Using Queries to Identify u-formulas

Dana Angluin®, Yale University

YALE/DCS/RR-694
March 1989

*Supported by the National Science Foundation, IRI-8718975

Using queries to identify p-formulas

Dana Angluin *
Yale University

March 1989

Abstract

We consider p-formulas, that is, boolean formulas with at most one occurrence of
each variable, and the types of queries needed to identify them exactly in polynomial
time. We describe a polynomial time algorithm to learn u-formulas in disjunctive or
conjunctive normal form using equivalence and membership queries. We also describe a
polynomial time algorithm to learn monotone u-formulas using just membership queries.
For general (non-monotone) p-formulas, we show that membership and “relevant pos-
sibility” queries suffice for polynomial time identification. These results are compared
with those of Valiant[5] on learning p-formulas with queries. Finally, we show that
no polynomial time algorithm can exactly identify u-formulas using only equivalence
queries, even if the target formula is known to be monotone and in disjunctive normal
form.

1 Definitions

1.1 Boolean vectors

The domain of boolean values is B; = {0,1}. Define 0 = 1 and T = 0. Also, A, V, and &
denote the binary operations “and”, “or”, and “exclusive or”, respectively, on the domain
B;. .

Let n be a positive integer. Let B, denote the set of all boolean n-vectors, that is,
n-tuples of 0’s and 1’s. Let z and y be elements of B,. We denote by Z the vector z such
that z; = Z; for ¢ = 1,...,n. Also, z A y denotes the vector z such that z; = z; A y; for
i=1,...,n. Similary, z Vy and z @ y are defined componentwise. We denote by d(z,y)
the Hamming distance between z and y, that is, the number of 1’s in the vector z & y. We
define z < yifand only if z; < y; foralli = 1,...,n.

If L is any subset of {X3,...,Xn}, let 71, denote the boolean n-vector z such that z; = 1
if and only if X; € L. Finally, for each i = 1,...,n, we define 7; to be the boolean n-vector
T}, that is, the vector that is 1 in position ¢ and 0 elsewhere.

1.2 AND/OR trees

A tree consists of a nonempty finite set of vertices V and a set E CV x V of directed edges,
with the following properties. There is one vertex, the root, of in-degree zero; every other

*Supported by NSF grant IRI-8718975

node has in-degree one. There is a unique directed path from the root to each vertex of the
graph. Vertices with out-degree zero are leaves; other vertices are internal vertices. If v is
an internal vertex, then each vertex w such that (v,w) € E is called a child of v, and v is
called the parent of w.

Let T be a tree with vertices V and edges E. A subtree of T is any tree whose vertices
are a subset of V and whose edges are a subset of E. If v € V, then the subtree of T rooted
at v is the tree with vertices V' and edges E’ such that v' € V' if and only if there is a
path from v to v’ in T and E' = En (V' x V'). Note that v is the root of the subtree of T’
rooted at v. If L is a nonempty set of leaves of a tree T with vertices V' and edges E then
the subtree leaf-induced by L is the tree with vertices V' and edges E’ such that V' is the
set of all vertices v € V such that v occurs on some path from the root to an element of L
inTand E‘!=En(V'xV’).

An AND/OR tree is a tree such that every internal vertex is labelled either AND or OR,
and no vertex has the same label as its parent. An assignment to an AND/OR tree T is a
function a that maps the leaves of the tree to {0,1}. An assignment a to T can be extended
to map all the vertices of T' to {0, 1} by the usual inductive rule. That is, if all the children
of an AND node are assigned 1, the AND node is assigned 1, otherwise it is assigned 0, and
if all the children of an OR node are assigned 0 then the OR node is assigned 0, otherwise
it is assigned 1. We denote by a(T') the value assigned to the root of T by this extension of
the assignment a.

Let T be an AND/OR tree. A positive witness for T is a nonempty set L of leaves of
T such that the subtree T of T leaf-induced by L has the following properties. If v is a
vertex of T’ labelled OR then at least one of the children of v in T is also in T”. If v is
a vertex of T labelled AND then all of the children of v in T are also in T'. A minimal
positive witness for T is a positive witness L for T such that no proper subset of L is also
a positive witness for T'.

It is not difficult to see that L is a minimal positive witness for T’ provided L is a positive
witness for T' and the subtree T/ leaf-induced by L is such that for every vertex v of T”
labelled OR, exactly one of the children of v in T is also in T".

We need also the dual concept of a negative witness for T', which is a nonempty set L
of leaves of T such that the subtree T” of T leaf-induced by L has the following properties.
If v is a vertex of T” labelled OR then all of the children of v in T are also in 7. f v is a
vertex of T labelled AND then at least one of the children of v in T is also in 7”. L is a
minimal negative witness for T provided L is a negative witness for T and no proper subset
of L is also a negative witness for T'. L is a minimal negative witness for T provided the
subtree T" leaf-induced by L is such that for every vertex v of T” labelled AND, exactly one
child of v in T is also in T”. The choice of terminology is justified by the following fact.

Lemma 1 Let T be and AND/OR tree, L, any positive witness for T, and Lo any negative
witness for T. Let a be any assignment to the leaves of T. If a(v) = 1 for all v € L, then
a(T) = 1. Ifa(v) =0 for all v € Lo then a(T) = 0.

Proof. In the first case we inductively show that all the nodes in the subtree leaf-induced
by L, are assigned 1, including the root. Similarly, in the second case we inductively show
that all the nodes in the subtree leaf-induced by Lo are assigned 0, including the root.
Q.E.D. '

1.3 Boolean functions and formulas

We consider boolean functions of n arguments, that is, functions from B, to B;. These
will be represented by boolean formulas over the variables X; for i = 1,...,n, which for
convenience we define in terms of AND/OR trees.

We use the symbols T and L for the constant functions 1 and 0 respectively. A literal
is a variable X; or its negation, denoted —X;. A boolean formulais T or L or an AND /OR
tree such that every internal node has at least two children, and the leaves are labelled by
literals. The size of such a formula is 0 if it is T or L, and otherwise, the number of leaves
in its AND/OR tree.

Each boolean formula represents a boolean function in the usual way. That is, given the
boolean vector y € By, we determine the value of f on y, denoted f(y), as follows. If f is
T then f(y) = 1 and if f is L then f(y) = 0. Otherwise, define the assignment a(v) = y;
if the label of v is X; and a(v) = 7; if the label of v is =X;. This assigns each leaf node a
value 0 or 1, and the value of f(v) is a(T), where T is the AND/OR tree of f.

A p-formula is a boolean formula with the additional restriction that no two leaves are
labelled by literals of the same variable. Note that this means that the size of a u-formula is
at most n. For u-formulas this representation is canonical, that is, u-formulas representing
the same boolean function must have isomorphic trees. Since the the leaves of a y-formula
are labelled by distinct literals, we shall not distinguish between the leaves and their labels.

A monomial is a p-formula consisting of the constant symbol T or a single literal or a
conjunction of literals. A monomial is non-constant if it is not equal to T. (Note that it
represents a non-constant boolean function.)

An implicant of a formula f is a set of literals L such that the conjunction of the literals
in L logically implies f. A minimal implicant of a formula f is an implicant L such that no
proper subset of L is an implicant of f.

