1R (o]

Run-Time Parallelization and Scheduling of Loops *

Joel H. Saltz
Ravi Mirchandaney
Doug Bazter
Department of Computer Science
Yale University
New Haven, CT 06520

January 23, 1989 { oot

1 Introduction

There exist many problems in which substantial parallelism is available but where the par-
allelism cannot be exploited using doall or doacross loops [12] [5]. doall loops do not impose
any ordering on loop iterations while doacross loops impose a partial execution order in the
sense that some of the iterations are forced to wait for the partial or complete execution of
some previous iterations. We propose a new type of loop, i.e., doconsider. The doconsider loop
allows loop iterations to be ordered in new ways that preserve dependency relations and increase
concurrency. Often, these sorts of index reorderings can be done at very low cost and can have
substantial benefits.

A variety of systems for restructuring loops and reordering indices have been developed in the
functional language and systolic array generation communities. These methods rely on being able
to detect the existence of uniform or quasi-uniform recurrence relations at compile-time. The
dependency vectors characterizing these recurrence relations are examined and a new, hopefully
more efficient way of traversing the dependency graph is found. We are able to handle loops
whose inter-iteration dependency may be complex or where the dependences may be determined
by variables whose values are not available until program execution begins. The methods we
present here set up the framework, at compile-time, for performing a loop dependency analysis
and produce a restructured loop that is reorderd on the basis of the information obtained from
the dependency analysis. The actual dependency analysis is performed at the start of program
execution. We will show that this kind of analysis can be performed very quickly and has very
substantial payoffs.

The scheduling mechanisms we explore are based on a topological sort. The index set is
partitioned into disjoint subsets of indices or wavefronts, such that work pertaining to all indices

*This work was supported by the U.S. Office of Naval Research under Grant N00014-86-K-0310 and NASA
grants NAS1-18107 and NAS1-18605




in a wavefront may be carried out in parallel. One method called global scheduling, performs a
topological sort of index set and assigns indices to processors in a way that evenly partitions
the work in each wavefront. In each processor, indices are scheduled in order of increasing
wavefront number. The other method called local scheduling, starts out with a fixed assignment
of indices to processors and simply rearranges the local ordering of those indices to improve
parallelism. We investigate two types of executors in which indices belonging to each wavefront
are partitioned among the processors. In the first executor, based upon pre-scheduling, global
synchronizations separate consecutive wavefronts. In the second executor, whcih we call self-
ezecuting, a shared array is used to indicate whether a solution variable has been calculated.
Global synchronizations are replaced by busy waits that ensure that needed values have been
produced before those values are used.

We investigate the performance tradeoffs that characterize the different scheduling and exe-
cution methods we propose. The investigation uses a complete, commercial sparse matrix solver
(PCGPAK [3]) used to solve a range of linear systems, a synthetic workload is also employed.
From the results of experiments, we have reached the conclusion that for the types of workloads
we have investigated, self-execution almost always performs better than pre-scheduling. Further,
the improvement in performance that accrues as a result of global topological sorting of indices
as opposed to the less expensive local sorting, is not very significant in the case of self-execution.
Thus, we are left with a 2-dimensional solution space, as depicted in Figure 1, which pictorially
summarizes the findings reported in this extended abstract.

The rest of this extended abstract is organized as follows: In Section 2, we provide simple
rules that allow the transformation of certain types of loops into different parallel forms. These
rules can be inserted into parallelizing compilers or language extensions. We describe some of the
related research in Section 3. A simple mathematical model which captures the tradeoff between
load balance and synchronization costs is described in Section 4. The results of multiprocessor
experiments are presented in Section 5. Finally, we summarize our findings in Section 6.

2 The Automated Execution System

2.1 Motivation

In a broad sense, modules of code in parallel programs are either compile-time or run-time
schedulable. In order that a code be compile-time schedulable, it needs to possess sufficient
information so that the compiler is able to extract the parallelism and map and schedule the
code, e.g., doall type loops in Fortran[13]. In certain other types of codes, examination of run-
time data is absolutely critical in order to detect hidden parallelism. We have been interested
in the study of such problems. Within this class of run-time schedulable codes, there are two
main categories, i.e., those that are start-time schedulable and those that are not.

