On-line & Off-line Partial Evaluation:
Semantic Specifications and Correctness Proofs

Charles Consel and Siau Cheng Khoo
Research Report YALEU/DCS/RR-91
June 1992 .

This work is supported by the Darpa grant N00014-88-K-0573 and NSF
CCR-8809919

On-line & Off-line Partial Evaluation:
Semantic Specifications and Correctness Proofs *

Charles Consel Siau Cheng Khoo

Yale University
Department of Computer Science
New Haven, CT 06520
{consel, khoo}@cs.yale.edu

May 8, 1992

Abstract

This paper presents semantic specifications and correctness proofs for both on-line and off-
line partial evaluation of strict functional programs. To do so, our strategy consists of defining a
core semantics as a basis for the specification of three non-standard evaluations: instrumented
evaluation, on-line and off-line partial evaluation. We then use the technique of logical relation
to prove the correctness of both on-line and off-line partial evaluation semantics.

Our approach goes beyond previous work [Gom92, Lau90, Jon88b] in that

1. We provide a uniform framework to defining and proving correct both on-line and off-line
partial evaluation.

2. This work required a formal specification of on-line partial evaluation with polyvariant
specialization (which had never been done). We define criteria for its correctness with
respect to an instrumented standard semantics. As a byproduct, on-line partial evaluation
appears to be based on a fixpoint iteration process, just like binding-time analysis.

3. We show that binding-time analysis, the preprocessing phase of off-line partial evaluation,
is an abstraction of on-line partial evaluation. Therefore, its correctness can be proven with
respect to on-line partial evaluation, instead of with respect to the standard semantics, as
is customarily done.

4. Based on the binding-time analysis, we formally derive the specialization semantics for off-
line partial evaluation. This strategy ensures the correctness of the resulting semantics.

1 Introduction

Partial evaluation is the process of constructing a new program given some original program and
a part of its input [Fut71]. It is considered a realization of the s™ theorem in recursive function
theory [Kle52]. Therefore, a faithful partial evaluator must satisfy the following criterion:

*This research was supported in part by NSF and DARPA grants CCR-8809919 and N00014-91-J-4043, respec-
tively. The second author was also supported by a National University of Singapore Overseas Graduate Scholarship.

Suppose that P(z,y) is a program with two arguments, whose first argument has a
known value ¢, but whose second argument is unknown. Partial evaluation of P(e,y)
with an unknown value for y should result in a specialized residual program F(y) such
that:

Vy € Y, P(c,y) = Pu(y). (1)

In essence, a partial evaluator is a program specializer and is expected to produce more efficient
programs [Jon90]. In practice, there are two different strategies of partial evaluation: on-line and
off-line. An on-line partial evaluator processes a program in one single phase. This process can be
viewed as a derivation from the standard evaluation [HM89]. An off-line partial evaluator performs
some analyses before specializing the program; the main analysis performed is binding-time analysis
[Jon88a]. Prior to specialization, this analysis determines the static and dynamic expressions of
a program given a known/unknown division of its input. The static expressions are evaluated at
partial-evaluation time, and the dynamic expressions are evaluated at run-time. As such, binding-
time analysis can naturally be viewed as an abstraction of the on-line partial-evaluation process,
but this has not been proven, not even stated formally.

1.1 Correctness of Partial Evaluation — An Overview

Regardless of the strategy used, partial evaluation is a non-trivial process, it involves numerous
program transformations. Therefore, proving the correctness of this process must go beyond the
extensional criterion given by Equation 1 (Section 1); it must be based on the semantics of partial
evaluation. This approach should provide the user with a better understanding of the process.

Several works on proving the correctness of partial evaluation have appeared in the literature
recently, all dedicated to off-line partial evaluation. In particular, Gomard in [Gom92] defines a de-
notational semantics of a specializer for lambda calculus,! together with its correctness proof. How-
ever, the specializer is limited to monovariant specialization (that is, every function in a program
can have at most one specialized version created during specialization). In [Lau90], Launchbury
defines in a denotational style a binding-time analysis and proves its correctness with respect to the
standard semantics. He also shows that his result corresponds to the notion of uniform congruence,
a restrictive version of the congruence criterion for binding-time analysis defined by Jones [Jon88b).
However, since the correctness proofs are done with respect to the standard semantics, they do not
provide any insight as to how binding-time properties are related to the partial-evaluation process,
and more specifically to that of on-line partial evaluation.

In this paper, we provide the semantic specifications and the correctness proofs for partial eval-
uation of first-order strict functional programs (an extension to higher-order programs is discussed
in Section 6). This work is distinct from the existing omes in two aspects: First, it provides a
correctness proof for polyvariant specialization (that is, a function in a program can have more
than one specialized version created during specialization); second, it adopts a uniform approach
for defining and proving the correctness of both the on-line and off-line partial evaluation.

}The binding-time information are provided by the user, and therefore its derivation is mot included in the
semantics. .

The Structure of the Semantics

In polyvariant specialization, when a function call is suspended, a specialized version of the func-
tion is created; it is this function call that characterizes the specialized function. During partial
evaluation, if all suspended function calls are collected, this information characterizes the residual
program, and can actually be used to construct it.

This observation prompted us to specify the partial evaluation in terms of collecting interpreta-
tion, as described in [HY88] (the resulting semantics is also similar to the minimal function graph
(MFG) semantics [JM86]). As a consequence, just like a collecting interpretation, the semantics
consists of two functions: the local semantic function (or standard semantic function, using the ter-
minology of [HY88]) describes the partial evaluation of expressions. The global semantic function
(correspondingly, the collecting interpretation) describes the collection of call patterns.