A clause is a p-formula consisting of the constant symbol L or a single literal or a
disjunction of literals. A clause is non-constant if it is not equal to L.

A consequent of a formula f is a set of literals L such that f logically implies the
disjunction of the literals in L. A minimal consequent of a formula f is a consequent L such
that no proper subset of L is a consequent of f.

A u-DNF formula is a p-formula that is a single monomial or a disjunction of two or
more non-constant monomials. A u-CNF formula is a p-formula that is a single clause or a
conjunction of two or more non-constant clauses.

A p-formula is monotone if it contains no negative literals. Note that if f is a monotone
p-formula, then if v,w € B, and v < w then f(v) < f(w).

1.4 Exact identification using queries

The paper [2] describes a general setting for learning using different types of queries. The
following definitions are sufficient for the purposes of this paper.

We consider a setting in which there is a known set of variables Xj,...,X,, and an
unknown p-formula f over these variables. A learning algorithm has access to information
about f in the form of specified types of queries, and is required to halt and output a u-
formula logically equivalent to f. This criterion of identification is called ezact identification.

We shall initially consider two types of queries, though others will be described in
Section 6. For a membership query, the learning algorithm provides an element z € By, and
the reply is “yes” if f(z) = 1, and “no” if f(z) = 0.

For an equivalence query, the learning algorithm provides a u-formula g. The reply is
“yes” if g is logically equivalent to f, otherwise the reply is “no”. If the reply is “no”, a
counterezample is also returned, that is, an element z € B, such that f(z) # g(z). The
choice of counterexample is assumed to be arbitrary — the learning algorithm must work as
advertised no matter what legal counterexample is returned.

Since in the case of u-formulas both the examples and formulas have size bounded by =,
a learning algorithm will be said to run in polynomial time if and only if its running time
is bounded by a polynomial in n.

2 Previous results on the learnability of u-formulas

Valiant(5] has shown that general p-formulas can be exactly identified in polynomial time
using oracles (or queries) called “necessity”, “relevant possibility”, and “relevant accompa-
niment”. The results in the present paper improve upon and refine this positive result of
Valiant’s, which is further discussed in Section 6.

Pitt and Valiant [4] consider the probably approzimately correct identification of u-
formulas and show that general u-formulas are not pac-identifiable in polynomial time if
RP # NP. This holds even if the target formula is known to be monotone and in disjunctive
normal form. They further show that if RP # NP then no randomized polynomial time al-
gorithm can find with high probability a u-formula that covers even an exponentially small
fraction of the positive examples while avoiding all the negative examples.

Two additional results concerning u-formulas appear in the paper by Kearns et al[3].
The first is a reduction, showing if uC is pac-identifiable in polynomial time, then C is
pac-identifiable in polynomial time, where C is any class of boolean formulas and uC is the
set of formulas obtained from C by substituting a distinct variable for each occurrence of a
variable in a formula from C. _

The second result shows that u-DNF formulas can be approximately identified with high
probability in polynomial time assuming uniform distributions on the positive and negative
instances. Unfortunately, the uniform distribution is not preserved by the reduction in the
preceding result, and the corresponding question for general DNF is open.

To summarize broadly — for the strict context of pac-identification, the restriction that
each variable appears at most once does not increase learnability of classes of boolean
formulas, but under stronger assumptions (restricted classes of distributions, or additional
types of oracles) it may.

3 Learning p-DNF formulas

We describe a polynomial time algorithm that exactly identifies an arbitrary u-DNF formula
f using equivalence and membership queries. For each z € B,, we define the sensitive set
of z, denoted S(z), to be the set of those indices ¢ such that complementing z; changes the

value of f on z. More formally,
S(z) = {i: f(z) # f(z ® m)}.

If € By, define Smon(z) to be the unique monomial that consists of a conjunction of
literals, one for each index i € S(z), namely the literal X; if z; = 1 or the literal = X; if
z; = 0. The central fact that our algorithm uses is the following.

Lemma 2 Suppose f is a non-constant u-DNF formula and = and y are elements of By
such that f(z) = 1 and f(y) = 0 and d(z,y) = 1. Then Smon(z) is a monomial of f.

Proof. Suppose z and y differ in position i. Then the variable X; must appear in some
monomial ¢ of f. Since f is a u-formula, X; appears in no other monomial of f. Because y
agrees with z on all variables other than X, it must be the case that ¢ is the only monomial
of f such that t(z) = 1.

Now we argue that every literal in ¢ is in Smon(z). Suppose Xj is a literal in t. Then
X;(z) =1, that is, z; = 1. So z® 7; has 2 0 in the 7t position, and X;(z @ 7;) = 0. Since
the monomial ¢ contains the literal X;, t(z & ;) = 0. Consider any monomial t'#tof f.
The variable X; cannot occur in #, and we know t(z) = 0. Since z @ 7; agrees with z in
all but position j, we must have t'(z @ 7;) = 0. Thus, f(z ® ;) = 0 # f(z), so j € S(v).
Since z; = 1, this means that the literal X; € Smon(v). The argument in case -X;isa
literal in ¢ is similar.

We now show that every literal in Smon(z) is in t. Suppose Xj is a literal in Smon(z).
" Then we know z; = 1 and f(z®w;) = 0. Since t(z) = 1, if ¢ does not contain the literal X,
then #(z @ 7;) = 1 and f(z & 7;) = 1, a contradiction. Hence the literal X; must be in the
monomial t. The argument in case ~X is a literal in Smon(z) is similar. Thus, Smon(z)
and t contain precisely the same set of literals. Q.E.D.

The p-DNF algorithm

1. Make an equivalence query with T. If the reply is “yes”, output T and halt. Other-
wise, the reply is a counterexample z € B, such that f(z) = 0.

2. Initialize h = L. At each stage h consists of a disjunction of a subset of the monomials
of f. '

3. Make an equivalence query with A. If the reply is “yes”, output k and halt. Otherwise,
let z € B, be the counterexample. We have f(z) = 1 and h(z) = 0.

4. Construct a new vector y € By, such that y; = z; if the variable X; appears in A,
otherwise y; = z;. For this we also have f(y) = 1 and h(y) = 0.

5. Find the least positive integer ¢ such that y; # z;. Make a membership query to
determine the value of f(y @ m;). If f(y ® m;) = 1, then set y = y @ 7; and repeat step 5.

6. Otherwise, we have f(y) = 1 and f(y ® ;) = 0. Use membership queries to
determine the values of f(y @ ;) for all j # i, and compute the sensitive set of y. Set h to
the disjunction of A and Smon(y) and go to step 3.

Theorem 3 The above algorithm runs in polynomial time and ezactly identifies u-DNF
formulas using equivalence and membership queries.

Proof. Let f be an arbitrary u-DNF formula over Xi,...,Xp. Clearly, if f = T or
f = L, then the algorithm correctly identifies f in step (1) or the first time step (3) is
executed. Suppose f is a non-constant y-DNF formula. Then in step (1), the value of z is
set to some element of B, such that f(2) = 0 and does not subsequently change.