Codes are start-time schedulable if all data dependeﬁces are resolved before the program
begins execution and if these dependences do not change during the course of the computation.
For codes that are not start-time schedulable, the data dependences may be determined by
functions whose parameters are other functions, the values of which are only computed at some
unknown point during the computation. In [10], we present self-execution primitives that aid
greatly in the on-the-fly detection of parallelism in such problems. In this present extended
abstract, we will only be concerned with start-time schedulable problems.




2.2.2. Sparse Factorizations

In a straightforward sequential version of gaussian elimination without pivoting, consecutive pivot rows
i are used to eliminate any non-zeros in column i of all rows ¢ + 1 to N. All non-zeros to the left of row i’s
diagonal are eliminated before a i becomes a pivot row. When all non-zeros to the left of ¢’s diagonal are
eliminated, we say that row i has been stabilized.

The elimination process tends to introduce new non-zeros or fill into the factored matrix. An approxi-
mate factorization can be carried out by selectively suppressing the creation of many of the non-zeros created
during the factorization process. The suppression is performed on the basis of determining how indirect the
fill was. For instance, all fill created by eliminations using the first matrix row as a pivot row arise directly
from non-zeros present in the original matrix. On the other hand, when row 2 is stabilized, non zeros in
that row may arise directly from a non-zero present in the original matrix or may arise as a result from
fill from row 1. There are a variety of methods used to quantify the indirectness of fill; only fill that is
sufficiently direct is retained and is capable of generating further fill. The specifics of the algorithm used
here to determine which elements are to be retained.

During the course of the computation, each row ¢ undergoes a number of transformations as non-zero
elements in consecutive columns j < i are eliminated by stabilized pivot rows j. When all non zeros in
columns j < i have been eliminated, row i itself is stabilized and may be used as a pivot row in other
eliminations.

The incomplete factorization procedure consists of a symbolic and a numeric factorization. The symbolic
factorization calculates the non-zero structure of the factored matrix, and the numeric factorization computes
the numeric values for the incompletely factored matrix.

The numeric factorization is parallelized in a way that is analogous to the triangular solve. Elimination
in each row i requires the use of a sequence of stabilized pivot rows identified as before by the sparse data
structure éja. (figure13). In parallelizing the numeric factorization, a topological sort of the dependen-
cies pertaining to the outer loop indices is performed. As was shown explicitly for the triangular solve,
prescheduled and self-executing versions of the numeric factorization algorithm can be formulated.

S1 doi=1,n
do j=ija(i),ija(i+1)-1
Use pivot row ija(j) to perform elimination on row i
end do

end do

Figure 13. Schematic Sparse Factorization

2.3. Sparse Symbolic Factorizations

Because the pattern of fill is not known, the data dependencies in symbolic factorization cannot be
analyzed before the algorithm executes. In our implementation of the algorithm, we distribute the rows of
the matrix over processors in a wrapped manner and execute in a self-scheduled fashion.

Since we are dealing with incomplete factorization of sparse matrices, the fill pattern will be sparse.
The columns of row ¢ that are filled in at any given stage of the algorithm are kept sorted in increasing order
in a linked list. Operations on row i with pivot row j require that the list of non-zeros pertaining to row
i be merged with the list of non-zeros pertaining to pivot row j. Note that because this is an incomplete
factorization, some of the non-zero elements in the newly created merged list are omitted.



