
| Or [Value]
| Eappl Fname [Value]
type Prog = [Comp]
type Comp = [Eqn]
type Eqn = (Fname, Arity, Expression)
type Env = [(Fname, [([Abstractvalue], Abstractvalue)])]
type Fname = String

sa :: Prog -> Env -> Env
sa eqns env0 = foldl solve nullenv eqns
-- fix point finder

solve :: Env -> Comp -> Env

solve env scc = if (env == env’) then env else solve env’ scc
where env’ = nextapprox scc env

nextapprox :: Comp -> Env -> Env

nextapprox prog env =
map (\ (fname, arity, exp)->
(fname, map (\ args-> (args, eval exp args env)) (gen arity))) prog
-- evaluate an abstract expression

eval :: Expression -> [Abstractvalue] => Env -> Abstractvalue
eval Const args env = Constl True
eval (Var n) args env = Constl (args !! n)

eval (If el e2 e3) args env =
(or’ (and’ (eval el args env) (eval e2 args env)) (eval e3 args env))
eval (App fname exps) args env =
(lookup env fname (map (\ e-> (con (eval e args env))) exps))
eval (Prim exps) args env = foldl and’ (Constl True)
(map (\ e -> eval e args env) exps)
eval (Eapp fname exps) args env = Eappl fname (map(\e-> eval e args env) exps)

Figure 5.14: Strictness Analysis.

Chapter 5. Applications 88

Again solve is a function which computes the solution to a set of mutually
recursive abstract function definitions. The method used is the standard ascend-
ing Kleene chain method. The program is represented by an abstract data type
with entries for each syntactic class. To complete the program‘ we use the same
partition as in the data flow analysis example (this partition enables fix point
computation in each element of the partition to proceed to completion locally):
P = {p;} such that:

poll = [hpo(z:2s) = L
nl = Lp(z:zs) = (z:1)
pill = Lipi(z:25) = (L:(pia z3))

Similar to the data flow analysis example, we first transform the strictness
analysis code into a form amenable to partial evaluation by performing arity
raising.

The second transformation is also similar to the data flow analysis case. This
transformation splits the environment into static and dynamic parts. Using the
filter mechanism, Schism is informed about when to unfold and when to special-
ize. It differs from the data flow analysis example in that when the evaluation
of the fixpoint is complete the static environment is evaluated in the context of
the dynamic environment. The reason for this is to evaluate the place holders
for the dependencies from outside the connected component.
solve scc env_s env_d =

if (env_s == env_s’)

then (enveval env_s env_d)
else solve scc env_s’ env_d

The filter corresponding to the function solve is:

(filter (if (and (stat? scc) (stat? env_s)) UNFOLD SPECIALIZE)
(1ist scc env_s env_d))

As in the data flow analysis example, the solve function needs to be dupli-

cated to achieve the effect of polyvariant binding time analysis. The result of

Chapter 5. Applications 89

Batch | Reestablish | Combine | Total | Speedup
64.98 39.25 8.07 47.32 | 1.37
67.44 39.16 9.18 48.34 | 1.39
66.02 38.54 8.01 46.55 | 1.42
65.71 39.13 8.30 4743 | 1.39
64.18 40.81 8.16 4897 | 1.31

Figure 5.15: Strictness Analysis. Program partitioned into two components.

specializing dfa with scc2 and env0 as STATIC is shown below. The value used
for scc2 is the function £ described in the beginning of this section and the value
used for env0 is the empty environment. Note the unresolved dependence on g#:
(lambda (sccl scc3)
(solve3 scc3 (map31 (car scc3))
(env-eval2 (£ . ((0 0 0) (01 0)

(10(g10)) (11 (g11))N
(solvel sccl (mapil (car sccil)) null-env))))

This describes the details of the Setup and the Reestablish phases of the
interpreter. The Combine stage works exactly as in the data flow analysis case,
sharing the same deficiencies: non structural changes are not supported, and the
Combine phase propagates change information throughout the program, rather
than affecting only those components dependent on the change. We know of no

other attempt to construct an incremental strictness analyzer.