We show that each time step (3) is executed, h consists of a disjunction of a subset of the
monomials contained in f. Moreover, we show that each time the loop consisting of steps
(3) - (6) is executed, a monomial in f but not in A is added to h. Clearly, the first time
step (3) is executed, h = L, which is the disjunction of the null subset of the monomials of

f.

If the algorithm does not halt in step (3), then h is a proper subset of the monomials of
f, and the counterexample z € B,, will be such that f(z) = 1 and h(z) = 0. Thus, there is
at least one monomial ¢ in f but not in A such that #(z) = 1.

Consider the vector y constructed in step (4). For each i such that X; appears in h,
¥;i = z;. Thus, y and z agree on all the variables that appear in the monomials of h, and
since these are a subset of the monomials of f and f(z) = 0, we must have h(y) = 0. The
variables that appear in the monomial ¢ do not appear in h (since f is a u-formula), so,
since y and = agree on the variables that do not appear in A, t(y) = t(z) = 1. Therefore,
f(y) = 1. Hence, we have that f(y) =1 and h(y) = 0.

Consider now step (5). Since f(2) = 0 and f(y) = 1, z # y, so there exists some least
i such that y; # z;. If f(y® m;) = 1, then we set y = y @ 7; and repeat step (5). Note
that the initial conditions f(y) = 1 and f(2) = 0 are preserved. Since the number of bits
in which y disagrees with z is monotonically decreasing in this loop, and since f(z) = 0, we
must after at most n iterations find an 7 such that f(y) = 1 and f(y ® m;) = 0, and exit the
loop to step (6).

In step (6) we determine Smon(y) and set h to the disjunction of A and Smon(y)
Lemma 2 guarantees that Smon(y) is a monomial of f, since d(y,y® m;) = 1, f(y) = 1,
and f(y ® m;) = 0. Let t denote the monomial Smon(y) added to h. To see that ¢t does
not already appear in h, note that ¢{(y) = 1. However, y initially agrees with z on all the
variables in h, and can only be modified in step (5) to agree with 2 on additional variables,
so we have h(y) = 0, so the monomial ¢ does not appear in h. Thus, step (6) adds a new
monomial of f to h.

The number of times step (3) can be executed is bounded by one more than the number
of monomials of f, so it is clear that the algorithm terminates correctly in time bounded
by a polynomial in n. Q.E.D.

-By duality, an analogous polynomial time algorithm exactly identifies u-CNF formulas
using equivalence and membership queries. It builds the formula a clause at a time, using
an analog of Lemma 2 for clauses.

4 Minimal implicants and consequents

In this section we establish a couple of facts about minimal implicants and consequents of
general u-formulas that are of use in subsequent sections. We first characteize minimal im-

plicants and consequents of a u-formula in terms of minimal positi\?e and negative witnesses
of its AND/OR tree. The following lemma is intuitively obvious.

Lemma 4 Let f be a non-constant u-formula with AND/OR tree T. If L is an implicant
of f then L contains a positive witness for T. If L is a consequent of f then L contains a
negative witness for T'.

Proof. For variety, we'll do the dual case. Suppose L is a consequent of f. Consider
~ any vector ¢ € B, such that Y(z) = 0 for all the literals Y € L, and Y(z) = 1 for all other
literals Y occurring in f. Since L is a consequent of f, we must have f(z) = 0.

Let a be the assignment to the leaves of T' corresponding to the vector z. Since a(T) =
f(z) = 0, the root node of T is labelled with 0. We recursively construct a subtree T of T
consisting exclusively of vertices assigned 0 as follows.

First include the root of T. Then, for each vertex included, if it is labelled with OR all
its children must be assigned 0, so include them all. If the vertex included is labelled AND,
then at least one of its children must be assigned 0, so choose one such child and include
it. The vertices included, together with the induced edges, form a subtree T' of T with the
property that all its vertices are assigned 0, and for each vertex v of T”, if v is labelled OR,
then all the children of v in T are in T”, and if v is labelled AND, exactly one of the children
of vin T isin T".

Since leaves of T not in L are assigned 1, the leaves L’ of T” are a subset of L, and L’
is a (minimal) negative witness for T'. Q.E.D.

Thus, we have the following.

Lemma 5 Let f be a non-constant u-formula and T its AND/OR tree. Let L be a set of
literals. Then L is a minimal implicant of f if and only if L is a minimal positive witness
for T. Dually, L is a minimal consequent of f if and only if L is a minimal negative witness
for T.

Proof. We'll prove the first assertion; the second is dual. Recall that Lemma 1 shows
that if L is a positive witness for T then L is an implicant of f.

Suppose L is a minimal positive witness for T. Then L is an implicant of f. If L is
not a minimal implicant, then there is a proper subset L’ of L that is an implicant of f.
By Lemma 4, L’ contains a positive witness for T, contradicting the assumption that L is
minimal positive witness. Hence L is a minimal implicant of f.

Suppose L is a minimal implicant of f. Then by Lemma 4, L contains a positive witness
for T. Let L’ be a minimal positive witness contained in L. By Lemma 1, L’ is an implicant
of f, so if L' is a proper subset of L, this would contradict the assumption that L is a
minimal implicant. Hence, L = L', and L is a minimal positive witness for T'. Q.E.D.

The next result is an easy combinatorial result on the sizes of minimal implicants and
minimal consequents of a u-formula that is used in Section 7.

Lemma 6 Let T be any AND/OR tree. Let P(T) denote the minimum cardinality of any
positive witness for T, and let N(T') denote the minimum cardinality of any negative witness
for T, and let I(T) denote the number of leaves of T. Then P(T)N(T) < I(T).

7

Proof. This is proved by induction on the number of vertices of the tree T. The base
case is a tree consisting of a single leaf vertex v. For this tree, P(T) = N(T) = I(T) =1,
and the result holds. .

Assume that the result holds for any tree with at most » > 1 vertices, and let T be a
tree with n + 1 vertices. Then the root of T is an internal vertex vy, which must be labelled
AND or OR. Let T; for t = 1,...,k be the subtrees of T rooted at the children of v.

Suppose the label of vg is AND. Then a positive witness for T may be obtained by
taking the union of any set of positive witnesses for the subtrees T}, so

P(T) < P(Ty) + ...+ P(Ty).

A negative witness for T' may be obtained by taking a negative witness for any one of the

subtrees T, so
N(T) £ min{N(T1),...,N(Tr)}-

Since foreach 1 = 1,...,k,
min{N(Ty),...,N(Tx)} £ N(T3),

we have
P(T)N(T) L P(T1)N(T1) + ...+ P(Tx)N(T%).

By the inductive assumption, P(T;)N(T:) < (T;) for each i = 1,...,k, so
P(T)N(T) L I(T1) + ...+ U(Tx) = U(T).
The case of the label of vy being OR is dual. Q.E.D.

Corollary 7 If f is any non-constant pu-formula of size n, then there is a minimal implicant
or a minimal consequent of f of cardinality at most \/n.

Proof. By Lemma 5, for a non-constant y-formula f with AND/OR tree T, each minimal
positive witness of T' is a minimal implicant of f and each minimal negative witness of T is
a minimal consequent of f. Hence, by Lemma 6, the product of the minimum cardinality of
a minimal implicant and the minimum cardinality of a minimal consequent is at most the
number of leaves of T, that is, at most n. Hence at least one of the minimum cardinality
of a minimal implicant of f or the minimum cardinality of a minimal consequent of f must
be bounded by /n. Q.E.D.

