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I. INTRODUCTION ,

Elliptic problems are not only very important in their
own right, but often occur as the compute-intensive inner-most
loop of large=-scale scientific computations. It is thus
incumbant upon us to fully understand the algorithm-software-
architecture issues for such problems. In the Proceedings of
the 1980 meeting on Elliptic Problem Solvers [4], we gave a
hypothetical discussion of the application of array processor
systems to solving elliptic problems. While such systems have
been very successful in cost-effective signal processing, it
is by no means obvious that they would be effective in this
application. In this paper we continue our discussion (on a
less hypothetical plane) summarizihg our progress to date and
describing potential future developments.
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In Section II, we discuss array processor systems and our
experience in using one, the Floating Point Systems AP-164, to
solve the Poisson equation. We discuss three standard
algorithms based on FFTs, their implementation and algorithmic
complexity on the AP-164, and numerical.experiments. We show
that for these algorithms the AP-164 is essentially as fast as

published benchmarks for the CDC-7600.

In Sectioh I1I, we consider future developments for very
large three-dimensional problems. In particular, we cbnsider
the effect of using secondary storage. We compare three
typical systems:‘ (1) the AP-164 with a disk; (2) the Cray-l
with a disk; and (3) the AP-164 with a bulk memory system
under development. We show that the AP-164 with bulk memory
system is the fastest of ﬁhe three systems for three dimen-
sional problem with less than one billion unknowns. Further-
more, we show how sufficiently fast FFT devices could be
integrated into the system to produce an order of magnitude
épeed-up. Finally we will briefly discuss the ELI-512, a new
array processor being designed at Yale, cf.,[5] for more

details
II. ELLIPTIC PROBLEM SOLVERS

It has been observed for several years that Very Long
Instruction Word (VLIW) computers and specialized processors
are éspecially cost effective for signal processing. We have
been seeking to determine their effectiveness for solving
elliptic problems. It has also been observed that the
progcramming effort for these machines is significantly greater
in general than for serial computers and we will address that

issue.
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What are VLIW computers? They are computers with three
basic properties:

(1) there is one central control unit issuing a single
wide instruction per cycle;

(2) each wide instruction consists of many coupled
independent operations; and

(3) each operation requires a small, statically
predictable number of cycles to execute (operations may be
pipelined). The Floating Point Systems AP-164 is the example

of such a machine which we will consider in detail. The ELI-
512 is another example.

If we are going the route of specilized processors, one
may ask why we bother with VLIW computers at all. Our
argument is very ;imple. Suppose on the one hand that we
could build a specialized processor that would do 80% of a
large scientific computation with unlimited parallelism, i.e.,
it would do 80% of the computation in zero time. Then the
overall computing time would be reduced by a factor of 5. On
the other hand, suppose we could find an average 10-fold
parallelism over the whole computation for a VLIW computer.
Then we could get a speed-up of a factor of 10 on a VLIW
computer which is clearly better. However, combining the best
of both approaches would be even better. In fact, we used a
specialized processor on 80% of the computation and a VLIW
machine on the remaining 20%, we could get a reduction of a
factor of 50. 1In Seéction III, we explore the use of
specialized FFT processors in conjunction with the AP-164 for

solving the Poisson equation in three dimensions.

As a proof of feasability, we consider solving the
Poisson equation on the AP-164. We made this choice for a

number of reasons:



)

(1) the AP-164 is a commercially available, "off-the-
shelf" VLIW computer;

(2) the Poisson equation is the simplest nontrivial
elliptic equation and if we can't solve it fast then we can't
solve anything fast; and

(3) the Poisson equation occurs in many important
applications such as image enhancement, gecacoustics, semi=-
conductor device simulation, fluid mechanics, and mechanical
CAD/CAM.