5.6.1 Performance

Tables 5.15, 5.16 show the performance figures for the incremental strictness
analyzer. They show the performance for two cases: a partition of size two and

a partition of size five.

Chapter 5. Applications 90

Batch | Reestablish | Combine | Total | Speedup
260.54 46.53 9.98 56.51 | 4.61
255.40 46.05 8.17 54.22 | 4.71
259.94 48.29 8.25 56.54 | 4.59
260.68 48.31 8.35 56.66 | 4.60
261.01 47.89 8.19 56.08 | 4.65

Figure 5.16: Strictness Analysis. Program partitioned into five components.

5.7 Type Inference

Hindley-Milner type inference for functional programs concerns itself with finding
a most general polymorphic type for each expression in a program (or reporting
a type error). This type discipline was first described by Milner [Mil78]. For
example, the most general type that can be inferred for the map function is:
(a =) = [a] = [8].

We start with a version of the Hindley Milner typing algorithm which takes as
its input a lambda expression, and outputs two items: a most general polymor-
phic type and a substitution. The main parts of the non-incremental program are
shown in Figure 5.7, 5.18 (the input to the type inference algorithm is assumed
to be a list of the strongly connected components of the equations based on the
function dependency graph):

The program is a modified version of the type inference program in [PJ87]. tc
is a function which computes the most general type of a set of mutually recursive
abstract function definitions. The method used is the standard Hindley Milner
type inference algorithm. The combine function simply combines the type envi-
ronments by type checking those functions which have dependencies outside of
their partition. To complete the program we use the same partition as in the

dataflow analysis example: P = {p;} such that:

Chapter 5. Applications 91

-- concrete syntax
data Exp = Var Integer
| App Exp Exp
| Lam Integer Exp
-- type expressions
data Texp = Tvar Integer
| Arrow Texp Texp
| Error
-- substitutions
data Subst = Scomp subl sub2
| Base [(Integer, Texp)]

| Errori
type Prog = [Comp]
type Comp = [Exp]
type Tenv = [(Tvar, Texp)]
type Tvar = Integer

typecheck :: Prog -> Subst
typecheck exps = foldl combine nullsubst
(map2 (\ exp -> (\ names ->
tc exp nulltenv idsubst names)
exps namelist))

tc :: Exp -> Tenv -> Subst -> [Tvar] -> (Texp, Subst)
tc (Var v) tenv subst cache = (lookup tenv v, subst)

tc (App el e2) tenv subst (name:names) =
(Tvar alpha, subst3)
where (tel, s1) = tc el tenv subst names
(te2, s2) = tc e2 tenv sl1 names
alpha = name
subst3 = unify tel (Arrowy te2 (Tvar alpha)) s2

tc (Lam v e) tenv subst (name:names) =
(Arrow (Tvar alpha) te, s)
where alpha = name
tenv’ = (v,Tvar alpha) : tenv
(te, s)= tc e tenv’ subst names

Figure 5.17: Type Inference: part 1

Chapter 5. Applications 92

-- unify two type expressions to produce a new substitution
unify :: Texp -> Texp -> Subst -> Subst
unify (Tvar v) te2 phi =
if (tvar (sapp phi v))
then if (v == (var (sapp phi v)))
then extend phi v (subtype phi te2)
else unify (sapp phi v) (subtype phi te2) phi
else unify (sapp phi v) (subtype phi te2) phi
unify (Arrow tell tel12) (Tvar te21) phi =
unify (Tvar te21) (Arrow tell tel2) phi
unify (Arrow tell tel2) (Arrow te2l1 te22) phi =
phi2
where phi2 = unify tel2 te22 phil
phil = unify tell te21 phi

-- perform substitution phi on all variables in type expression
subtype :: Subst -> Texp -> Texp
subtype phi (Tvar v) = sapp phi v
subtype phi (Arrow tel te2) =
Arrow (subtype phi tel) (subtype phi te2)
idsubst = Base []