5 Monotone p-formulas

Now we pass to the case of general u-formulas which are restricted to be monctone, that is,
every literal in the formula is positive. We describe a polynomial time algorithm to learn
monotone u-formulas using only membership queries. The basic idea is to construct the for-
mula recursively from the top down, by gathering enough information to determine whether
the root is labelled AND or OR and to simulate membership oracles for the subformulas
corresponding to the children of the root.

5.1 Checking for a constant formula

Let f be any monotone boolean formula. If f(z) = 1 for the vector z of all 0’s, f(y) = 1 for
all vectors y € By, so f = T. Similarly, if f(z) = 0 for the vector z of all 1’s, then f = L.
Thus, using two membership queries we can determine whether an arbitrary monotone
boolean formula f is equivalent to T or L or neither.

5.2 Finding implicants and consequents of monotone formulas

Lemma 8 Let f be a monotone boolean formula and let L be a set of variables. Then L
is an implicant of f if and only if f(xL) = 1 and L is a consequent of f if and only if
f(FL)=0

Proof. By the definition of an implicant, if L is an implicant of f then f(7r) = 1.
Conversely, if f(rL) = 1, then for any vector y such that y; = 1 for every ¢ such that
X; € L, we have 71, < y and therefore f(y) = 1, because f is monotone. The other case is
dual. Q.E.D.

Suppose we have a membership oracle for a non-constant monotone formula f. Then we
can determine a minimal implicant of f as follows. Let z denote the vector of all 0’s. Thus
7 is the vector of all 1’s. Since f is non-constant and monotone, we must have f(z) = 0
and f(Z) = 1. Then we change bits of Z from 1 to 0 using a greedy algorithm, preserving
the condition that f is still 1 on the resulting vector.

More precisely, the algorithm is as follows.

1. Letz=7%.
2. Fori=1,...,n,if f(z®m)=1setz=z@ ;.

Note that this procedure uses at n queries to the membership oracle for f in step (2).
‘Concerning the resulting vector z, we have the following.

Lemma 9 Let L denote the set of variables X; such that z; = 1 at the end of this procedure.
Then L is a minimal implicant of f.

Proof. Clearly, at the end of the procedure we have f(z) = 1, and therefore L is an
implicant of f, since z = 7. Suppose L is not a minimal implicant. Then there is some
proper subset L’ of L that is also an implicant of f. Let y € By, be the vector such that
y; = 1 if and only if X; € L’. Note that f(y) = 1.
~ Consider the least integer ¢ such that X; is in L but not in L’. Then, when the index
i was considered in step (2) of the procedure, y < (z @ 7;), so since f(y) = 1 and f is
monotone, f(z @ m;) = 1, so bit ¢ must be 0 in the final value of z, a contradiction. Hence
L is a minimal implicant. Q.E.D.

The dual case, of finding minimal consequents, simply starts with z = 2 instead of
z = Z, and preserves the condition f(z) = 0. The analog of the lemma above is that for the
resulting vector z, the set L of variables X; such that z; = 0 is a minimal consequent of f.
Thus, given a membership oracle for a non-constant monotone formula f, we can determine
a minimal implicant and a minimal consequent of f in polynomial time.

5.3 Checking for equivalence to X;

Lemma 10 Let f be any monotone boolean formula. Then f = X; if and only if f(m;) =1
and f(7;) = 0.

Proof. If f = X; then clearly f(7;) = 1 and f(7;) = 0. Conversely, if f(7;) = 1 then
{X;} is an implicant of f and if f(7;) = 0 then {X;} is a consequent of f, and therefore,
f=X;. QED.

Hence, with at most 2n membership queries we can determine whether f = X for some
i=1,...,n.

5.4 The more complex case

Suppose f is a monotone u-formula that is not equivalent to T, L, or X; forany ¢ = 1,...,n.
Assume we have a procedure that, given a membership oracle for f, will return one of the
following two possible results.

1. The value “AND” and two nonempty disjoint sets Ly and Ly of variables such that
there are two non-constant monotone u-formulas g and h containing disjoint sets of
variables such that f = (¢ A k), and L; is a minimal implicant for g, and L; is a
minimal implicant for A.

2. The value “OR” and two nonempty disjoint sets Ly and L, of variables such that
there are two non-constant monotone u-formulas g and h containing disjoint sets of
variables such that f=(gVh), and L, is a minimal consequent for g, and L, is a
minimal consequent for A.

Then we could simulate membership oracles for the formulas g and h as follows. In case
(1), given the vector z € B,, in order to determine g(z), we construct the vector y such
that y; = 1if X; € Ls, and y; = z; otherwise. Since y assigns 1 to every variable in Ls and
L, is an implicant of A, h(y) = 1. Since no variable in L, appears in g, g(y) = g(z). Hence,

f(y) = (9(y) AR(y)) = (9(¥) A 1) = g(y) = 9(z)-

Thus, by querying the membership oracle for f on the vector y, we determine the value of
g(z). Determining h(z) in case (1) is symmetric. -

In case (2), given z € B, to determine g(z) we construct the vector y such that y; = 0
for all ¢ such that X; € Lo, and y; = z; otherwise. Then

f(y) = (9(¥) v h(y)) = (9(y) v 0) = g(y) = g(=).

Determining h(z) in case (2) is symmetric.

Since we could simulate membership oracles for the formulas g and A in these two cases,
we could continue by determining whether they are equivalent to T, L, or X; for some 1,
and, if not, recursively using the procedure assumed above to determine the root label and
a nontrivial division into other formulas. Below we make this argument more precise and
show how to implement the required subprocedure.

10

5.5 Determining a non-trivial division

Suppose that f is a monotone u-formula that is not equivalent to T, L, or X; for any
i=1,...,n. Let T be the AND/OR tree of f. Let T; denote the subtrees of T’ rooted at
the children of the root, for j = 1,...,k, and let f; be the monotone y-formula represented
by T;. Note that k > 2.

Let P be any minimal implicant of f. There is a partition P; for j = 1,...,k of P such
that P; is precisely the elements of P that appear in the subtree T;. If the root label of
T is AND, then for each j, P; is a minimal implicant for f;. If the root label of T is OR,
then for exactly one j, P; is a minimal implicant for f;. For each variable X; € P, let (X3
denote the partition block P; containing X;.

We choose any variable X; € P, and our goal is to determine the elements of [X;]. Then
if the root label of T is AND, our non-trivial division of P will be into the sets [X;] and
P — [X;]. If the root label of T is OR, then [X;] = P, and we continue with the dual
computation to find a minimal consequent of f and one of its partition elements.

5.6 Compensators

Let f be a non-constant monotone u-formula and P a minimal implicant of f. Let T be the
AND/OR tree of f and let T; for j = 1,...,k be the subtrees of T rooted at the children
of the root of T'.