Figure 1: Summary of Results




—
.

doconsider i=1,n
2: x(1) = x(i) + b(i)*x(ia(i))
}

Figure 2: An annotated loop

1: do i=1,nlocal
la: isched = schedule(i)
ib: needed_index = ia(isched)
2a: if (needed_index >= isched) then
2b: x(isched) = xold(isched) +
b(isched)*xold(needed_index);
else
3a: while (ready(needed_index) .ne. COMPLETED)) end while
3b: x(isched) = xold(isched) +
b(isched)*x(needed_index);
3c: ready(isched) = ready(isched)+1;
endif
enddo

Figure 3: A Self-Executing loop
2.2 Transformation rules for automated system

In this section, we describe the rules by which an automated symbolic manipulator performs
source to source transformation of a sequential user code into a suitable parallel version. A
loop of the form shown in Figure 2, may be executed many times during the running of a
given program. The data dependences between the elements of z are determined by the values
assigned during program execution to the data structure éa. A value of the outer loop index
i, 71 has a dependence on another value of the outer loop index i5 if the computation of z(i;)
requires (43). The example code shown in Figure 2 has been chosen for ease of explanation of
the transformations we will present shortly. In the system that we are designing, realistic codes
that tend to be much more complex in structure can and will be handled.

To parallelize such loops, the method we use is as follows: We first partition the indices of
the outer loop of Figure 2 into disjoint sets S;, such that row substitutions in a set S; may be
carried out independently. To obtain the sets S;, we perform a topological sort of the directed
acyclic dependence graph G that describes the dependences between the outer loop indices.
Stage k of this sort is performed by placing into set S, all indices of G not pointed to by graph
edges. Following this all edges that emanated from the indices in Si are removed. The elements
of Sj are said to belong to wavefront k. A single program multiple data method of problem
decomposition is used; the wavefront information is used to prepare a schedule of outer loop
indices to be executed by each processor.




S1: doconsider i=1,n
y(i) = rhs(i)

S2: do j=ija(i),ija(i+1)-1
y(i) = y(@i) - a(§*yijai))
end do
end do

Figure 4: A nested loop (Triangular Solve)

The main loop in Figure 3 corresponds to the indices assigned to this processor (line 1). The
key point in Figure 3 has to do with line 3a and the while loop which ensures that an index is
never used until it has been computed. Finally, the array ready is used to maintain the status of
all the indices. In the case of the pre-scheduled code, a topological sort of the data dependences
is performed and the end of a phase is marked by a special flag with the appropriate index
on every processor. A check is made to see if the end of phase is reached and if so, a global
synchronization is performed before going on to the work in the subsequent phase.

2.3 Efficient Calculation of the Topological Sort

The schedule of outer loop indices for each processor can be obtained by global scheduling,
assigning indices to processors in a way that evenly partitions the work in each wavefront.
In each processor, indices are scheduled in order of increasing wavefront number. Alternately
using local scheduling, one begins with a fixed assignment of indices to processors and uses
the wavefront information to simply rearrange the local ordering of those indices to improve
parallelism. The loops in the source code can be transformed to assign a wavefront number
to each loop index. Since the wavefront number for each index is one plus the maximum of
the wavefront numbers of the indices on which it depends, one can simply sweep sequentially
through the indices and calculate the wavefront for each index. The array used to store the
wavefront numbers must then be sorted to generate a schedule.

On the Multimax /320, the sequential execution time required for both these operations tends
to be slightly less than the cost of a single triangular solve using the same matrix. The topological
sort can be parallelized to a degree by striping consecutive indices across the processors and by
using busy waits to assure that variable values have been produced before being used. While
local scheduling is almost completely parallelizable, it is not clear how one would efficiently
parallelize global scheduling. The interprocessor coordination required for this rather fine grained
computation appears to be prohibitive in the absence of a fetch and add primitive. We now
provide a short stepwise description of the automated procedure which takes as input a code of
the type shown in Figure 4 and restructures it into a suitable parallel version. Steps 1 through
3 are performed at compile-time, while steps 4 and 5 are performed at run-time.

1. The indices of the computation are logically distributed among the processors in some
specified manner.

2. A topological sort code is then generated by the compiler, during program execution this
code determines the wavefront number of each index.



3. The loop in Figure 4 is transformed into a self-executing or pre-scheduled version, with
the optional insertion of the code that repartitions indices among the processors.

4. At start of execution, the wavefront numbers are computed and the indices are sorted on
the basis of these wavefronts. The indices may or may not be repartitioned.