-- Apply a substitution

sapp :: Subst -> Tvar -> Texp

sapp (Scomp sl s2) tv = subtype s2 (sapp sl tv)
sapp (Base s) tv =

if (Error x) then Tvar tv else x

where x = lookup s tv

-- Extend a substitution
extend :: Subst -> Tvar -> Texp -> Subst
extend phi tvn (Tvar v) =
if (v == tvn) then phi else Scomp [(tvn, Tvar v)] phi
extend phi tvn texp =
if (mem tvn (tvars texp)) then Errorl else Scomp [(tvn, texp)] phi

-- collect the type variables in a type expression
tvars :: Texp -> [Tvar]

tvars (Tvar v) = [v]

 tvars (Arrow tel te2) = (tvars tel) ++ (tvars te2)

Figure 5.18: Type Inference: part 2

Chapter 5. Applications 93

pof] = [po(z:2s) = L
nll=4Lp(:zs) = (z:1)
pill = Lipi(z:as) = (L:(pica 29))

This means that each strongly connected component is in a separate element
of the partition. This means that all type checks which do not depend on func-
tion definitions from outside the component. Similar to the data flow analysis
example, we first transform the code into a form amenable to partial evaluation:
to make sure that the binding times for arguments to the main function are not
partially static, we carry out a process similar to arity raising. We perform the
usual duplication transformation to achieve polyvariant specialization.

When a residual function is computed, the corresponding tc function is com-
pletely unrolled. The Combine stage works exactly as in the data flow analysis
case, sharing the same deficiencies: non structural changes are not supported,
and the Combine phase propagates change information throughout the pro-

gram, rather than affecting only those components dependent on the change.

5.7.1 Performance

Tables 5.19, 5.20 show the performance figures for the incremental strictness
analyzer. They show the performance for two cases: a partition of size two and

a partition of size four.

5.8 Conclusions

In this section we have presented the development of incremental programs for a
variety of tasks. Typically the non incremental program needs to be transformed
in certain ways to satisfy the partial evaluator - to enable the partial evaluator

to specialize the program as intended. Some common features emerge:

o Typically partitions are defined as a function of the data structure un-

der consideration. For example, we considered partitioning a graph into

Chapter 5. Applications

Batch | Reestablish | Combine | Total | Speedup
54.82 33.78 0.09 33.87 | 1.62
53.17 37.61 0.12 37.73 | 1.41
52.83 39.72 0.11 39.83 | 1.33
53.01 47.63 0.11 47.74 1.11
52.98 46.13 0.13 46.26 | 1.15

Figure 5.19: Type Inference. Program partitioned into two components.

Batch | Reestablish | Combine | Total | Speedup
102.41 31.59 0.13 31.72 | 3.23
105.29 29.43 0.12 29.55 | 3.56
105.83 32.711 0.09 32.80 | 3.23
103.59 34.02 0.11 34.13 | 3.03
101.70 29.58 0.11 29.69 | 3.42

Figure 5.20: Type Inference. Program partitioned into four components.

Chapter 5. Applications 95

strongly connected components. Present day partial evaluators are typi-
cally capable of handling only structural kinds of information. In other
words, the known /unknown dichotomy needs to be expressed in a structural
manner. In our case this entails a transformation of the source program
into a form where this is the case. For example, we transformed the data
flow analyzer to take as argument a list of the strongly connected compo-
nents of the input data flow graph. There is work being done to extend
partial evaluation to take advantage of arbitrary properties of the inputs

(not simply known/unknown) to a program [CK91].

o Frequently it is necessary to separate the static and dynamic computations
in a function so that it is possible to explicate the following: termination
of unfolding depends only on the static component. This can be seen as
a form of staging [JS86] — a technique where precomputation or frequency
reduction is used to move computation among a collection of stages so that
work is done as early as possible (so that less time is required in later steps)

and as infrequently as possible (to reduce overall time).

e The Combine step affects all elements of the partition and does not use
the dependency ordering among elements of the partition to eliminate un-

necessary computations.