As a specific example, we mention work we are ccing with

Dr. Dingy Lee of NUSC on underwater acoustics. We are
investigating the use of a fast Poisson solver as a precondi-
tioner to be used in conjunction with the conjugate gradient
method (applied to the preconditioned normal equations), for
solving discrete approximations to nonseperable Helmholtz
equations. We have been able to prove that this algorithm
requireé at most logn iterations to reduce the error in a
difference approximation with n grid points in each coordinate

by a factor of n~2,

This brings us to the gquestion of how well a VLIW
computer like the AP-164 will solve the Poisson equation. 1In
order to put our discussion into context we need to know the
following information about the AP-164:

(1) the word length of the AP-164 is 64 bits;

(2) the cycle time is 167 nanoseconds;

(3) 10 instructions can be executed per cycle, including
a floating point multiplication and addition;

(4) floating point multiplications and additions are
pipelined (requiring 3 and 2 cycles respectively;

(5) a division requires 22 cycles, but vector division
requires 6 cycles per component;

(6) the machine can be either microprogrammed in APAL
or programmed in FORTRAN; and

(7) there exists a good scientific APAL subroutine
library.



The model discrete problem we wish to solve is the
standard five point finite difference approximation to the

Poisson equation, =-Adu=f, on the unit square, i.e.,

(1) -bpuyy fik = f(xi,yk) , 1lg<i,ksn,

subject to the boundary conditions

= u., = u =0 , 1=i,ksn,
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Bi,k-1 * Ui, ke1
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Problem (1)-(2) can be written in matrix form as

(3) Mg, = f

where

(4) M

Since array processors are excellent at doing FFTs, we
consider three standard FFT based algorithms for solving the
discrete Poisson equation (1)-(2), cf., [13,[31,061,[7),09]
and [10]. The basic idea of all these methods is to extend
u = {uik} and £ = {fik} to real, odd, periodic sequences of
period 2(n+l) in both dimensions.

If d = {dik} is the real, doubly periodic sequence of

period 2(n+l) with

d0,0 = 4 , d-l,o = dl,O = dO,—l = db,i = -1 , and

dik = 0 otherwise,

then the discrete Poisson equation (1)-(2) can be represented

as d * u = hzg or cu = hzf or
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(5) Uiy = h dik fik ’ 1<i,k=n,

where z denotes the discrete, double, complex Fourier
transform of z. We note that in this example the real Fourier
transform or sine transform would suffice, cf.,[2]. We will
return to the impact of this observafion later. The solution
to (1)=-(2) is obtained by taking the inverse transform of the
normalized vector u of (5). We refer to this method as the
(double) FOURIER method.

It is also possible to view the discrete Poisson
equations as beihg block tridiagonal, i.e., if we partition

the solution vector u as

31 Yi1
u u
u = 2 R where u. = iz R then
u, uy
L~ | N
Al 0 -4 1 0-1
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Moo= AN , where A
R § 1
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- .

has the eigenvalues Ak = =4 + 2cos(£IL ) and

n+l
eigenvectors V = \Y% = 1 sin (iﬁl)
g k= [k;] = |V T n+l :
If 4, = I uinj’ then
Ay + Uy = Yy
Sio1 TRy Y Ui T Y 2 1=l
u + Au_ =y
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or for each component 1

Ak Y1,k T Y2,k T Y1,k

~

(6) ui-l,k + A, U + u = yi,k R 2<is<n-1,

k i,k

un-l,k + )\k un'k = yn'k !

which is an easily solved tridiagonal system. Once we have
solved for all the transformed vectors {Gi} . we obtain the
solution by doing n one dimensional inverse transforms. We
call this the FOURIER/TRID method.

The third method which we call the ODD/EVEN method
consists of first doing an odd/even reduction, cf.,[3] and
[9], to eliminate all the unknowns along vertical lines with
even index and then applying the FOURIER/TRID method to the
remaining unknowns. Table I summarizes the asymptétic

complexity of these three methods.