5. The actual computation is now performed by each processor on its assigned subset of
indices, using one of the executors that have been generated, as in step 3.

3 Related Work

The execution of parallel tasks using self-scheduling has received considerable attention. Lusk
and Overbeek [9] implement a self-scheduled mechanism to dynamically allocate work to pro-
cessors. While this method has the advantage of simplicity, many of the more complex dynamic
problems that we are interested in solving do not seem to be easily formulated in this frame-
work. Polychronopoulos and Kuck [14] are concerned with the efficient execution of doall type
loops using run-time self scheduling. While the efficacy of self-scheduling for certain classes of
problems on shared memory machines is demonstrated in that paper, more complex problems
which cannot be formulated in a doall setting are not studied. Tang and Yew([18] describe a
mechanism to execute multiple nested doall loops, using self-scheduling. It is shown that for
certain types of problems, self-scheduling is more efficient than pre-scheduling using static as-
signment of loop iterations to processors. Krothapalli and Sadayappan[8] describe a method
which is able to remove anti- and output-dependences, by performing an analysis of the ref-
erence pattern generated and using multiple copies of variables in order to simulate a single
assignment language. Cytron[5] discusses the problem of how to schedule doacross loops with
lexically backward dependences by introducing delays in appropriate places in the code to ensure
correctness. A linear programming problem is formulated and solved in order to calculate the
minimum delays.

Loop restructuring has been used successfully to allow parallelizing compilers to improve
parallelism and enhance performance in memory hierarchies [12], [13], [1], [6]. To our knowl-
edge, there has been no work in the automatic detection of run-time parallelism along with the
restructuring of such loops for efficient scheduling. Numerical methods for solving sparse trian-
gular systems have however employed closely related schemes to reorder operations to increase
available parallelism, [2], [16], [4], [7], [15].

4 Description and Analysis of Model Problems

4.1 Model Problems

In our experiments, many of our model problems come from the solutions of sparse linear systems
arising from a variety of partial differential equations using preconditioned Krylov methods. A
description of the problems solved are found in [17]. The solution of these sparse triangular
systems accounts for a large fraction of the sequential execution time of these linear solvers.
The dependences encountered in solving these systems inhibit the parallelization of the outer




loop of row substitutions (S1 in Figure 4). Typically the number of non-zero elements in a row
is too small to allow efficient parallelization of the inner loop (S2 in Figure 4).

We also present overall performance results for a commercial preconditioned Krylov solver
PCGPAK which was completely parallelized. Parallelization was carried out using either the
pre-scheduled or self-executing constructs presented here. Details of how the parallelization
was carried out are presented in [17], a much more detailed account of the PCGPAK results is
presented in [3]. For a more general source of matrices, we utilize a a simple workload generator
which is able to incorporate the important parameters such as locality of communications,
volume of communication between nodes etc, in the generation of matrices.

4.2 Analysis of a Model Problem

In [17], we presented the analysis of a model problem to illustrate the performance difference
between using pre-scheduing and self-execution. In that analysis we estimated the time that
would be required to solve a lower triangular system generated by the zero fill factorization of the
matrix arising from a rectangular mesh with a five point template. The pattern of dependencies
characterizing that computation correspond to those found in the recursion relation: Zij =
@;j%,j—1 + b;jz;—1,;. We used a m by n domain and p < min(m,n) processors. We explicitly
took into account only floating point and synchronization related computations. In Section 5
we demonstrate experimentally that these assumptions can be used to predict multiprocessor
timings rather accurately. In the following paragraphs, we only present the final results of our
analysis. For further details on the analysis, the reader is referred to [17].