Uniform Approach for Defining and Proving the Correctness of Partial Evaluation

A uniform approach to defining and proving the correctness of both on-line and off-line partial
evaluation enables us to define the relationship between the two levels of partial evaluation. Fur-
thermore, it provides a basis for applying techniques of one level to the other. The uniformity of
our approach is based on the following two techniques:

1. Factorized Semantics: We define a core semantic [JM76, JN90] which consists of semantic
rules, and uses some uninterpreted domain names and combinator names (Section 2). This
semantics forms the basis for all the semantic specifications defined in the paper. In partic-
ular, we define an instrumented semantics that extends the standard semantics to capture
all function applications performed during program execution (Section 3). Using other inter-
pretations for domains and combinators, we define the on-line partial evaluation semantics
(Section 4), the binding-time analysis and the specialization semantics (Section 5). The ad-
vantage of a factorized semantics is that different instances can be related at the level of
domain definitions and combinator definitions.

2. Logical Relations: We use the technique of logical relations [Abr90, JN90, MS90] to prove
the correctness of partial evaluation semantics. Logical relations are defined (1) to relate
the on-line partial evaluation semantics-to the instrumented semantics, and (2) to relate the
binding-time analysis to the on-line semantics. Since all these semantic specifications are
just different interpretations of the core semantics, their relations can be defined locally by
relating their domains and combinators. The resulting proofs thus conform closely to our
intuition about the relations between these semantics.

Our approach is summarized in Figure 1. Note that, the specializer for off-line partial evaluation
can be systematically and correctly derived from its on-line counterpart, using the information
collected by the binding-time analysis.

Off-line Partial Evaluation Semantics
A

Core Semantics On-line Partial Evaluation Semantics
A

Instrumented Standard Semantics

Figure 1: The Factorized Semantics and Logical Relations

Factorized semantics enables the instantiation of various semantics of interest from the core seman-
tics. Logical relation relates two adjacent level of semantics.

1.2 Notation

Most of our notation is that of standard denotational semantics. A domain D is a pointed cpo— a
chain-complete partial order with a least element Lp (called “bottom”). As is customary, during
a computation Lp means “not yet calculated” [JN90]. A domain has a binary ordering relation
denoted by Cp. The infix least upper bound (lub) operator for the domain D is written Up; its
prefix form, which computes the lub of a set of elements, is denoted | |p. Thus we have that for
alde D, 1pCp dand LpUpd = d. A domain is flat if all its elements apart from L are
incomparable with each other. Domain subscripts are often omitted, as in L U d, when they are
clear from context.

The notation “d € D = --” defines the domain (or set) D with “typical element” d, where - - -
provides the domain specification usually via some combination of the following domain construc-
tions: D, denotes the domain D lifted with a new least element L. P(D) denotes the powerset
domain whose least element is the empty set, and whose partial-order relation is the subset inclu-
sion. D; — D denotes the domain of all continuous functions from D; to D,. D; + D, and
D; x D; denote the separated sum and product, respectively, of the domains D; and D;. All
domain/subdomain coercions are omitted when clear from context.

The ordering on functions f, f' € D; — D, is defined in the standard way: f C f' &
(vd € D;) f(d) C f'(d).. A function f € D; — D, is monotonic iff it satisfies (vd,d’ € D,)
dC d' = f(d) C f(d'); it is continuous if in addition it satisfies f(||{d;}). = |{f(d;)} for any chain
{d:} C D;. A function f € D; — D; is said to be strict if f(Lp,) = 1p,. An element d € D is
a fizpoint of f € D — D iff f(d) = d; it is the least fizpoint if for every other fixpoint d’, we have
that d C d'. The composition of function f € D; — D with f' € Dy — Dj is denoted by f' o f.

Angle brackets are used for tupling. If d = (dy,...,d,) € Dy X --- X D,,, then for all i €
{1,...,n}, dli denotes the i-th element (that is, d;) of d. For convenience, in the context of a
smashed product, that is, d € D; ® --- ® Dy, d* denotes the ¢-th element of d. Syntactic objects

4

¢ € Const Constants
z € Var Variables
p € Po Primitive Functions
f € Fn Function Names
e € Exp Expressions
e u= clz|p(e, - - en) | f (e, en) |ifereaes
Prog == {fi(z1,---,za) = &} (f1 is the main function)

Figure 2: Syntactic Domains of the Subject Language

are consistently enclosed in double brackets, as in [e]. Square brackets are used for environment
update, as in env[d/[z]], which is equivalent to the function Av . if v = [z] then d else env(v).
The notation env[d;/[z;]] is shorthand for env[d;/[z,],.. -»ydn/[25]], where the subscript bounds
are inferred form context. “New” environments are created by L[d;/[z:]]. Similar notations are
also used to denote cache, cache update and new cache respectively.

The paper describes three levels of evaluations: standard evaluation, on-line partial evaluation
and off-line partial evaluation. A symbol s is noted 3 if it is used in on-line partial evaluation and
- § in off-line partial evaluation. Symbols that refer to standard semantics are unannotated. For .
generality, any symbol used in either on-line or off-line partial evaluation is noted 3. Finally, an
algebra is noted [A; O] where A is the carrier of the algebra and O a set of functions operating on
this domain. All operations of an algebra are assumed to be continuous.

2 Core Semantics

We begin the discussion of semantic specification of partial evaluation by presenting a core se-
mantics. The subject language is a first-order functional language. Figure 2 defines its syntactic
domains. The meaning of a program is the meaning of function f;. We assume all functions (and
primitive functions) have the same arity.

The core semantics is defined in Figure 3. It is used as a basis for all the other semantic
specifications defined later, and it factors out the common components of those semantic spec-
ifications. This semantics is composed of two valuation functions: £ and A. Briefly, £ defines
the standard/abstract semantics (called the local semantics) for the language constructs, while A
defines a process which collects information globally (called the global semantics). The structure of
the core semantics is similar to that used in [HY88] for defining collecting interpretation. A similar
structure is also used by Sestoft for defining binding-time analysis [Ses85].