TABLE I

FOURIER | FOURIER/TRID | ODD/EVEN

# transforms
of length 2n+1% 4n 2n n

# tridiagonal systems
of order n*«* 0 n n/2

# tridiagonal systems 0 0 n
of order n/2*x*

* requires 0(nlogn) work

* x requires 0(n) work



It is clear that on a serial computer that the ODD/EVEN
method is asymptotically fastest and the FOURIER/TRID method
is asymptotically sgcond fastest. On a vector machine, the
hierarchy is not so clear. It would seem that if we could do
FFTs sufficiently fast it wouldn't pay to trade them off for
tridiagonal solves which are basically serial. In addition,
there are a variety of transforms which may be employed. As
shownin [2] , the ratio of work for the transforms is given

in Table II.

s TABLE II
complex FFT 1
real FFT* 1/2
sine transform¥* 1/4

* requires low order pre- and post- processing.

On a serial machine, it is clear that we would choose
the sine transform. On a VLIW machine, the choice may not be
so obvious because an optimal microcoded implementation can
be so much faster than a compiled one. The AP-164 has very
efficient complex and real FFTs in the APAL subroutine
library while it does not have a comparable sine_transform_at
present. A sine transform on the AP-164 must be done by
doing the pre- and post- processing [2] in FORTRAN and
calling the APAL real transform for the inner-loop.

Vectorization is not the only important factor in

algorithm selection for a machine like the AP-164 which has

-



a very slow division (especially scalar) operation. In the
. FOURIER/TRID and ODD/EVEN methods we must solve linear

systems with tridiagonal matrices of the form

)\1\0 :
B = L::ttll where 1x1>2. It would
0 A

seem that this would involve quite a few divisions.

Following [61] and [81] we can factor
1 u, 1
B = 1\0 1 '\0
‘\1 \\\1
0 ™n

where ui-l = li' l1 i n-1. Moreover, £i+2 as i+~ , which

LU

means we can avoid most of the divisions and storage in
calculating and usihg the LU-factorization. If we are in the
regime where we are solving several Poisson equations, then
we can view the factorization as preprocessing and we need do

only the forward and backward substitution. Moreover, since

ui-l = Qi , we need store only L and forward and backward

substitution can be carried out without any divisions.

There are a number of important vectorization "tricks"
or techniques which can be employed on these problems, cf.[l],

63, and [101:

(1) The normalization in the FOURIER method can be
vectorized. In_fact, if we are solving at least two Poisson
equations, it pays to- form the reciprocals of the normaliza-
tion constants by means of a vector divide and then to do a
normalization by means of a vector multiplication.

(2) In the FOURIER/TRID and ODD/EVEN methods, the
collection of tridiagonal systems can be solved in parallel.
Thus on the AP-164, the time required to solve the tridiagonal
systems is about twice the time required to do the



normalization assuming preprocessing of the normalization
constants and it probably requres less time assuming no
preprocessing.

(3) The reduction step in the ODD/EVEN method can be
done in parallel.

(4) The pre- and post- processing necessary to compute
all the sine transforms, given the existence of a real FFT,
can be vectorized. Thus on the AP-164, we should not have to

pay too large a penalty for not having a hand-optimized APAL
sine transform code.

These points have some implications for our algorithm
selection. Points (2) and (3) imply that the FOURIER method
is very unlikely to be the most efficient on the AP-164 no
matter how fast we can do an FFT. Point (4) implies that we
should use the vectorized sine transform whenever possible

even if it isn't implemented entirely in APAL.

We hawe run a large number of experiments for these
methods on the AP-164. The results are too voluminous to
reproduce here and we refer to [6]. We do reproduce one
interesting graph (Figure I) showing the predicted running
times of these algorithms based on a sine transform hand-
coded in APAL. We approximated the running time of such a
transform by taking the product of the running time of the
APAL real FFT and the quotient of the running time of the
FORTRAN sine transform divided by the running time of the
FORTRAN real FFT. The curve labeled D is the FOURIER method
without preprocessing or vectorized normalization, the curve
labeled T is the FOURIER/TRID method using the fact that the
entries in the factors converge but without preprocessing or
vectorization, and the curve labeled R is the ODD/EVEN method
without preprocessing or vectorization. Curves 1l and 2 from
[10 ] are for algorithms similar to those in T and R except

implemented on a CDC-7600.