We comment further on these points in the next chapter.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have presented a framework for constructing incremental programs from their
non-incremental counterparts. We have used the notion of partial evaluation to
provide a basis for our framework. This is particularly appropriate since binding-
time analysis (an important phase of partial evaluation) is concerned with an-
alyzing dependencies in a program based on the known/unknown signature of
the input. This approach offers a degree of automation in the construction of

incremental programs. A summary of the results in this thesis are as follows:

e We proposed a connection between incremental computation and partial
evaluation. The connection was formalized by proposing a methodology
which used partial evaluation as a tool to build incremental programs. An
incremental interpreter was presented, which used a cache of residual func-

tion in order to obtain incrementality.

o In order to answer theoretical questions raised by the methodology we inves-
tigated the algebraic properties of residual functions over certain projection
domains. In doing so, we established the existence of a least upper bound,

greatest lower bound and a difference operator — both for the domain of

96

Chapter 6. Conclusions and Future Work 97

projections and the homomorphic domain of residual functions. We iden-
tified the “combining” operator on residual functions with the least upper
bound operation. Thus we were assured of its existence and uniqueness.

We also obtained an insight into its algebraic properties.

o We presented an algorithm to compute the least upper bound of two resid-
ual functions. This algorithm relies on the binding time information be-
longing to each residual function. The binding time information is used to
construct the least upper bound by choosing the “more evaluated” parts
of the two residual functions. We presented a detailed proof of correct-
ness of the algorithm. The algorithm is also shown not to reperform any

computation already done in either one of the two residual functions.

¢ We applied the methodology to a number of problems and obtained perfor-
mance results from an implementation using the Schism partial evaluator
[Con90a, Con90b, Con88]. The descriptions include the non incremental
program, the partition used, details of the specialization phase and the

combine phase.

6.2 Future Work

Binding Time Analysis Binding time analysis is essential for good perfor-
mance of the incremental programs we have described. Since the partition is
known before the actual data elements are available, binding time analysis can
be carried out off-line. This means that the self-application described above can
avoid the overhead of interpretation. Binding time analysis is usually achieved
by an abstract interpretation of the program. To ensure termination, finite do-
mains are usually used. But as we have seen our domain of projections is infinite
(although the number of projections used in any given session is finite). One way
to overcome this problem for implementation purposes is to place a fixed upper

limit on the size of the input data. We are investigating other solutions. We have

Chapter 6. Conclusions and Future Work 98

not discussed the cost of maintaining the input partition. In some cases (the at-
tribute grammar example) the cost of maintaining the partition is not very high.
In the case of the data flow analysis we must employ a method to maintain the

strongly connected components of the flow graph.

Non-structural Changes The methods we have discussed do not work well for
non-structural changes — changes which may affect the structure of the partition.
The naive way of handling non structural changes in our framework induces an

unacceptably large amount of recomputation.

Sharing of Residual Functions Sharing residual functions across different
computations may not be possible. If two data flow graphs share a strongly
connected component, it should be possible to use the residual function from one
incremental session in the other session. But this may not be possible since the
two strongly connected components, although they are the same, may occupy
different positions in the list of strongly connected components.

How can we overcome the restriction mentioned above? Here are some pre-
liminary thoughts: If instead of building larger residual functions with respect to
their projection component, consider building larger residual functions based on

the argument component. i.e. instead of

Tpa U Tga = Tpuge

consider:

Tpe U Tpb = Tpau

The advantage of caching residual functions of this form is that it enables
the residual for one element of the partition to be independent of a residual for
another. This means that residuals can be freely reused between different graphs.
This may also point to a way of handling non structural changes. What does the

new combination operator look like? Let us look at a specific example: say data

Chapter 6. Conclusions and Future Work 99

flow analysis. Here if the non-incremental program takes as input a strongly
connected component graph and an environment containing bindings for arcs
flowing into the component, then the projection p above is simply LEFT. The
combination operator simply involves pipelining the residuals (function compo-
sition) in topological order. An important point of departure from the present
scheme of things is that the topological order of elements in the partition plays
an important role. This can be exploited to provide better change propagation

strategies.

Space Utilization As mentioned in Chapter 5, storing the cache in a naive
manner leads to excessive space consumption. There is considerable overlap in
the bodies of the residual functions and there are opportunities for code sharing

here.