The core semantics is defined by semantic rules. It uses some uninterpreted domain names
and combinator names. A semantic specification is defined by providing an interpretation to these
domains and combinators. As a result, the relation between two semantic specifications defined
from a core semantics can simply be based on their domains and their combinators. In fact, all
three semantic specifications presented in this paper are defined from the core semantic displayed
in Figure 3. Also, to prove their correctness we use the relations defined between their domains
and combinators. This is depicted in Figure 4.

1. £ : Exp— ECont where ECont = Env — Resultz

&l = Constz [c]
&[z] = VarLookup; [2] _
Z[p(er,--ren)] = PrimOpz [I(ELes),... . Een])
E[if e1 €2 €3] = Condg (£]ea], Elez], Ees))
Elf(er,---,en)] = Appz [f1(£lead, .- ., Elen])
where Consty : Const — ECont

VarLookupz : Var — ECont

PrimOpz : Po — ECont™ — ECont

Condy : ECont® — ECont

Appr : Fn — ECont™ — ECont

2. A : Exp— ACont where ACont = Env — Resuli+
Alc] = Constx [c]
Z[z] = VarLookup [z]
Alp(e1,---,en)] = PrimOpx [p] (A[eil,..., Alen)])
Z[i fe1ez2 e3] = Cond (Zfell Alez], Ales]) (fle;]) _
Alf(er, - en)] = Appx [f] (Alesl,..., Alen)) (€leil,..., Elea])
where Const : Const — ACont
VarLookupw : Var — ACont
PrimOpz : Po — ACont™ — ACont
Cond— : ACont® — ECont — ACont
Appz : Fn — ACont™ — ECont™ — ACont

Figure 3: Core Semantics

[Resulty ; Combyg] (£,A) [Result 73 Comby]
4 §

[Resultz ; Comby] (£, A) [Result 7 ; Comby

f f

[Resulte ; Combg] (€, A) [Results ; Comby)

Figure 4: Relations between three levels of evaluation

Resultz and Resultz are the result domains used by semantic functions £ and A respectively.
Combz and Comb are their respective set of combinators.

3 Standard and Instrumented Semantics

3.1 The Semantics Specifications

In Figure 5 the core semantics is instantiated to define the standard semantics of the language.
As is customary, we will omit summand projections and injections. Only interpretation of the
valuation function € is provided since the definition of standard semantics does not require collecting
information globally. For a function f, “strict f” is a function just like f except that it is strict in
all its arguments.

In order to investigate the relationship between the standard semantics and the partial evalua-
tion semantics, the standard semantics is enriched to capture information about function applica-
tions. The enhanced semantics, called instrumented semantics, collects all function calls performed
during the standard execution of a program. Function calls are recorded in a cache, which maps a
function name to a set of standard signatures®. A standard signature consists of the value of the
arguments to a function application. This is depicted in Figure 6.

e Semantic Domains
v € Resulte = Values = Int + Bool
p € VarEnv = Var — Values
¢ € FunEnv = Fn — Values™ — Values
Env = VarEnv x FunEnv

e Valuation Functions
€prog : Prog — Values™ — Values
Eprog [{ fi(z1,---,20) = ei}v1,...,00) =
¢ [_f1] (v1,...,vn) whererec ¢ = L[strict {Av1, -+, 0n) . Eled] ((L[vi/zx]),6)}/ fi)
E =€

o Combinator Definitions
Conste [c] = Ap,¢) . K []
VarLookupe [z] = A(p,9) - olz]
PrimOpe [p] (k1,...,kn) = X(p,9) . Kp[p] (k1(p, 8),...,kn(p, 8))
Conds (k1, k2, k3) = X(p,8) . ki(p,8) — ka2(p, 8), k3(p,4)
App5 [f] (kl 3oy k") = A(p) ¢) . ¢[f] (kl(pa ¢): ey kn(P, ¢))

Figure 5: Standard Semantics

3.2 Correctness of Instrumentation

Because the local semantics is exactly identical to the standard semantics, we only need to show
that the instrumentation part of the instrumented semantics is correct. That is, the instrumented
semantics captures (in the cache) all the calls performed during standard evaluation. Since the
language we consider is strict, only those standard signatures that represent function calls with
non-bottom argument values are collected in the cache. We shall refer to these function calls as
non-trivial calls.

2Notice that powerset, instead of powerdomain, is used to model the content of the cache. This avoids some
technical complication incurred in the correctness proof, as discussed in [HY88].

e Semantic Domains

v € Results = Values = as in Figure 5§

p € VarEnv = as in Figure 5

¢ € FunEnv = as in Figure 5 '

¢ € Resulty = Cachey = Fn — P(Values®)
e Valuation Functions

EpProg : Prog — Values™ — Cachey

Eprog [{ fi(z1,++,20) = e}lv1,-.., o) = R(L[{{v1,...,vn)}/ fr])

whererec k(o) o Uh(L{A [ei] (L[vr/zx])é | (v1,...,va) € o[f:), VIf:] € Dom(s)})

Lstrict (A(v1,-++,vn) . € [e] (L[vx/2x]) 8)/f]

£E=¢
A=A

e Combinator Definitions
Consts [c] = as in Figure 5
VarLookups [z] = as in Figure 5
PrimOps [p] (k1,...,kn) = as in Figure 5
Condg (ki, k2, k3) = as in Figure 5
Appe [f] (k1,...,kn) = as in Figure 5

Consta [c] = Ap,8) . (Af.{})
VarLookupa [z] = A(p,¢) . (Af-{}) .