For large n and m = p + 1, we expect to find that slightly under half of the processors are
idle due to load imbalance. In the limit of large m, the ratio of the time to solve the problem
using pre-scheduling versus self-execution is

2p 4+ Roynch
Ry, = - '

The quantities Rsynch, Rine and Rpeck Tepresent the ratios of the various overhead times to
the computation time. For example, Rsynch, = Tsynch/Tp, where Tsynch is the time for one global
synchronization and 7, is the time to compute one index. R;n. and R pc.r Tepresent overheads
arising from the operations in the self-executing case depicted in lines 3a and 3c in Figure 3.
The above expression suggests that the self-executing program might be expected to perform
substantially better than the pre-scheduled program as long as it is relatively inexpensive to
check and to increment shared memory. In practice, one often obtains triangular systems that
have a relatively large number of phases with modest amounts of work to be performed in each
phase, as we will see in Section 5. The limit derived above sheds some insight into these cases.

For m = n the situation is quite different; as n increases we obtain the ratio

2
. 2
1+ Rinc + 2Rcheck ( )

If the problem size increases in both dimensions, the relative contribution of the end effect
load imbalances diminish. The amount of computation to be performed grows as mn while the
number of global synchronizations needed grow as n + m — 1. In this case, pre-scheduling is
preferable to self-execution. In shared memory machines with fast access to shared memory,
there will be only a small difference between the pre-scheduled and self-executing times.




5 Experimental Results

The following timings were done on an Encore Multimax/320 with 13 megahertz APC/02 boards
and version 2.1 of the FORTRAN compiler.

5.1 Multiprocessor Timings
5.1.1 Pre-scheduled vs. self-execution

The experimental results in this section are organized in the following manner:We describe
the performance of PCGPAK using the self-executing and pre-scheduled executors. Next, we
perform a detailed analysis of the various timing losses that occur in the code. This detailed
analysis does not use PCGPAK, instead we use a separate set of programs written to study the
issues we are investigating. ‘

Two versions of parallel PCGPAK, a Krylov space solver [3], were produced. In the first ver-
sion, the triangular solves and the numeric factorization were implemented using self-scheduling;
in the second the triangular solves and numeric factorization were pre-scheduled. In both cases,
the index set of the outer loop of the appropriate procedure was partitioned in a wrapped man-
ner. In [17], we presented the time required to solve the test problems for the pre-scheduled
and self-executing versions of PCGPAK, along with the parallel efficiencies achieved. Parallel
efficiency is defined as the ratio between the time required to solve a problem by an optimized
sequential version of PCGPAK and the product of the time required on the same problem by
the multiprocessor code multiplied by the number of processors. The self-executing version of
the program yields the highest efficiencies and the lowest times for all test problems except
the small and large problems using the seven point operator (7-PT and L7-PT). For many of
the problems, the timing differences in favor of the self-executing version of the code are quite
substantial.

Overheads aside, it is possible to show that the parallelism available from the self-executing
version of the program is always better than in the pre-scheduled version. In each of these test
problems, the time required to perform the topological soft required for global index scheduling
was quite small, compared to the total execution time. Since the scheduling had only to be
performed once and was amortized over a substantial number of iterations, even the relatively
expensive global scheduling did not represent a troublesome overhead.

5.1.2 Where Does the Time Go

We performed an operation-count based analysis of the parallelism that could be obtained given
a particular assignment of indices to processors. The analysis made the assumption that the
load balance could be characterized solely by the distribution and scheduling of the floating
point operations. The efficiency estimated on this basis will be called the symbolically estimated
efficiency. In tables 1 and 2 respectively, are depicted symbolically estimated efficiencies for
self-executing and pre-scheduled triangular solves. The estimates presented are for some of the
previously discussed test problems on 16 processors. The parallelism we anticipate obtaining
through the use of self-executing code is better, frequently by a wide margin. The efficiencies
predicted by operation count based analysis are substantially higher than those we saw in Sec-



tion 5.1.1. This is not surprising since the symbolically estimated efficiencies do not take into
account a number of important sources of overhead.

In Table 1 and 2 we have the actual multiprocessor timings on 16 processors for lower
triangular solves arising from the incompletely factored test problem matrices. An optimized
sequential version of the program was also timed for each of the lower triangular systems.
We depict sequential times divided by the product of the number of processors used and the
symbolically estimated efficiencies (timings are denoted by 1 PFE seq. in Tables 1 and 2).