Since we didn't exhaust our possible improvements in the
benchmarks of Figure I, it seems quite clear that even if we
were slightly optimistic on the running time of our sine
transform, Poisson solvers on a AP-164 are competetive with
comparable solvers on a CDC-7600. This proves our contention

that we can effectively solve nontrivial elliptic problems on

a VLIW computer.
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III. VERY LARGE PROBLEMS

We now switch our attention to solving very large three
dimensional Poisson problems. To get a handle on things we
consider a simple out-of-core method based on the FOURIER
method in three dimensions. Our goal is to analyze the
impact of different architectures on the running time of a
fixed algorithm (as distinct from Section II in which we

fixed the architecture and varied the algorithm).

In this section, we assume that the source term, i.e.,
the right-hand sfde of the equation, is initially stored as a
3-dimensional block array is secondary storage (so far

unspecified)

OQUT-OF~-CORE ALGORITHM:

FOR EACH DIMENSION:
BRING EVERY BLOCK ROW INTO MAIN MEMORY
DO 1-DIMENSIONAL FFTs

STORE TRANSFORMS BACK IN SECONDARY STORAGE

FOR EACH DIMENSION:
BRING EVERY TRANSFORMED BLOCK ROW INTO MAIN MEMORY
IF DIMENSION=1:

BRING NORMALIZATION CONSTANTS INTO MAIN
MEMORY and NORMALIZE

DO 1-D INVERSE FFTs

STORE ANSWER BACK IN SECONDARY STORAGE

The required I/O for the source, solution, and normaliza-
tion constants is 13n3 words. We consider the following

three systems:



(1) a AP-164 with a disk having a transfer rate of 1.2
megabytes/sec;

(2) a Cray-l1 with a disk having a transfer rate of 5
megabytes/sec; and

(3) a AP-164 with a bulk memory having a transfer raté
of 48 megabytes/sec.

To simplify the analysis and favor the disks as much as
possible we ignore latency. As an aside we mention that disk
latency is on the order of milliseconds, while bulk memory

latency is on the order of microseconds.

The I/O time in microsecond required for this algorithm
£ Y
on systems (1)-(3) is given by the following estimates:

(1) 87n3; (2) 21n3; and (3) 2.2n3. The compute time on

the AP-164 required for this algorithm is asymptotically

3 multiplications and 6n2 l-

3

equal to the time to do n

dimensional FFTs which is approximately 2n~logn microseconds.

Comparing these numbers, we can reach several conclusions:

(1) the relative times neeéed for I/0 on systems (1)~
(3) are approximately 40:10:1 ;

(2)y if nszll , disk I/O on the Cray-1 takes more time

than I/0 and computation on the AP-164 with bulk memory; and

(3) a AP-164 with a disk takes about 1+(44/logn) times
longer than a AP-164 with a bulk memory to solve this problem.
I1f n=27 , this works out to about 7 times longer.

It is interesting to note that this algorithm is one of
the most favorable for systems for slow I/0O. Most iterative
methods for solving elliptic problems involve work propor-
tional to the amount of data (and not a higher power of the
amount of data) for every sweep through the data. For these

algorithms, data movement is as important asymptotically as

floating point computation. In this sense, solving elliptic

13



problems is quite different than combinatorial computing for
which the number of operations often grows superlinearly (or
even expoentially) with the amount of data.

The time and memory requirements for solving the

3-dimensional Poisson equation for n=27,28, and 210

by the
FOURIER OUT-OF-CORE method on the AP-164 with bulk memory are

given in Table III.