PrimOpa [p] (a1,...,an) = A(p,) . Uag(p,(i))
Conda (a1, a2, as) by = Mp,8) . a1(5,6) U (k(0,9) = as(e,9), as(,9))
Appa [f] (@1, an)(kiseooy kn) = Med) . | aip @)U B €{L,...,n} st v =L — (Af.{}),

i=1 J—[{(vl""’”")}/f])
where vi = ki(p,4) Vi € {1,---,n}

Figure 6: Instrumented Semantics capturing function calls

Theorem 1 (Correctness of Instrumentation) Let P be a program evaluated with input
(viy...,vn). For any user-defined function f in P, if f is called with non-bottom argument
(vi,...,v,) during the standard evaluation, then (v},...,v.) € o[f].

The proof is given in Appendix A.

4 On-Line Partial Evaluation Semantics

In this section, we instantiate the core semantics to on-line partial evaluation. Using logical relation,
we then present the specification and correctness proof of on-line partial evaluation. But first, we
present the notion of partial-evaluation algebra.

4.1 Partial-evaluation Algebra

At the standard evaluation level, primitive operations can be captured by the algebra [Values; O];
where Values is the domain of basic values and O is the set of primitive functions. At the on-

8

line partial evaluation level, because it is a program transformation process, primitives operate on
constants instead of values. Also, because a program is processed with a partial input, a primitive
might be invoked with some non-constant arguments, and thus return a non-constant value. These

observations are captured by the partial-evaluation algebra: an abstraction of the standard algebra
[Values; O].

Definition 1 (Partial-Evaluation Algebra) Let [Values; O] be an algebra consisting of the domain of

basic values and a set of primitive functions, the partial-evaluation algebra [Values ; O] consists of the
following components:

1. The domain of basic values Values and the domain of constants Values are related by the abstraction
function T

T : Values — Values
T(z) = ‘LV@: if 2= Lvaiues

K-Y(z) otherwise

2.VpeoO of anty n, there erists a corresponding absiract version p € O such that
p: Values — Values
pP=2A (dl’) ﬂ) .3ie{l,---,n}st. d; = ‘Lvﬁu\es —'J'V:I;es’
n

/\(J,- € Const) — F(Kp[p](dy, -+, dn)), T =
where d; = ‘Zl[ci;] Vie {1,---,n}

Values

where K~! is a monotonic semantics function that converts a basic value to its textual representa-
tion. Because Values is the sum of basic ic domains, 7 is actually a family of abstraction functions
indexed by the summands. Domain Values — refered to as the partial-evaluation domain — is
constructed by adding elements Lo, and Ty, to the set of constants denoted by Const;
Ly, and T —~ are respectively weaker and stronger than all the elements of Const. Value
'LVT corresponds to Lvalues, While value TV 7, Tepresents a non-constant value. If a primi-
tive call partially evaluates to value T VT @ residual expression for this primitive call has to be
constructed, so that it be performed at run time, when the complete input is available. In fact,
the partial evaluation algebra captures the primitive operations at partial-evaluation time. This-

provides a modular definition of on-line partial evaluation and it facilitates the proofs.

Notice that the abstract primitives defined in O satisfies the following safety criterion:

Vv € Values, Vp € O and its corresponding abstract version p € 6,
Top(v) Cymm, PoT (v)

The relation between [Values; O] and the partial-evaluation algebra can be succintly described
by a logical relation ([Nie89, JN90]) C- defined as follows:

1. ¥ d € Values, V d € Values: d C- d & 7(d) C Cvam, d
2.Vp€Oandj€O, p Ty p ¢ Vde Values, Vde Values : d C; d = p(d) Ty #(d)

This logical relation forms the basis of the correctness proof of the on-line partial evaluation
semantics.

Using the partial-evaluation algebra, we can go one step further and investigate the relation
between on-line and off-line partial evaluation. Recall that off-line partial evaluation consists of a
binding-time analysis and a specializer. For now, let us examine how the binding-time domain can
be captured from the on-line partial evaluation domain.

Usually the binding-time domain, noted Vz:l;es, is composed of the binding-time values Static
and Dynamic, lifted with a least element3 Ly This domain forms a chain, with ordering

J_V;TJ“ C Static C Dynamic. Values and Values can be related by the abstraction function 7

defined by
T : Values — Values
T(.’E) = -LV:IT‘JICS 1f z= J'V;l:es

Static if z € Const
Dynamic otherwise.

Domain Values is predominantly used in the binding-time analysis, which will be described in
Section 5.

4.2 The Semantics Specification

The on-line partial evaluation semantics is displayed in figures 7 and 8. This semantics aims
at partially evaluating a program with respect to a partially-known input. It returns a residual
program consisting of the specialized functions.

Domain Exp is a flat domain of expressions. Besides using [] to denote a syntactic fragment,
we also use it to construct expressions. This operation is assumed to be strict in all its arguments
(i.e., the subexpressions).

The semantics consists of three valuation functions: &. y A and fp,og. Function £ defines the
partial evaluation of an expression. It produces a pair of values ¥ € Res = Exp x Vaj;es,
where the first component is a residual expression and the second component is a value in the
partial-evaluation domain. Res is ordered component-wise.

One of the central issues in partial evaluation of functional programs is the treatment of function
calls. Basically, there are two kinds of transformation performed in partially evaluating a function
call: unfold and specialization. The latter includes suspending the call, and specializing the function
with respect to the value of the known (static) arguments values. Exactly how a function call is
to be treated can be determined by the user, or automatically by some termination analysis (e.g.,
[Ses88]). To capture this piece of decision making, we introduce the notion of filters.