To take into account the extra operations that had to be executed by the parallel version of
the program, we timed the multiprocessor program on a single processor. Tables 1 and 2 show
the single processor parallel code timing divided by the product of the number of processors
used and the symbolically estimated efficiencies (1 PE Par.). In performing this calculation,
we tacitly assume that load balance effects of the distribution of work in the multiprocessor
program can still be estimated by taking into account only the distribution of floating point
calculations. In effect, we are assuming that the effect of the extra operations required in the

multiprocessor program could be explained by simply adding a fixed overhead to each floating
point operation.

Contention for resources such as shared memory and bus access can cause inefficiencies that
are not accounted for by the above estimates. We ran a version of the multiprocessor code
designed to simulate the memory and communications access patterns of the actual program.
This version of the code is designed to have a perfect load balance. When executed on P
processors, this program executes the schedules a total of P times. Each processor ends up
executing the schedules assigned to all processors so that each processor ends up computing the
work associated with all of the indices in the problem. The time required for this program to
complete is called the rotating processor time because each processor takes on the work assigned
to each other processor with control being shifted in a rotating fashion. No synchronization
takes place in this version of the codes. In the absence of resource contention, we would expect
that the time required for the above computation would be very close to the time spent running
the parallel version of the codes on a single processor.

In the self-executing case, the time estimate obtained from dividing the rotating processor
time by the product of the number of processors and the symbolically estimated efficiency gives
a very close estimate of the actually observed multiprocessor time ( Rotating Estimate). For the
pre-scheduled case, we must include the time required for the global synchronizations to obtain
an accurate prediction of the actual multiprocessor time (Rotating Estimate + Barrier). When
this is done, we get a very good estimate of the pre-scheduled multiprocessor timings.

In Table 1 we depict the time required for a doacross loop to execute each triangular solve.
We see that the doacross loop is consistently less efficient than either the prescheduled or self-
executing loops. For example in the SPE5 problem, the self-executing solve requires 23.4 mil-
liseconds, the prescheduled solve (in Table 2) required 29.0 milliseconds and the doacross version
of the solve took 45.0 milliseconds. Recall that the self-executing loop is a doacross loop with
a reordered index set. We expect that the doacross loop will exhibit less concurrency than
the self-executing loop. Since the doacross loop does not have to perform array references to
access the reordered index set, we expect that the doacross will also be accompanied by smaller
overheads.



Table 1: Parallel Time and Estimates for Self-Executing Triangular Solves

Test Phases | Symbolic | Parallel | Rotating | 1 PE | 1 PE | Doacross
Problem Efficiency | Time | Estimate | Parallel | Seq. Time
SPE2 60 0.89 20.7 20.0 17.9 15.0 33.9
SPE5 66 0.96 234 21.6 18.5 15.3 45.0
5-PT 124 0.95 18.7 17.6 14.5 12.2 37.1
9-PT 311 0.97 57.9 57.1 51.7 43.2 97.5
7-PT 58 0.98 56.3 57.6 45.1 38.1 84.1

Table 2: Parallel Time and Estimates for Pre-Scheduled Triangular Solves

Test Phases | Symbolic | Parallel | Rotating | Rotating | 1 PE | 1 PE
Problem Efficiency | Time | Estimate | Estimate | Parallel | Seq.
+ Barrier
SPE2 60 0.52 32.7 32.8 30.0 26.6 25.6
SPE5 66 0.70 29.0 29.5 26.4 22.6 20.8
5-PT 124 0.61 31.1 31.0 25.2 20.2 18.8
9-PT 311 0.78 80.3 83.9 63.5 56.7 53.9
7-PT 58 0.94 56.2 56.3 53.7 44.0 39.8

5.1.3 Timing Projections

Since we can accurately account for the execution time in the Encore Multimax/320, it is
reasonable to make some timing projections. These projections make the assumption that the
costs of synchronization, the costs from the extra operations required to run the parallel versions
of the codes and the costs due to contention do not change with the number of processors. If
the load balance were perfect, the Best efficiencies in Table 3 would be obtained.