Bibliography

[AHR*+90]

[Ase87]

[BHOST6)

[BM75]

[Bro88§]

[CD8Y]

[CD90a]

B. Alpern, R. Hoover, B. Rosen, P. Sweeney, and K. Zadeck. Incre-
mental evaluation of computational circuits. In ACM-SIAM Sympo-
stum on discrete algorithms, pages 32-42, January 1990.

P.J. Asente. Editing graphical objects using procedural representations.
PhD thesis, Stanford University, 1987.

L. Beckman, A. Haraldson, 0. Oskarsson, and E. Sandewall. A partial
evaluator, and its use as a programming tool. Artificial Intelligence,

7(4):319-357, 1976.

R. Boyer and J.S. Moore. Proving theorems about lisp functions. In

International Joint Conference on Artificial Intelligence, 1975.

K.P. Brooks. A two-view document editor with user-definable docu-
ment structure. Technical Report 33, DEC Systems Research Center,
November 1988.

C. Consel and O. Danvy. Partial evaluation of pattern matching in

strings. Information Processing Letters, 30:79-86, 1989.

C. Consel and O. Danvy. From interpreting to compiling binding
times. In Proceedings of the 3rd European Symposium on Program-
ming, Lecture Notes in Computer Science, Vol. /32. Springer-Verlag,
May 1990.

100

BIBLIOGRAPHY 101

[CD90b]

[CD91]

[CK91]

[Con88]

[Con90a]

[Con90b)

[EH80]

[FT90]

[Fut71]

C. Consel and O. Danvy. Partial evaluation in parallel. Research
Report 820, Yale University, New Haven, Connecticut, USA, 1990.

C. Consel and O. Danvy. For a better support of static data flow. In
John Hughes, editor, Proceedings Functional Programming Languages
and Computer Architecture, 5th ACM Conference, Cambridge, MA,
USA, pages 496-519. Springer-Verlag, August 1991. Lecture Notes in
Computer Science 523.

C. Consel and S.C. Khoo. Parameterized partial evaluation. In ACM
SIGPLAN Conference on Programming Language Design and Imple

mentation, 1991.

C. Consel. New insights into partial evaluation: the schism exper-
iment. In ESOP’88, 2nd European Symposium on Programming,
Nancy, France, volume 300 of Lecture Notes in Computer Science.
Springer-Verlag, March 1988.

C. Consel. Binding time analysis for higher order untyped functional
languages. In Proceedings of the 1990 ACM Conference on Lisp and
Functional Languages, June 1990.

C. Consel. The Schism Manual. Yale University, Department of Com-

puter Science, November 1990.

P. Emanuelson and A. Haraldsson. On compiling embedded languages
in lisp. In Proceedings of the 1980 Lisp Conference, pages 208-215,
1980.

J. Field and T. Teitelbaum. Incremental reduction in the lambda
calculus. In Proceedings of the 1990 ACM Conference on Lisp and

Functional Programming, June 1990.

Y. Futamura. Partial evaluation of computation process-an approach

to a compiler-compiler. Systems, Computers, Controls, 2(5), 1971.

BIBLIOGRAPHY 102

[GH90]

[HKRS9]

[HT864]

[HT86b)

[Hugss]

[HWS7]

[HWSS]

[HWe90]

[JGB*90]

J. Guzmaén and P. Hudak. Single-threaded polymorphic lambda cal-
culus. In IEEE Symposium on Logic in Computer Science, pages
333-343, June 1990. Philadelphia, Pennsylvania.

J. Heering, P. Klint, and J. Rekers. Incremental generation of parsers.
In Prooceedings of the SIGPLAN ’89 conference on programming lan-
guage design and implementation, pages 179-191, 1989.

R. Hoover and T. Teitelbaum. Efficient incremental evaluation of ag-
gregate values in attribute grammars. In Proceedings of the SIGPLAN

‘86 symposium on compiler construction, pages 39-50, July 1986.

S. Horwitz and T. Teitelbaum. Generating editing environments based
on relations and attributes. ACM Transactions on Programming Lan-

guages and Systems, 8(4):577-608, October 1986.