We associate a filter specification to each user-defined function in a subject program. A filter
consists of a pair of strict and continuous functions. The first function determines how to transform
a function call (unfold or specialize). The second function specifies how a called function is to be

*Note that this three-point domain refines the usual two-point domain {Static, Dynamic} in that it allows to
detect functions in a program that are never invoked, and simple cases of non-terminating computations. Without
the value 'vazZ o these cases would be considered as Static.

10

o Semantic Domains
——

§ € Values ¢ € FunEnv=Fn— Res" — Res
® € Result; =Res = Exp x Values 6 € Resulty=Cache,=Fn — P(Transf x Res")
p € VarEnv = Var — Res Env= VarEnv X FunEnv

¢ Valuation Functions
€prog : Prog — Res” — Prog,
EProg [{fi(z‘l: “yZn) = e‘}]’\(i'l, “++,9n) = MkProg (i'(l[{(s’ 01,..., ﬁﬂ)}/fl]))i’
whererec ’f(&) = dUh({A [es] (L[® ,‘/:ck] é) | (= 9},...,00) € 6[£:),VIfi] € Dom(5)})
R ¢ = Llstrict (A(d1,+--,9n) . 3 [e:] (L[ox/zx), 8))/£:]
£
A
e MkProg Definition
MkProge ¢ = { fiP(z1,...,2x) = o1 |V(s,by,... ,9n) € 6[£:), VIfi] € Dom(4)}
where fF = SpName([f.'], D1,.00yDn)
= £ [e) (L[ox/zx), 4)
(z1,...,2k) = ResidPars ([f],9:111,...,9nl1)
‘o Local Combinator Definitions
Consty[c] = A5, 9) . K [c]
VarLookupy [z] = A(, $) . b []
PrimOp, [p] (k1s..orkn) = X(5,9) . Kp [p] (i(5,9),. .., kn(5,4))
Cond, (k;, k2, k) = X5, 8). (1l2€ Const) — ((K(91]2)) — 92, 93),
C (I 01l1 6201 6511], 9212 Lésl2)
) .) where ¥ = k.;\(ﬁ, é) Vif {1, 2, 3}
Appz [f] (k1. kn) = M5B, 0) . (FEfDU (b1(31),...,bE(3n)) = u
- ¢ [f] (i'{’ LR :‘ﬁ"): ([f’P(e;’) ceey ek)]:
where ¥ = ki(p,¢) Vi€ {1,...,n}
fGP = SpName([f]’i};’ ceey i’n)
(efs.-., e,,) = ResidArgs ([f], (b1,...,bn), (81l1,...,8a]1))
(91,...,05 SpPat ([f]’ii’l"~~"7"2: (b1,...,bn))
(b1,...,bn) (FtIfDI2 (bt(1),...,bt(in))

non

5] ™

)

Volues

I

° Pg\imitive Functions
K : Const — Res

K[= ([[])

)EA: Po — Res" — Res R
Ke [l ((e1,81), - (emibn) = (6 = L= = (Loap, Ly),
(6 € Const) - (6 6) ([P(ely . ’en)] 6)
where § = p(ﬁx, <+, 6n)
= k()

Figure 7: On-Line Partial Evaluation Semantics — Part 1

11

o Global Combinator Dgﬁnitions
Const [c] = A(p,¢) . ('\.f -}
VarLookup; [z] = A(p,¢) . (Af.{})

PrimOp 2 [l (a1, .-, dn) = A(5,9) - |_|ai(5,)

. N =1 . - . . :
Cond;’{ (&1, &2,&3) k= ’\(ﬁ) ¢) . &1£i’)) U,\61 € (,:°n8t - (’C(&]) - &2(5’ ¢)1 &3(i’» ¢)), &2(ﬁ, ¢) u &3(ﬁ! ¢)
where (e1,61) = ki1(p,8)

APP; [j] (&l)"" an) (kly"’r kn) = A(ﬁ)¢) . (u&'(ﬁ)¢))U&
where 9 = ki(p, d) Vi€ {1,~--,2}
& = ((FH[fDI(bL(s1),...,bt(3n)) = u) —
J‘[{(u:{’l,'“)i’")}/f]a J-[{<s’i’;”ﬁn)}/f]
(91,...,95) = SpPat ([f],’{f)l,...,ﬁ,-.z\, (b1,...,bn))
(b1,...,bs) = (Ft[fI2 (bt(91),...,bt(ds))

Figure 8: On-Line Partial Evaluation Semantics — Part 2

specialized (it is not used when the call is unfolded): it determines which argument values are -
to be propagated. (Only arguments with constant values are considered for propagation.) The
functionality of a filter is (Val~uesn — T) x (Val~uesn - Vzﬁﬁesn) where Values is the binding-
time domain and domain T contains two values: u and s, which stand for unfolding and specializing
respectively. This strategy has been developed for the partial evaluator Schism [Con88, Con90].

Domain T is ordered as follows: u C s. This ordering reflects our intuition about the termination
behavior of these transformations: unfolding a function call will terminate less often than its
specialization. This means that replacing the unfolding of a call by its suspension cannot cause
non-termination; however, the converse is not true. A detailed discussion on the treatment of calls
can be found in [Ses88], for example.

For a function f, the two components of its filter are denoted by Ft[f]|1 and Ft[f]|2 respec-
tively. When a function call is suspended, a specialized function will be created. The specialized
function name is denoted by f/7. It is uniquely identified by two components: the name of the
original function f; and the specialization pattern.?

Function A collects partial-evaluation signatures associated with the user-defined functions.
A partial-evaluation signature is created when a non-trivial function call is performed at partial-
evaluation time. It consists of two components: A transformation tag indicating the transformation
performed on the function, and the argument values of the application. For function specialization,
the partial-evaluation signature is a specialization pattern.