The estimate of non load balance related loss (Best in table 3) obtained from timings on
16 processors is clearly not valid for larger machines if we simply add more processors to the
current machine. The estimate is reasonable if we assume that the capabilities of the shared
resources such as interprocessor communication are engineered to scale with the size of the
machine. It is clearly easier to assure performance characteristics that scale with the number of
processors if one designs machines with distributed memory or a hierarchical shared memory.
We are currently extending such projections to those types of machines, that work is beyond
the scope of this extended abstract but some discussion of that issue can be found in [11].

In Table 3, we present efficiencies for 16 processors and projected efficiencies for 32 and 64
processors. The projected performance of the pre-scheduled programs deteriorates much more
rapidly as one increases the number of processors. This difference is driven by the increas-
ing disparity between symbolically estimated efficiencies in the two scheduling methods. The
differences seen in the Best efficiencies in Table 3 reflect the varying relative costs of global
synchronizations and array writes in problems with different structures, this issue was discussed
in Section 5.1.2.

10



Table 3: Estimated Efficiencies for Larger Machines

Test Best 16 Processors | 32 Processors | 64 Processors
Problem | S.E. | P.S. | S.E. P.S. S.E. P.S. S.E.| P.S.
SPE2 75 78 67 40 58 25 45 12
SPE5 65 71 62 49 56 39 46 23
5-PT 65 61 52 27 55 30 34 15
7-PT 66 70 65 66 64 62 60 55
9-PT 76 64 73 52 68 26 39 12

5.1.4 Effects of Local Reordering

We are interested in evaluating the role played by the synchronization mechanism in determining
performance, when indices are not repartitioned after a topological sort. We compared the
estimated efficiency of the same partition and schedule using global synchronization and self-
executing synchronization in a matrix. Indices were assigned to processors in a striped manner,
i.e. for P processors index ¢ was assigned to processor 7 modulo P. The schedule was produced
by performing a topological sort and scheduling indices in each phase in order of increasing index
number. In [17], we saw that the results obtained through the use of global synchronization can
vary wildly with the number of processors used. Often, many, if not all the indices in a phase
get assigned to a single processor, resulting in sequential execution for that phase.

In a great many cases, data from allindices in a given wavefront are not actually required by
each index in the next wavefront. When self-executing synchronization is employed, a pipeline
sort of effect may be generated and we see substantial performance benefits. Pre-scheduling on
the other hand, appears to be much less robust.

5.1.5 Local v.s. Global Index Set Scheduling

We performed a set of experiments to examine the performance tradeoffs between local and global
index set scheduling defined in sections 1. We used only the self-executing loop structures in
the experiments in this section. Recall that when global index set scheduling is used, the index
set is sorted in increasing wavefront order. The index set is then partitioned between processors
in a striped manner. For the local sorting method is used, the initial partition of indices is
maintained, but their ordering is changed based upon wavefront numbers. In [17] we present the
sequential time required to solve each test problem, the times required to perform a sequential
and a parallel version of the sort and the time required to rearrange indices globally. The
time required to perform the sequential scheduling is slightly lower than the time needed for
performing a sequential iteration. For example, in the case of SPE5, the time required to perform
the sequential sort plus the triangular solve adds up to 220 ms, while a completely sequential
execution takes 240 ms. Because we pay for the sorting only once, subsequent iterations of the
code will show a great advantage for the parallel code (30 ms vs. 240 ms on 16 processors). The
time required to produce a parallelized global schedule ranged from 17 percent to 61 percent of
the time needed for a sequential iteration.

Thus, we conclude that local index set scheduling overhead does turn out to be much less
than global index set scheduling overhead, as is to be expected. However, as far as run times

11



were concerned, local and global scheduling each yielded better results than the other for some
test problems. For example, in the case of SPE2, global run time was 21.3 ms and local was
29.6 ms and for SPE3, global gave a run time of 25.1 while local was 22.3 ms.