R.J.M. Hughes. Backwards analysis of functional programs. In
A .P.Ershov D.Bjgrner and N.D.Jones, editors, Partial Evaluation and
Mized Computation. North-Holland, 1988.

R.J.M. Hughes and P. Wadler. Projections for strictness analysis. In
FPCA, 1987.

P. Henderson and M. Weiser. The visiprog environment. In Prooceed-

ings of the 8th international conference on software engineering, 1988.

P. Hudak and P. Wadler (editors). Report on the programming lan-
guage Haskell. Technical Report YALEU/DCS/RR-777, Yale Univer-
sity, Department of Computer Science, April 1990.

N. D. Jones, C. K. Gomard, A. Bondorf, O. Danvy, and T. Mogensen.
A self-applicable partial evaluator for the lambda calculus. In IEFE
International Conference on Computer Languages, pages 49-58, 1990.

BIBLIOGRAPHY 103

[3586)

[JSS89]

[Knu68)

[Lau88]

[Lau90]

[Lel8S]

[LR64]

[Mil78]

[Mil84]

[Mogg6]

U. Jgrring and W.L. Scherlis. Compilers and staging transformations.
In Proceedings of the Thirteenth principles of programming languages

conference, pages 86-96, 1986.

N. D. Jones, P. Sestoft, and H. Sgndergaard. Mix: A self-applicable
partial evaluator for experiments in compiler generation. Lisp and
Symbolic Computation, 2(1), 1989.

D. Knuth. Semantics of context-free languages. Math Systems Theory,
2(2):127-145, February 1968.

J. Launchbury. Projections for specialisation. In A.P.Ershov
D.Bjgrner and N.D.Jones, editors, Partial Fvaluation and Mized
Computation. North-Holland, 1988.

J. Launchbury. Projection Factorisations in Partial Evaluation. PhD

thesis, University of Glasgow, January 1990.
W. Leler. Constraint Programming Languages. Addison-Wesley, 1988.

L. A. Lombardi and B. Raphael. Lisp as the language for an incre-
mental computer. In The Programming Language LISP: Its Operation
and Applications, pages 204-219. Information International Inc., The
MIT Press, 1964.

R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Science, 17:348-375, 1978.

R. Milner. A proposal for standard ml. In Proceedings of the 198}
Conference on LISP and Functional Programming, pages 184-197,
August 1984.

T. Mogensen. The application of partial evaluation to ray-tracing.

Master’s thesis, DIKU, University of Copenhagen, 1986.

BIBLIOGRAPHY 104

[MR90]

[MT46]

[Nel85]

[Nie89]

[Pai86]

[PJ8T]

[PK82]

[Pugs§]

[RCS6]

[Rep84]

T. J. Marlowe and B. G. Ryder. An efficient hybrid algorithm for in-
cremental data flow analysis. In Conference Record of the Seventeenth
Annual ACM Symposium on Principles of Programming Languages,
1990.

J. C. C. McKinsey and A. Tarski. On closed elements in closure
algebras. Annals of Mathematics, 47(1), January 1946.

G. Nelson. Juno, a constraint-based graphics system. Computer
Graphics, 19(3):235-243, 1985.

F. Nielson. Two-level semantics and abstract interpretation. Theo-
retical Computer Science, 69:117-242, 1989.

R. Paige. Programming with invariants. IEEE Software, 3(1):59-69,
January 1986.

S.L. Peyton Jones. The Implementation of Functional Programming

Languages. Prentice-Hall, 1987.

R. Paige and S. Koenig. Finite differencing computable expres-
sions. ACM Transactions on Programming Languages and Systems,
4(3):402-454, July 1982.

W. W. Pugh, Jr. Incremental Computation and the Incremental Eval-
uation of Functional Programs. PhD thesis, Cornell University, Au-
gust 1988.

B.G. Ryder and M. Carroll. An incremental algorithm for software
analysis. In proceedings of the ACM SIGSOFT/SIGPLAN software
engineering sympositum on practical software development environ-
ments. ACM, 1986.