All signatures are recorded in a cache. Formally, it is defined as

Cache; = Fn — P(Transf x Res").

*The specialization pattern describes information about the arguments used in specializing the function. Each
argument value belongs to Res. The expression component is either a constant (which is to be propagated at function
specialization) or a parameter name (representing an unknown argument). Thus, the specialized pattern is defined
as Res”.

12

The cache is updated using a lu.b. operation equivalent to the set union. That is, Vo1,0, €
Cachez, oy U0y = Af . (o1[f]U o2 f]).

Lastly, it is worth noticing that, just like a binding-time analysis, fp,og performs a fixpoint
iteration to obtain a cache. Such fixpoint iteration can be viewed as a semantic specification of
the pending list technique used in existing partial evaluators. The cache produced will be used by
MEProg to generate the residual code for all the specialized functions.

The auxiliary functions used in the semantics are listed below. Note that all these functions
are continuous by construction:

1. Dom returns elements in the domain of a function.

2. SpName produces a specialized function name from the original function name and the
argument pattern. It has the functionality:

SpName : (Fn x Res") —» SpFn
where SpFn is a flat domain of specialized function names.

3. lﬁA : Res — Values returns the binding time of a residual pair. It is defined as
bt(e,8) = F(6).

4. If a function call is to be specialized, then

(a) For those arguments that are not propagated at function specialization,

o ResidArgs : Fn x Values x Exp™ — Exp™ (for m < n) returns a tuple of
residual arguments;

* ResidPars : Fn x Exp” — Var™ (for m < n) returns a tuple of parameters
replacing these residual arguments in the partial-evaluation signature.

(b) SpPat : Fn x Res™ x Values' — Res" returns the specialization pattern.

SpPat = A(f,(01,...,5),(b1,...,ba)) . (9),...,9")
where Vi€ {1,...,n},
8 = b = Static — (e;,b;),
b; = Dynamic — (zi,TVms), (LEzp, L

- Vatues)
b = (e, d)

where z;,...,z, are the parameters of function f.
We state here without proof the following two lemmas:
Lemma 1 £ is continuous in all its arguments.

Lemma 2 A is continuous in all its arguments.

13

4.3 Correctness of Partial Evaluation Semantics

Let us first observe that any constant produced by partially evaluating a primitive call is always
correct with respect to the standard semantics, modulo termination. This is formalized below, and
can be proven from the definition of the partial-evaluation algebra.

Observation 1 For any primitive function p, let c = (f[p(:cl,'-~,z,,)](i[([:c,-],3.-)/:!:,-],.L))ll, and v =
Elp(z1, - -, 2a))(L[di/2i], L) where d; T~ &y, for i € {1,...,n}. Then,

(c€Const) andv# L = c=7(v)

Before proving the correctness of the semantics, we can already show that the partial evaluation
semantics subsumes standard evaluation in the following sense:

Theorem 2 Given a program P. Suppose that (1) the input to P is completely known at partial-
evaluation time, and (2) all function calls in P are unfolded during partial evaluation, then for any

expression e in P, ~)
(€ [el(p,¢)) = (£ [e](h, P
where both ¢ € FunEnv and ¢ € FunEnv are fized for the program, p € VarEnv, and p € VarEnv

is defined as:
p = Ale] . (#(plz]), 7(plz]))) for (plz]) € D.

The proof is given in Appendix B.

Intuitively, we view the top element in Vaj;es, Ty, a5 a representation for all the possible
constant values. Thus, a partially known input (#y,...,%,) to a program during partial evaluation
represents a set of concrete inputs to that program. That is,

(01,...,9,) represents the set {(vy,...,v,) | 7(v;) .92, 1 € {1,...,n}}

The safety criterion described in the begining of Section 1 (Equation 1) can be expressed in our
semantic specification as follows: The partial evaluation of a program with input (dq,...,9,) is
correct if it produces a cache that captures all possible non-trivial calls performed during the exe-
cution of a program (under the instrumented semantics) with input taken from the set represented
by (91,...,9,). This can be shown by relating the local and global sema,ntlcs to their respective

counterpart in the instrumented semantics. That is, we define a relation RE relating £ and £, and
a logxcal relation R4 relating A and A. Notice that RrE relates the results v and % computed by
€ and 8 respectively. Since 4 = (e,8) € (Exp x Values) RE is composed of two relations, RE
and ‘R,g'*’ that relate a concrete value v to e and 6 respectively. It turns out that the correctness of
RE: depends on that of RA. At the same time, the correctness of RA depends on the correctness
of R Therefore, we shall prove the correctness of R52 then that of RA and finally that of RE.

Lastly, we combine the result of 7?,52 and Rsl to express the correctness of Rg

14

4.3.1 Correctness of 7222

In this section, we define and prove the correctness of the relation R between the result of £ and
the second component (i.e., the partial-evaluation domain) of the result of £.

Definition 2 (Relation 'R?’) RE isq logical relation between domains of £ and £ defined by:
v nge,u,t? b & vC~9]2
P Riarbny b € VIzl € Var, ple] RE. s il2]
¢ REinEny & © VIfl € Fn,Vi € {1,...,n},Vu; € Values, V5; € Res,
N\ (v ngm,,? %) = S[fl(vy,...,vn) Ri’e,.,u; SLf1(51, - .., n)
~ i=1 ~ -
(d1,d2) RE xp, (d1,d2) & di R dy A dy RE, dy ~
fRG _p, f & VdeDy,vde D, dRE d = f(d)RE, f(d).

Lemma 3 Given a program P. Let ¢ and <;Z> be the two function environments for P defined by the
standard and the partial evaluation semantics respectively. Then ¢ RE .