Let Q be a set of variables not containing X; such that (P — {X;})UQ is an implicant of
f. Then Q is a positive compensator for X; in P. If Q is a positive compensator for X; in P
such that no proper subset of Q is a positive compensator for X; in P, then @ is-a minimal
positive compensator for X; in P. We may characterize the minimal positive compensators
for X; in P as follows.

Lemma 11 The set Q is a minimal positive compensator for X; in P if and only if there
ezists a vertez v labelled OR on the path from X; to the root of T and Q is @ minimal
implicant of a subtree not containing X; and rooted at one of the children of v.

Proof. Suppose Q is a minimal positive compensator for X; in P. Let § = (P-{X;})UQ.
Let j be such that the subtree T; contains X;. Consider the assignment of 0 or 1 to the
vertices of T induced by the assignment corresponding to the vector rs. We have f(rs) = 1,
so the root of T' must be assigned 1, and the leaf X; is assigned 0. Let w be the highest
vertex on the path from X; to the root of T that is assigned 0, and let v be the parent of w.

Since v is assigned 1 and one of its children is assigned 0, v must be labelled OR.
Moreover, one of the other children, say w’, of v must be assigned 1. Let T” be the subtree
of T rooted at w’. Let Q' consist of those elements of @ that are in T".

Then it is clear that Q’ is an implicant of the subtree T”, so let Q” C Q' be a minimal
implicant of 7'. Then (P — {X;}) U Q" is an implicant of f. Since @ was chosen to be
minimal with this property, and Q” C @, we must have @ = Q”. Thus, @ is a minimal
implicant of 7/, which is the subtree of T rooted at w’, which is a child of the node v, which
is labelled OR and is on the path from X; to the root of T. Moreover, T” does not contain
X;. '

Conversely, suppose Q is a minimal implicant of a subtree T” rooted at a vertex w’ that
is a child of a vertex v labelled OR on the path from X; to the root of T, and that X; is

11

not in T. Then (P — {X;}) U Q is an implicant of f. Moreover, suppose a proper subset Q’

of Q has the property that (P — {X;})U Q' is an implicant of f. Then it is easy to show

that Q' must be an implicant of T/, contradicting the choice of @ as a minimal implicant
of V. Q.E.D.

The following lemma characterizes the partition element [X;] in terms of minimal posi-
tive compensators of X; in P.

Lemma 12 Let T; be the subtree containing X; that is rooted at a child of the root of T,
and let [X;] be the set of all leaves of T; that are in P. Then, for all X, € (P — {Xi}),
Xm € [Xi] if and only if there is a minimal positive compensator Q for X; in P such that
(P - {Xn})UQ is an implicant of f.

Proof. Suppose X, € (P — {X;}) is an element of [X;]. Thus, X,, is a leaf of Tj. Let
w be the lowest common ancestor of X,, and X; in T;. Since P is a minimal implicant,
the label of w must be AND. Let v be the parent of w in T. (Note that w is in T; and is
therefore not the root of T.) The label of v must be OR.

There exists a vertex w’ that is a child of v and not equal to w. Let T” be the subtree
of T rooted at w’ and let Q@ be a minimal implicant of T'. Note that X, is not in T".
By the preceding lemma, Q is a minimal positive compensator for X; in P. Moreover,
(P - {X»})UQ is an implicant of f.

Conversely, let X,, € (P — {X;}) be such that there is a minimal positive compensator
Q for X; in P such that (P—{Xn,})UQ is an implicant of f. Suppose X, is in the subtree
T, for some r # j. Then the lowest common ancestor of X; and X,, is the root of T, which
must therefore be labelled AND.

By the preceding lemma, there is a vertex v on the path from X; to the root of T such
that v is labelled OR and there is a child w’ of v not on the path from X; to the root of
T such that Q is a minimal implicant of the subtree T/ rooted at w’. Note that v and T’
must be in the subtree T}, since v is labelled OR and the root of T is labelled AND.

Then (P — {Xn}) fails to contain an implicant for T}, and since all of the elements of @
are in Tj, (P — {Xm}) U Q also fails to contain an implicant for T,. Hence (P — {X,})UQ
does not contain an implicant for f, contradiction the assumptions of this case. Hence
Xm € [Xi]. Q.E.D.

We summarize the facts for the dual case, which hold by analogous reasoning. Let f bea
non-constant monotone u-formula with AND/OR tree T'. Let C be any minimal consequent
of f and let X; € (C — {X;}). A set Q is a negative compensator for X; in C if and only if
Q is a set of variables not containing X; such that (C — {X;})UQ is a consequent of f. If Q
is a negative compensator for X; in C and no proper subset of Q) is a negative compensator
for X; in C, then Q is a minimal negative compensator for X; in C.

Lemma 13 The set Q is a minimal negative compensator for X; in C if and only if there
ezists a vertez v labelled AND on the path from X; to the root of T and Q is a minimal
consequent of a subtree not containing X; and rooted at one of the children of v.

12

Lemma 14 Let T; be the subtree of T containing X; that is rooted at a child of the root of
T, and let [X;] be the set of all leaves of T; that are in C. Then, for all X,, € (C — {X}),
Xm € [Xi] if and only if there is a minimal negative compensator Q for X; in C such that
(C —{Xn})UQ is a consequent of f.

5.7 Procedure for finding root label and non-trivial division

We are now ready to specify the algorithm to determine the root label and a non-trivial
division of a minimal implicant or consequent. Suppose we are given a membership oracle
for a non-constant monotone u-formula f.

Divide

1. Find a minimal implicant P and a minimal consequent C of f. If P = C = {X;} then
return the label “variable” and the variable X;.

2. Select any X; € P. Let D = {X;}. Let R={X;y,...,Xn} - P.
3. Find a minimal set Q C R of variables such that Q U (P — {X;}) is an implicant of f.

4. If such a Q is found, add all those variables X; € P such that Q U (P — {X;})is an
implicant of f to D. Then set R = R — @, and go to step 3.

5. If there is no such Q and D # P then return the label “AND” and the sets D and
P — D. Otherwise, continue with the following step.

6. Select any X; € C. Let D = {X;}. Let R = {Xy,...,Xn} = C.
7. Find a minimal set Q C R of variables such that Q U (P — {X;}) is a consequent of f.

8. If such a Q is found, add all those variables X; € C such that Q U (C - {Xj;}) is a
consequent of f to D. Then set R = R — @, and go to step 7.

9. If there is no such Q then return the label “OR” and the sets D and C — D.
Concerning this procedure, we prove the following.

Lemma 15 Let f be any non-constant monotone u-formula, and let T be the AND/OR
tree of f. Suppose the procedure above is run with a membership oracle for f. If f = X;
for some i, then the procedure returns the label “variable”and the variable X;. Otherwise,
let | be the label of the root of T and let T,..., T\ be the subtrees rooted at the children of
the root of T. Then k > 2. Ifl is AND then the procedure returns the label “AND” and
a pair of nonempty disjoint sets D and E such that D is a minimal implicant one of the
T;’s, and E is a minimal implicant of the conjunction of the rest of the T;’s. Ifl is OR
then the procedure returns the label “OR” and a pair of nonempty disjoint sets D and E
such that D is a minimal consequent of one of the T;’s, and E is a minimal consequent of
the disjunction of the rest of the T}’s.