Table III
n *time (secs) memory (megabytes)
2’ 28 16
28 256 128
210 20,000 8,000

Clearly n=27 is viable on this system, n=28 is marginal
because of the large amount of memory required, and n=210 is
too large.

What can be done to reduce this time? Even though the

AP-164 does FFTs very rapidly, it can be significantly

improved by the addition of special hardware. Moreover, if

that hardware is interfaced to the bulk memory, we may be able

to get data to and from it sufficiently fast.

Consider the situation shown in Figure II.

14



IN
BUFFER

bulk 64 megabytes/sec
memory MEMORY FFT BOX

ouT
BUFFER

FIGURE 1II

To simplify our analysis, we make the assumption that
all the l-dimensidbnal FFTs on the data in the memory of the
FFT-box can be completed in the time, T, necessary to f£ill the
in-buffer and empty the out-buffer. Thus the computation in
the FFT-box is totally overlapped with I/0. If we have an
nxnxn grid and a kxkxk block size and a block row fits into
each buffer, then

T = k2n/4-220 secs,

which implies that the flops rate of the FFT box must be at

least

20 2

(k2 - 2 « 2n logn)/(k?n/4 + 220) = 2*%109n

or

16 logn megaflops. Thus for n=27, the FFT box must achieve a
computational rate of 112 megaflops, which is clearly

achievable with today's technology.

Since we need to do 6 (B)2 block transforms, each

requiring time T, the total time for the transforms is

2
n2 , kn__ _ 3, 1476
k) 2 220 ® .75n 10

tion, we need:

6 * | seconds. For the normaliza-

15




(1) to transfer both the normalization constants and
the data to the AP-164 which takes 2n- cycles;

(2) to carry out the normalization which requires 3n3
cycles; and

(3) to output.the normalized data back to the bulk
memory which takes n~ cycles.

This analysis implies that the normalization requires 6n3
cycles or r1310—6 seconds. Thus the total computation would
require 1.75 n3 10"6 seconds. We note that while an FFT box
saves us a logn factor in the run time of the FFT portion of
the algorithm, a normalization box (attached to the bulk

memory) would save us at most a factor of two in the run time

of the normalization portion of the algorithm.

With multiple bulk memory boxes, it is possible to
interleave I/0. For example, with 4 memory boxes we could get
a 4-fold interleave which would speed I/0 by a factor of 4.

If we increased the computing speed of the FFT box accordingly,
the transforms could be done 4 times faster. However, if we
are using the AP-164 for the normalization, it probably isn't

worth the effort.

Of course, we could build a normalization box with a
4-fold interface. In fact, at 256 megabytes/second, we could
input two words and output one word approximately every 80
nanoseconds. 1In order to be I/O bound such a box would have
to be able to do a 64 bit floating point multiply every 80

nanoseconds. These new timings are summarized in Table IV.
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n AP-164 and bulk memory AP-164, bulk memory,
and FFT box
2’ 28 2.8
28 256 22
210 20,000 1,333
TABLE IV

k)
So far, we have talked only about the Poisson solver.

Clearly we want something faster for the rest of the code.

We are developing a replacement for the AP-164 which push the

VLIW architecture to its 1limit, cf., [5]. We call it the ELI

Enormously Long Instruction)=-512. The 512 comes from the

instruction word length. The goals of the ELI project are:
(1) to run compiled general purpose scientific code

written in FORTRAN;

(2) vyield high speed at low cost without microcoding;
and )

(3) to first build an "optimizing" compiler called

BULLDOG which will help determine how much parallelism to
build into ELI.

Very roughly speaking, the machine could have a cycle
time 4 times faster (if built out of ECL) than the AP-164
and 8 times as much parallelism. Thus it is potentially 32

times as powerful.

Of course, ELI has its limitations. We want to make

sure that everyone understands that the ELI computer:
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(1) is an attached processor;

(2) is optimized for running only compute bound

scientific code; and

(3) will perform poorly for "dynamic" code.
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