Proof : We need to show that V[f] € Fn,Vi € {1,...,n},Vy; € Values, Vi; € Res,
n < <~ ~
N RS) = $[f](vs, ..., va) RE $[f1(5n, ..., bn).
=1

Since this involves the recursive function environments ¢ and ¢, we prove the relation using fixpoint induction
on Kleene’s chain over 4 and ¢, with the least element (in this proof, i ranges over all user-defined functions):

(60,80) = (Ll(strict (A(v1,-..,n) . Lvates)/fi],
L[(strict (A(91,...,0n) . (LEzp, Ly, N/ i)

It is true trivially that ¢o RE? ¢,.

Suppose that R?: is true for some element {Pn, ¢,,) in the ascending chain, we would like to prove that
R%2 is true for (¢n+1,$,.+1) where

(bn+1,Ins1) = (L[(strict {Mv1,- . vn) - Efed(Llvr/2zx],)}/ i),
L{(strict {A(b1,...,9a) . E[e)(L[0r/z1], $n)}/fi]).

That is, we want to show that
VIfl€ Fn,Vj € {1,...,n},Vv; € Values, V9; € Res,

A@ RE) = bnpalflon,. .., 00) RS $uislfl(s, . ., 5n).

ji=1

The proof is by structural induction on e. It suffices to show that RE: holds for all the corresponding pairs
of combinators used by £ and £ respectively.

15

e Consts : R is true trivially by comparing K and K.
o VarLookups : by structural induction.

o PrimOpe : PrimOpg ’Rs’ PrszpE holds by structural induction and a case analysis over the values
produced by PrimOpp. Proof is omitted.

e Condg : Condg ‘R“:’ CondA holds by structural induction and a case analysis over the values produced
by 1(p, én).

. Appg For any user-defined function £, all the corresponding arguments of Apps and App; are related
by 'R,“:’ (by structural induction hypothesis).

It is easy to show that 'R“:3 holds when the function is specialized, since the top element Tvam,

is returned. For the case when the function is unfolded, Applif] (k1. .., kn) is reduced to

q@,,[f]l (91,---,95), while Appe[f] (k1,..., kn) is reduced to énlf] (v1,...,v,). Since ¢, 'RE? b
by fixpoint induction hypothesis, we have

$nlfl(v1, ... vn) RE? $ulf](51,...,0n).
Hence, Appe ’R?2 APPE-

Hence, ¢ ’R?’ é. This concludes the proof. O

Theorem 3 (Correctness of Local Semantics — 2nd Component) & RE E.

Proof: From Lemma 3.]
Before we close this section, let us make an observation about the relationship between the first
and second components of a value produced by €.

Observation 2 During partial evaluation, all values © € Res satisfy the following conditions:

e 9|1 € ConstA©]2 € Const &)1 =9]2
e il=L1g;, & 0]2= .Lvﬁu\”.
The above observation comes directly from the definition of Kp in Figure 7.

We say that a value © € Res is R-consistent if it satisfies one of the above conditions. This fact
is used in the next section.

4.3.2 Correctness of the Global Semantics

In this section, we prove the correctness of the global partial evaluation semantics (1) by relating

the semantics of A with A using logical relation ’R,'A, and (2) by showing that all the non-trivial
calls performed at standard evaluation are captured by .A.

Since the result of both A and A is a cache, R"‘ should relate caches. That is, whenever a
standard signature for a function is recorded in the cache produced by A, there exists a logically
related partial-evaluation signature for that function in the cache produced by A. Formally,

16

Definition 3 (Relation ‘R,;) RA is a logical relation between domains of A and A defined by:
v R;‘;wh; v ¢ (0 is R—consistent) A (vCo|2)

~ n -~
(vl’ e v") Ra'ranaf X Res™) (t’ 01’ MR 6") < /\(vinéesultzﬁ")

i=1

14 R‘ﬁcsult; ¢ & V[f] € Dom(c),Vs € olf}. 35 € 5[7], s Ré‘ransf x Resm) 8
P ’R‘J\;arEnv ﬁ g V[:C] € Var, p[z] Rﬁecult? ﬁ[z]l
¢ Rfunkn ¢ & VIfl€FDn,Vjie{l,.. .,n},Yv; € Values, V9; € Res,

n

/\ (vj Rﬁeault? ﬁj) = ¢[f](vl) sy vn) Rﬁesult? ¢[ﬂ({)la ceey 'bn)

~ . 3= -~ - .

(d1,do) Rp,xp, (d1,dy) & diRf di Ay RE dp
fRp,—p, f © VdeD,VdeDy, dRA d = f(d)RA, F(d).

Note that the R-consistency (Observation 2) ensures that the first component of 9, the residual
expression is consistent with the result of the partial-evaluation algebra. Observe that there is no
value in the standard signature corresponding to the transformation tag of the partial evaluation
signature. In fact, a transformation tag for a standard signature could have been obtained by
performing filter computations at the standard semantics level. However, the transformation has
no effect on standard evaluation. Furthermore, since filters are continuous, the transformation
computed is guaranteed to be more precise or equal to that computed at the on-line level. Thus,
we can ignore this information without compromising the correctness proof. Lastly, we note that

the Lu.b. operation (which is the set-union operation) on caches is closed under RA.

The next lemma shows that all the standard signatures recorded in the final cache produced by
A are “captured” in the corresponding cache produced by A in the sense that they are related by

RA.

Notice that whenever A uses a value © in decision making (combinators Cond ; and App 2)> only
the value of the partial-evaluation domain is used, as is manifested by the definition of functions
SpPat, bt and Fi. Therefore, only the second component of 4 is needed to show the correctness
of A. Although the first component of ¢ (the expression) is modified by A when dealing with
combinator App N it should be noted that the modification is exactly identical to the one done in

£ , and by Observation 2, the modified value is still R-consistent.