13

Proof. Clearly, if f = X; then the minimal implicant P and the minimal consequent C
must both be equal to {X;}, so the procedure returns the label “variable” and the variable
X;.

Otherwise, the tree T' must have a root vertex labelled AND or OR and there must be
k > 2 children of the root. Let T} for j = 1,...,k denote the subtrees rooted at the children
of the root of T'. Let ! denote the label of the root of T'.

If I is AND, then each minimal implicant of f must contain at least two variables, and
if I is OR, then each minimal consequent of f must contain at least two variables. Hence,
in either case, we cannot have P = C = {X;} for any i, and the procedure reaches step (2).

When step (3) is executed for the first time, R consists of all variables except those in
P, and at subsequent executions R is strictly decreasing in the subset ordering. Thus, there
can be no more than n iterations of the loop consisting of steps (3) and (4). Also, if a set
Q C R is found such that QU (P — {X;}) is an implicant of f and this does not hold of any
subset of @, then by definition, Q is a minimal positive compensator for X; in P.

By Lemma 12, if @ is a minimal positive compensator for X; in P and X is such that
Q U (P - {X;}) is an implicant of f, then X; € [X;]. Hence, in step (4), every variable X
added to D is an element of [X;]. Since the first time step (4) is executed, D = {X;}, D is
a subset of [X;] every time step (4) is compeleted.

We need to show that when step (5) is executed, D = [X;]. Suppose that there is some
element X,, € ([X;] — D) when step (5) is executed. By Lemma 12, there is a minimal
positive compensator Q,, for X; in P such that @, U (P — {X,z}) is an implicant of f.
Clearly, Qn, is disjoint from P, so @y, is a subset of R the first time step (3) is executed.
By Lemma 11, @Q,, is a minimal implicant of a subtree T rooted at a vertex w’ that is a
child of a vertex v such that v is labelled OR and is on the path from X; to the root of T.
Moreover, X; is not in T".

Whenever a set @ is found in step (3), it is a minimal implicant of a subtree of T that is
rooted at a vertex that is a child of some vertex on the path from X; to the root of T. Hence,
every such Q is either a minimal implicant of 7/ or is disjoint from T”. If Q is a minimal
implicant of T”, then X, must be added to D, but we are assuming X,, € ([X;] = D) when
step (5) is executed, so every Q found in step (3) and removed from R in step (4) must be
disjoint from T”. But this means that when step (5) is executed, the set Q,, is still a subset
of R, contradicting the entry condition for step (5). This contradiction shows that when
step (5) is executed, D = [X;].

If the root label / of T'is AND, then the partition element [X;] is not equal to P, and in
step (5) the procedure will return the label “AND” and the non-trivial partition [X;] and
P —[X;]. The set [X;] is a minimal implicant of the subtree T; containing X;, and P — [X]]
is a minimal implicant of the conjunction of the rest of the subtrees. Thus, if / is AND,
correct values are returned in step (5).

If I is OR, then P is a prime implicant of just one subtree T}, so the partition element
[X:] will contain all the variables in P. Hence, in this case, execution will proceed with
step (6). The proof that this portion of the procedure will correctly return a non-trivial
partition of the minimal consequent C is analogous. Q.E.D.

14

5.8 The main procedure

Suppose we are given a membership oracle for a monotone p-formula f. We first describe
a modified membership oracle for f. This is initialized with a pair of disjoint sets So and
S1. It takes as input a boolean vector z € B,. It computes the vector y such that y; = 0
if X; € So, ;i = 1if X; € 1, and y; = z; otherwise. It then queries the true membership
oracle for f on the vector y and returns the reply as its reply. Note that when So and S
are each the empty set, this is equivalent to the membership oracle for f.

The central procedure called MM. It takes as a pair of disjoint sets Sp and S; of variables,
calls the procedure Divide to establish the label of the root and a non-trivial division of
a minimal implicant or consequent. Then it calls itself recursively to determine formulas
for the separate portions of the tree, and combines these formulas using conjunction or
disjunction.

MM(So, S1)

1. Call the procedure Divide with the modified membership oracle for f initialized with
the sets Sp and S;.

2. If Divide returns “variable” and the variable Xj;, return the formula X;.

3. If Divide returns “AND” and the sets D and E then recursively call MM(So, S1U E),
which returns formula g, and recursively call MM(Sp, S1 U D), which returns formula
h. Return the formula that represents the conjunction of g and h.

4. If Divide returns “OR” and the sets D and E then recursively call MM(SoU E, S1),
which returns formula g, and recursively call MM(SoU D, S;), which returns formula
h. Return the formula that represents the disjunction of g and h.

Lemma 16 Let f and f' be non-constant monotone u-formulas. Suppose the procedure
MM is called with the membership oracle for f and a pair of disjoint sets So and Sy such
that the modified membership oracle for f initialized with So and Sy is equivalent to the
membership oracle for f'. Then MM runs in polynomial time and returns a monotone
u-formula equivalent to f'.

Proof. The proof is by induction on the size of the formula f’. Clearly, if f' is X;
for some i, then by the fact that the modified membership. oracle is equivalent to the true
membership oracle for f/, and the correctness of Divide, the value returned is the formula

X;.
' Assume that MM works correctly on all non-constant monotone u-formulas f’ of size at
most s, for some s > 1. Let f’ be a non-constart monotone u-formula with size s + 1. Let
T be the AND/OR tree of f’. Then T must have a root label of AND or OR, and the root
has k > 2 children. Let T; for j = 1,...,k be the subtrees of T rooted at the children of
the root of T'.

Suppose the monotone u-formula f and the disjoint sets of variables So and Sy are such
that the modified membership oracle for f initialized with So and S; is equivalent to the

15

membership oracle for f’. Then, by the correctness of Divide, the values returned will be
the correct root label and a correct partition of a minimal implicant or consequent of f’.

Suppose the root label of f’ is AND. Then, in particular, Divide will return “AND”
and two sets D and E such that D is a minimal implicant of some T; and E is a minimal
implicant of the conjunction of T, such that » # j. Let g’ be the monotone p-formula
represented by T, and let A’ be the monotone u formula obtained as follows. If k¥ = 2, then
let A’ be the unique T, such that r # j. If k£ > 2, then let k' be the tree T with the subtree
T; removed. Then f’ is equivalent to g’ A h'. Note that the sizes of g’ and h’ will be at most
s.

In step (3), the first recursive call of MM will be with the sets So and §; U E. It is not
difficult to show that F is disjoint from So and S;. We need to show that the modified
membership oracle for f initialized with the sets S and S; U E is the membership oracle
for the formula g¢’.

Let z € By,. Let 2/ be defined by z} = 1if X; € E and z! = z; otherwise. Since E is an
implicant for A’ and contains no variables of g’, we have '

fi(") = g'(a) AW () = g'(z) A1 = g'(=).