T. W. Reps. Generating Language-Based Environments. The MIT
Press, 1984.

BIBLIOGRAPHY 105

[Rep90]

[Roms88]

[RPS6]

[RTD83]

[Ryd82]

[Ses86]

[SRIO1]

[Tur81]

T. Reps. Algebraic properties of program integration. In Proceedings
of the 8rd European Symposium on Programming, Lecture Notes in

Computer Science, Vol. 4382. Springer-Verlag, May 1990.

S.A. Romanenko. A compiler generator produced by a self-applicable
specializer can have a surprisingly natural and understandable struc-
ture. In A.P.Ershov D.Bjgrner and N.D.Jones, editors, Partial Eval-
uation and Mized Computation. North-Holland, 1988.

B.G. Ryder and M.C. Paull. elimination algorithms for data flow
analysis. ACM computing surveys, 18(3):277-316, 1986.

T. Reps, T. Teitelbaum, and A. Demers. Incremental context de-
pendent analysis for language-based editors. ACM Transactions on

Programming Languages and Systems, 5(3):449-477, July 1983.

B.G. Ryder. Incremental data flow analysis. In conference record

of the ninth annual ACM symposium on principles of programming
languages. ACM, 1982.

P. Sestoft. The structure of a self-applicable partial evaluator. In
H. Ganzinger and N.D.Jones, editors, Programs as data objects.
Springer Verlag, LNCS 217, 1986.

V. Swarup, U. S. Reddy, and E. Ireland. Assignments for applicative
languages. In John Hughes, editor, Proceedings Functional Program-
ming Languages and Computer Architecture, 5th ACM Conference,
Cambridge, MA, USA, pages 192-214. Springer-Verlag,‘August 1991.

Lecture Notes in Computer Science 523.

D.A. Turner. The semantic elegance of applicative languages. In
Proceedings of the 1981 Conference on Functional Programming Lan-

guages and Computer Architecture, pages 85-92, 1981.

BIBLIOGRAPHY 106

[Tur82] D.A. Turner. Recursion equations as a programming language. In
Functional Programming and its Applications: an advanced course,

pages 1-28. Cambridge University Press, 1982.

[Wad90] ©P. L. Wadler. Comprehending monads. In Proceedings of the 1990
ACM Conference on Lisp and Functional Programming, 1990.

[Wik88] A. Wikstrom. Standard ML. Prentice-Hall, 1988.

[YS91] D. Yellin and R. E. Strom. INC: A language for incremental compu-

tations. ACM Transactions on Programming Languages and Systems,
13(2), April 1991.

Appendix A

Code for Algorithm LUB

The code for algorithm LUB under the Schism partial evaluation system is shown
below. r1 and r2 are the residual expressions, c1 and c2 are the source expres-
sions, at1 and at2 are the action trees corresponding to each source expression,
cenvl and cenv2 are environments which contain the results of the evaluation of
conditionals, anal and ana2 are the results of the binding time analysis of each

of the programs.

(define (inc:lub r1 cl atl envl cenvl anal r2 c2 at2 env2
cenv2 ana2)
(cond

((inc:application? c1)

(cond
((eval? atl) r1)
((eval? at2) r2)
((id? at1) r2)
((id? at2) r1)

((and (reduce? atl) (reduce? at2))
(let ((v1 (sel anal (fn-name c1)))
(v2 (sel ana2 (fn-name c2))))

(inc:1lub r1 (extract-code v1) (extract-at vi)
(update-env envl (arg-names vi)
(dup (inc:length (arg-names v1)) ’?)
(arg-bodies c1)

107

Appendix A. Code for Algorithm LUB 108

(arg-ats atl))
cenvl anal
r2 (extract-code v2) (extract-at v2)
(update-env env2 (arg-names v2)
(dup (inc:length (arg-names v2)) ’7)
(arg-bodies c2)
(arg-ats at2))
cenv2 ana2)))

((and (reduce? at1l) (rebuild? at2))
(let ((v1 (sel anal (fn-name c1)))
(v2 (sel ana2 (fn-name c2))))

(inc:1lub r1 (extract-code vi) (extract-at vi)

(update-env envi (arg-names vi)
(dup (inc:length (arg-names vi)) ’7?)
(arg-bodies cl1)
(arg-ats at1))

cenvl anal

(extract-code v2) (extract-code v2)

(extract-at v2)

(update-env env2 (arg-names v2)
(arg-bodies r2)
(arg-bodies c2)
(arg-ats at2))

cenv2 ana2)))

((and (rebuild? at1l) (reduce? at2))
(... ANALOGOUS TO THE LAST CASE ...))