6 Conclusions

In this research, we have extended the class of problems that can be effectively compiled by paral-
lelizing compilers. We presented the doconsider construct which would allow these compilers to
effectively parallelize such problems. We have reached the conclusion that for the types of work-
loads we have investigated, self-execution almost always performs better than pre-scheduling.
Further, the improvement in performance that accrues as a result of global topological sorting
of indices as opposed to the less expensive local sorting, is not very significant in the case of
self-execution. Thus, we are left with a 2-dimensional solution space, as depicted in Figure 1,
which pictorially summarizes the findings reported here.

Acknowledgements: The authors would like to thank Martin Schultz and Stan Eisenstat for
helpful discussions and Scientific Computing Associates for use of PCGPAK related data.

References

[1] J. R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific programs
for parallel execution. In Conf. Record, 14th POPL, January 1987.

[2] E. Anderson. Solving Sparse Triangular Linear Systems on Parallel Computers. Re-
port 794, UIUC, June 1988.

[3] D. Baxter, J. Saltz, M. Schultz, and S. Eisenstat. Preconditioned Krylov solvers and methods
for runtime loop paralleization. Technical Report 655, Yale University, 1988.

[4] D. Baxter, J. Saltz, M. Schultz, S. Eisentstat, and K. Crowley. An experimental study of
methods for parallel preconditioned krylov methods. In Proceedings of the 1988 Hypercube
Multiprocessor Conference, Pasadena CA, January 1988.

[5] R. Cytron. Doacross: beyond vectorization for multiprocessors. In The Proceedings of the
ICPP, 1986, pages 836-844, 1986.

[6] K. Gallivan, W. Jalby, and D. Gannon. On the problem of optimizing data transfers for
complex memory systems. In Proceedings of the 1988 ACM International Conference on
Supercomputing , St. Malo France, July 1988.

[7] A. Greenbaum. Solving Sparse Triangular Linear Systems Using Fortran with Paralllel
Extensions on the NYU Ultracomputer Prototype. Report 99, NYU Ultracomputer Note,
April 1986.

[8] V. Krothapalli and P. Sadayappan. An approach to synchronization for parallel computing.
In The Proceedings of the 1988 conference on supercomputing, St. Malo, 1988, pages 573—
581, 1988.

12



[9] E. Lusk, R. Overbeek, and et. al. Portable Programs for Parallel Processors. Holt, Rinehart
and Winston Inc., 1987.

[10] R. Mirchandaney and J. H. Saltz. Dodynamic: A construct for on-the-fly parallelization of
loops. Technical Report 650, Yale University, 1988. in preparation.

[11] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and Kay Crowley. Principals
of runtime support for parallel processors. In Proceedings of the 1988 ACM International
Conference on Supercomputing , St. Malo France, July 1988.

[12] D. A. Padua, D. J. Kuck, and D. H. Lawrie. High-speed multiprocessors and compilation
techniques. IEEE Trans. on Computers, 29(9):763-776, September 1980.

[13] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomputers.
CACM, Dec 1986.

[14] C. Polychronopoulos and D. Kuck. Guided self-scheduling: a practical scheduling scheme
for parallel supercomputers. IEEFE Transactions on Computers, 1987.

[15] J. Saltz. Aggregation methods for solving sparse triangular systems on multiprocessors.
SIAM J. Sci. and Stat. Computation., to appear, 1989.

[16] J. Saltz. Methods for automated problem mapping. In The IMA Volumes in Mathematics
and its Applications. Volume 13: Numerical Algorithms for Modern Parallel Computer
Architectures Martin Schultz Editor, Springer-Verlag, 1988.

[17] J. Saltz, R. Mirchandaney, and D. Baxter. Run-time Parallelization and Scheduling of
Loops. Report 88-70, ICASE, December 1988.

[18] P. Tang and P. Yew. Processor self-scheduling for multiple nested parallel loops. In The
Proceedings of the ICPP, 1986, pages 528-535, 1986.

13



self-execute

15

10

PRBCESSARS

1.0

0.8

<
o

0.6

AIN3I31443

0.2 —

ng

Effect Of Local Order
26

12

Figure