Let y be defined by y; = 0if X; € So, ;i = 1if X; € S; UE, and y; = z; otherwise.
When we call the modified membership oracle for f initialized with So and S; U E on the
input z, it returns “yes” if and only if f(y) = 1. However, y; = 0if X; € So, i = 1 if
X; € S1, and otherwise y; = z!. Hence, by the assumption that the modified membership
oracle for f initialized with So and S; is a correct membership oracle for f/, we must have
(') = f(). |

Since f'(z’) = g¢'(z), a call with input z to the modified membership oracle for f
initialized with So and S U E returns “yes” if and only if g’(z) = 1. That is, it is equivalent
to a membership oracle for g’. Thus, the first recursive call in step (3) returns a monotone
u-formula g equivalent to g/, by the inductive assumption, because the size of ¢’ is at most
s. :
Similarly, we argue that the second recursive call returns a monotone u-formula h equiv-
alent to h'. The procedure then constructs a monotone u-formula that represents the con-
junction of g and h. That is, if the root label of h is AND, the tree for g is made a child
of the root of h. If the root label of h is not AND, g and h are made children of a new
root labelled AND. This formula is a monotone u-formula equivalent to f’. The case for
the root label of- f’ being OR is dual.

To see that the procedure MM runs in polynomial time, note that each vertex of f’ can
be charged with one call to MM, namely, the call that establishes its label. Each call to
MM consists of a call to Divide and some other processing that is clearly bounded by a
polynomial in n, the total number of variables. Q.E.D.

We have as a corolla{y the main result of this section.

Theorem 17 There is a polynomial time algorithm that ezactly identifies monotone pu-
formulas using membership queries.

Proof. Given a membership oracle for a monotone u-formula f, we first query f on the
vector of all 0’s. If the reply is “yes”, we output T and halt. Otherwise, we query f on the

16

vector of all 1’s. If the reply is “no”, we output L and halt. Otherwise f is non-constant,
and we make a top-level call to the procedure MM with the sets Sp and Sy both equal to
the empty set. In this case the modified membership oracle for f initialized with So and S
is the correct membership oracle for f, so by Lemma 16, MM returns in polynomial time a
monotone p-formula equivalent to f. We output the formula returned and halt. Q.E.D.

6 General (non-monotone) p-formulas

In the non-monotone case, the literals that appear in a y-formula may be positive or nega-
tive. We have the following easy result.

Lemma 18 No polynomial time algorithm can ezactly identify all the (non-monotone) p-
formulas using only membership queries.

Proof. Suppose A is an algorithm that correctly identifies every u-formula over the
variables {X1,..., X5} and runs in time p(n) for some polynomial p. Choose n sufficiently
large that 2™ > p(n) + 1.

Consider the set S, of monomials that contain exactly n literals over the set of vari-
ables {X3,...,Xn}. Recall that no monomial contains both a literal and its negation, by
definition. |S,| = 2™.

Run the algorithm A, answering “no” to each of its membership queries until it halts
or until it has run for p(n) steps, whichever comes first. Because 2" > p(n) + 1, there are
at least two monomials in S, that are consistent with all the answers to queries so far, so
A must either give an incorrect output for one of them or it must run for more than p(n)
steps, in either case contradicting the assumptions on A. Q.E.D.

Thus, if a polynomial time algorithm is to identify all (non-monotone) u-formulas, it
will require something other than just membership queries. The information that we are
lacking to reduce the non-monotone case to the monotone case is the signs of the literals
that occur in f. Valiant’s algorithm [5] to exactly identify an arbitrary u-formula f makes
use of several kinds of queries concerning f, which we now briefly describe.

The input to the necessity oracle is a set L of literals, and the result is 1 if and only
if L is an implicant of f. The relevant possibility oracle takes as input a set L of literals
and returns 1 if and only if L is a subset of some minimal implicant of f. The relevant
accompaniment oracle takes as input two sets V and W of variables and the result is 1 if

“and only if every minimal implicant of f that contains a variable from V also contains a
variable from W. ‘

The necessity oracle gives, in the terminology of [2], a subset query for f in which the
input is restricted to be a monomial. That is, if the input to the necessity oracle is L and m
is the conjunction of the literals in L, the result of the query is 1 if and only if m logically
implies f, that is, if and only if all the assignments that satisfy m also satisfy f.

The relevant possibility oracle can be used to determine the signs of the literals occurring
in f, as follows.

Lemma 19 The h’teral Y occurs in f if and only if the relevant possibility oracle with input
{Y'} returns 1.

17

Proof. 1t is clear from Lemma 5 that if the literal Y occurs in a minimal implicant then
it must be a leaf of the AND/OR tree of f, that is, it must occur in f.

Conversely, suppose that Y is a literal labelling a leaf of the AND/OR tree T of f. Then
we may construct a minimal implicant of f containing Y as follows. Initially let L = {Y}.
Consider the path from Y to the root of T'. At each vertex v labelled AND, let wy,...,wk
be the children of v that are not on the path from Y to the root of T. For each w;, add a
minimal implicant of the subtree of T rooted at w; to L. It clear that the final set L is a
minimal implicant of f that contains Y. Q.E.D. '

Corollary 20 There is a polynomial time algorithm that ezactly identifies every u-formula
using membership and relevant possibility queries. '

Proof. Let f be the p-formula to be identified. Begin by querying the relevant possibility
oracle with {Y'} for each of the 2n possible literals Y'. This determines exactly which literals
Y occurin f.

Now we run the procedure for monotone u-formulas, except that each query to the
membership oracle is modified as follows. If the element being queried is £ € B,, then
query instead the vector y such that y; = Z; if =X; occurs in f, and y; = z; otherwise.

The procedure to identify monotone formulas will eventually return a monotone u-
formula g. In this formula, replace X; by =X; if =X; occurs in f, for each ¢ = 1,...,n.
Then the resulting formula f’ will be equivalent to f. Q.E.D.

This algorithm uses membership queries, which are weaker than necessity queries, and
relevant possibility queries (just to determine the proper signs of the literals.) It does not
need relevant accompaniment queries.

7 Equivalence queries do not suffice

In this section we show that no polynomial algorithm can exactly identify all the u-formulas
using only equivalence queries, even if the target formula is known to be monotone and in
disjunctive normal form. A related result in [1] shows that no polynomial time algorithm
can exactly identify all disjunctive normal form formulas using only equivalence queries.

The proof in that paper makes use of the fact that any particular DNF formula is
satisfied by some assignment with “few” 1’s or falsified by some assignment with “few” 0’s.
Moreover, the behavior of the formula on this assignment is shared by “few” other DNF
formulas. Thus, when the learning algorithm makes a query with a DNF formula, one of
these distinguishing assignments can be returned as the counterexample, which eliminates
the proposed formula and very “few” others. This shows that “many” equivalence queries
will be necessary to narrow down the consistent hypotheses to just one.

The result for DNF formulas does not immediately imply the result for u-formulas,
since it does not allow for the input to the equivalence query to be a general p-formula (not
necessarily in disjunctive normal form) and the target class of formulas is not a class of u-
formulas. However, a very similar proof works for u-formulas, since Corollary 7 shows that
every p-formula is satisfied by an assignment with “few” 1’s or falsified by and assignment
with “few” 0’s. What remains to be done is to define a target class of u-formulas for
which using these distinguishing assignments as counterexamples eliminates “very few”
hypotheses.