((and (rebuild? atl) (rebuild? at2))
(mk-application (fn-name c1)

(map6 (lambda (x y z u v w)

(inc:1lub x y z envl cenvl anal u v w env2
cenv2 ana?))

(arg-bodies r1) (arg-bodies ci)
(arg-ats atil)
(arg-bodies r2) (arg-bodies c2)
(arg-ats at2))))))

((inc:variable? c1)
(cond

Appendix A. Code for Algorithm LUB 109

((eval? atl1) ri1)
((eval? at2) r2)

((and (rebuild? at1l) (fail? (inc:lookup-env
envl (var-name c1))))
r2)

((and (rebuild? at2) (fail? (inc:lookup-env
env2 (var-name c2))))
rl)

((and (reduce? at1l) (reduce? at2))
(let ((v1 (inc:lookup-env envi (var-name c1)))
(v2 (inc:lookup-env env2 (var-name c2))))
(inc:1lub r1 (snd vi) (trd vi) (frt vl) cenvl anail
r2 (snd v2) (trd v2) (frt v2) cenv2 ana?2)

))

((and (rebuild? at1) (rebuild? at2))
(let ((vi (inc:lookup-env envl (var-name cl)))
(v2 (inc:lookup-env env2 (var-name c2))))
(inc:lub (fst v1) (snd v1) (trd v1) (frt v1) cenvl anail
(fst v2) (snd v2) (trd v2) (frt v2) cenv2 ana2)))

((and (reduce? at1l) (rebuild? at2))
(let ((v1l (inc:lookup-env envl (var-name c1)))
(v2 (inc:lookup-env env2 (var-name c2))))
(inc:1lub r1 (snd vi) (trd vi) (frt v1) cenvl anal
(fst v2) (snd v2) (trd v2) (frt v2) cenv2 ana2)))

((and (rebuild? at1l) (reduce? at2))
(... ANALOGOUS TO THE LAST CASE ...))))

((inc:conditional? c1)
(cond
((eval? at1) ri1)
((eval? at2) r2)
((id? at1) r2)
((id? at2) r1)

((and (rebuild? ati) (rebuild? at2))

Appendix A. Code for Algorithm LUB 110

(mk-if

(inc:1lub (test-body ri) (test-body cil)
(test-at atl) envl cenvl anal
(test-body r2) (test-body c2)
(test-at at2) env2 cenv2 ana2)

(inc:lub (cons-body r1) (cons-body c1l)
(cons-at atl) envl cenvl anal
(cons-body r2) (cons-body c2)
(cons-at at2) env2 cenv2 ana2)

(inc:1lub (alt-body ri) (alt-body c1) (alt-at atl) envi
cenvl anal
(alt-body r2) (alt-body c2) (alt-at at2) env2
cenv2 ana?2

)))

((and (rebuild? at1l) (reduce? at2))
(let ((v (lookup-cenv cenv2 (cond-name c2))))
(inc:1ub (choose-b (car v) r1) (choose-b (car v) cil)
(choose-a (car v) atl) envl cenvl anal
r2 (choose-b (car v) c2)
(choose-a (car v) at2) env2 (cdr v) ana2)))

((and (reduce? at1l) (rebuild? at2))
(... ANALOGOUS TO THE LAST CASE o))

((and (reduce? atl) (reduce? at2))
(let ((v1 (lookup-cenv cenvl (cond-name cl1)))
(v2 (lookup-cenv cenv2 (cond-name c2))))
(inc:1ub r1 (choose-b (car vi) ci)
(choose-a (car vi1) atl)
envl (cdr vi) anail
r2 (choose-b (car v2) c2)
(choose-a (car v2) at2)
env2 (cdr v2) ana2)))))))