18

7.1 The target class

Let m > 1 and let n = m2. Let H, be the class of all monotone u-DNF formulas with
exactly m literals in each monomial. There is a one-to-one correspondence of elements of
H, with permutations of the n variables. That is, each element of Hy can be imagined
as the result of taking a permutation of the variables and grouping them, in order, into m
monomials of size m each. Thus, |Hy| = nl.

Now each element of H,, is logically equivalent to those elements that can be obtained by
permuting the monomials and by permuting the variables within a monomial. Thus, each
element of H, is logically equivalent to (m!)? others. Thus, the elements of H; represent
n!/(m!)? logically distinct functions.

Suppose z € B, is a boolean vector such that z; = 1 for exactly m values of i. Let L,
be the set of variables X; such that z; = 1. How many elements f € Hy have f(z) =17 In
order to have f(z) = 1, one of the monomials of f must contain exactly the variables in L.
There are m choices for which monomial this is, and m! permutations of L, to constitute
it. For the remaining n — m variables, there are (n — m)! permutations giving the order in
which they are placed in the remaining n — m positions. Thus, there are

m-m!-(n—m)!

elements f € H, such that f(z) = 1.

Suppose that z € By, is a boolean vector such that z; = 0 for exactly m values of ¢. Let
L. be the set of variables X; such that z; = 0. How many elements f € H,, are such that
f(z) = 0? In order to have f(z) = 0, each monomial of f must contain at least one element
of L,. However, since there are m elements of L, and m monomials that contain disjoint
sets of variables, this means that each monomial of f must contain exactly one element of
L. There are m™ choices of one place in each monomial for the elements of L, and m!
permutations of L, by which they might be filled. For the remaining n —m elements, there
are (n — m)! orders in which to put them into the remaining n — m places. Thus, there are

m™-m!.(n - m)!
elements f € H, such that f(z) = 0.

Lemma 21 For any constant C > 1 and for all sufficiently large integers m, if n = m?

then
(m™ -m!-(n—-m))/n! < Cy/2n(m - 1)e~(m-1),
Proof. Let C > 1 be given. Choose € > 0 sufficiently small that
1+e?/(1-¢<C.

By Stirling’s approximation to the factorial, we may choose m > 1 sufficiently large that
for all £ > m,

(1 —)V2rk(k*[e*) < k! < (1 +)V2rk(kk [€F).

Let n = m?. Then, since n > (n — m) > m, we have after some simplification,
(m™ - m!-(n—m)!)/n! < Cy/2x(m - 1)(1 — m/n)""™.

19

Using the fact that (1 — z) < e™%, we have

(m™-m!-(n-m)l)/n! < Cy/2x(m - 1)elm=1),

Q.E.D.

The main result now follows easily.

Theorem 22 There is no polynomial time algorithm that ezactly identifies all p-formulas
using equivalence queries, even if the target class is known to be monotone and in disjunctive
normal form.

Proof. Suppose to the contrary that A is a polynomial time algorithm that exactly
identifies all u-formulas using equivalence queries. Let p(n) be a polynomial bounding the
running time of A. Let C > 1, and let B(m) be the function defined by

B(m) = Cy/2x(m - 1)e~(m-1),

Choose m sufficiently large that for n = m? we have
(m™-m!-(n-m)!)/n! < B(m),

(by Lemma 21) and also
n!(1 — B(m)p(n)) > (m!)2

This latter is possible since for n = m?2, B(m)p(n) — 0 as m — co. Let n = m2.

Now consider the following adversary strategy. Run algorithm A with variable set
{X1,...,Xn} until it makes an equivalence query or has run for p(n) steps, whichever
comes first. If it makes an equivalence query with the u-formula g, then we answer as
follows.

If gis T, the reply is “no” and the counterexample is the vector of all 0’s. If g is L, the
reply is “no” and the counterexample is the vector of all 1’s. Otherwise, g is a non-constant
p-formula of size at most n. By Corollary 7, ¢ must have a minimal implicant or a minimal
consequent of size at most \/n = m.

Suppose g has a minimal implicant L of size at most m. Thus, any vector z € B,, that
assigns 1 to all the literals in L must also assign 1 to g. Let r denote the number of positive
literals in L. Let S be a set of m — r variables that are distinct from all the variables
occurring in literals of L.

Define a vector z as follows: z; = 1 if the variable X; occurs as a positive literal in L or
if X; € S. Otherwise, z; = 0. Then z is a vector that contains exactly m 1’s and assigns
the value 1 to all the literals in L, so g(z) = 1. The reply to the equivalence query in this
case is “no” and the counterexample is the vector z.

Dually, suppose g has a minimal consequent L of size at most m. As above, we can find
a vector z € B, such that z contains exactly m 0’s and g(z) = 0. In this case the reply to
the equivalence query is “no” and the counterexample is z.

Consider now the target set H,. We argue that after p(n) steps of A, at least two
logically inequivalent members of H,, are consistent with all the replies given to equivalence

20

queries. To see this, note that each element of Hy, is a non-constant u-formula, so the
counterexamples given in response to T or L do not eliminate any elements of H,.

In case the counterexample is a vector z with m 1’s such that g(:c) = 1, then we have
argued above that there are at most

m-m!-(n—m)!

elements f € H, such that f(z) = 1. By our choice of m, since m < m™, this means that
no more than B(m)n! elements are eliminated from H, by this counterexample.

In the case that the counterexample is a vector z with m 0’s such that g(z) = 0, we
have argued above that there are at most

m™-m!-(n—-m)!

elements f € H, such that f(z) = 0. By our choice of m, this means that at most B(m)n!
elements are eliminated from H, by this counterexample.

Thus, each counterexample eliminates at most B(m)n! elements from H,. Since H,
initially contains n! elements, this means that when A has run for no more than p(n) steps,
there are at least

— p(n)B(m)n! = n}(1 - p(n)B(m) > (m!)?

elements remaining in H,, that are consistent with all the counterexamples returned to this
point. Since each element of H,, is logically equivalent to (m!)? elements of Hy,, this means
that at least two logically inequivalent elements of H, are consistent with all the replies to
this point. Hence, A must either run for more than p(n) steps, or it must fail to identify
correctly at least one of the elements of H,. This contradiction shows that no such A can
exist. Note that the set H, contains only u-formulas that are monotone and in disjunctive
normal form. Q.E.D.

8 Comments

Several open problems remain, of which the most interesting is whether we can reduce
the strength of the queries needed to get polynomial time identification of general (non-
monotone) u-formulas. In particular, do equivalence and membership queries suffice? Do
subset and superset queries suffice?

9 Acknowledgements

This research was funded by the National Science Founda,tlon, under grant number IRI-
8718975.

References

[1] D. Angluin. Fquivalence queries and DNF formulas. Technical Report, Yale University,
YALEU/DCS/RR-659, 1988.

21

[2] D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1987. Prelim-
inary version appeared as YALEU/DCS/RR-479.

[3] M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of boolean formulae. In
Proc. 19th ACM Symposium on Theory of Computing, pages 285-295, ACM, 1987.

[4] L. Pitt and L. Valiant. Computational limitations on learning from examples. J. ACM,
35:965-984, 1988.

[5] L. G. Valiant. A theory of the learnable. C. ACM, 27:1134-1142, 1984.

22