Lemma 4 Given a program P. For any € such that £ RA £, let ¢ and é be two function envi-
ronments for P defined by the standard and the partial evaluation semantics respectively. For any

ezpression e in P, for any variable environments p and p such that PRAp,
Alel(p,9) RA ALel(5,).
Proof : The proof is by structural induction on e. Firstly, notice that
ERAE = ¢rA4

17

The predicate can be proved using Kleene’s approximation over ®, with the least element

(¢0,¢0) ¢0) = (J—[(Strzct (/\(01, '-’2) J-Value:))/fs I v [fs] € Fn])
L[(strict (A(91,92) . Lres))/fi |V [f:] € Fn],
L[(strict (A(v1,v2) . Lvaiues)/f?P | ¥ specialized function f°7])

and the predicate RE: over the n + 1°* approximation being

R,..H Sdef RO (bnt1,Bnt1, $hyr)
= v [f;] € Fn, Vv;,v; € Values, Y9y, 9, € Res, Vpg € VarEnv,

/\Pd satisfies (vj,9;) = Gns1[fil(v1,v2) =1 E[(S [fil(51, 2))11)(pa, $41)
= [ﬂ] € Fn, Vv;,v; € Values, VYi;, 9, € Res, Vp; € VarEnv,

/\pd satisfies (vj,9;) = Efeid(Lvi/zi], dn) =1 8[(5[6;'](-1-[01:/3&],&n))“](l’d, nt1)

j=1

Notice that at any i + 1°* approximation, ¢/ ;+1 is obtained from the residual program produced by A
and £, both having ¢.+1 as their function environment. Formally,

$iy1 = Ll(strict{dv . E[e**N(L[v/x],)})/f*F | V specialized function f*P with body e*?]

¢’ is derived from cache & produced by A and ¢} is derived from cache 6; at the i** approximation.
Below are properties about &; and ¢!.

Property 1 Vi€ {0,1,...}, & Ccache Fis1-

Proof: From the result that 6;’s are the cache produced by A with function environment q§;
and A is continuous in all its arguments. 0

Property 2 Vi€ {0,1,...}, ¢! CrunEnv 6},
Proof : Since Vi€ {0,1,...}, ¢} is obtamed from the residual program, which is the result of
Sp,og Inspecting the function definition of £p,og shows that it is continuous in all its arguments.

In particular, since Vi € {0,1,...}, 6; Ccache 0it1, therefore ¢! CrunEny Biy1- o
We prove the validity of R¢* by fixpoint induction:

For the least element, (¢o,¢o,¢o) we have ¢[f](v1,v2) = Lvaiues and &l[f;](ﬁl,f)g) = Llpes. Thus,
’Rsl {do, o, é5) holds vacuously.

Suppose that RE s true for some element (¢, @y, #,) in the ascending chain, we want to prove that
R is true for (¢ﬂ+11¢ﬂ+1a¢:1+]) = <I><¢m¢m¢:;)-

For clarity, we introduce the following abbreviations:

1. L[vg/z] is abbreviated by p and L[ix/zx] by 5.
2. Given an expression e, we abbreviate £[e](p, ¢n) by [ele, and E[e](5, ¢n) by [e]; '

The proof of ‘Rn +1 Tequires structural induction on e.

20

e If e is a constant or a variable, the proof is trivial, and thus omitted.

e e is a primitive call, [p(e1,...,en)]. Let v = [p(es,...,eq)]e and & = (e, ..., en)lz-
— REY, holds trivially if § = Lg,,.
— If 9]1 is a constant, then 4|1 = #(v) from Observation 1. Therefore, Rf,‘_‘_l holds in this case.
— If 91 is not a constant, then the residual expression is of the form [p(e7, ..., ey)], where €} =
[e:dz Vi € {1,...,n}. By the structural induction hypothesis, ’Rﬁf'_l holds for all the arguments

of the primitive call. Furthermore, since p and j contain all the bindings for free variables in e,
they also contain the bindings for free variables of the arguments. We thus have:

8[[”(61’ (RS} eﬂ)]?](pd, ¢:|+1)
= g[P(e,l,v Bt ez)](l’«h ¢‘£;+1)
= Kplo)((€let)(pa, $141)), - - -, (ELeXN(pa, bt1))) [from standard semantics)
=1 Kelpl(leile, - -, [enle) [structural induction hypothesis]
= [ples,...,en)]e [from standard semantics]

~

Therefore, ’Rf:‘H holds.

e e is a conditional expression, [if e; e; es]. ‘R,ﬁf,_l holds trivially if e; partially evaluates to Lg.,. If e;
is partially evaluated to a constant, then the result of partially evaluating e is obtained from partially -
evaluating either e, or e3. By the structural induction hypothesis, Rp,4+1 holds.

Hf e; partially evaluates to a residual expression, then the result of partially evaluating e has the form
[if € ey 5], where el = [eil; Vie {1,...,3}. Therefore,

Ellif ex e2 el d(pa, 141)
= E[if € €f e5](pa, bpy1)
= (Ele1(pe, r)) — (€15 (02 ¢141)), (ELe8](pas $4r)) [from standard semantics]
=1 [eile = [ea]e, [es]e [structural induction hypothesis]
= [if e1 e2 €3] [from standard semantics]

Thus, RZ},; holds.

e ¢ is a function application, [f;(e1,e2)]. Partially evaluating e may result in the application being
either unfolded or specialized. Suppose that the application is specialized, without loss of generality,
we assume that the first argument of the application is static and propagated, whereas the second.
argument is dynamic. Then [f;(e1, e2)]; becomes [f;? ([e212)] where f” is the specialized function.

The partial-evaluation signature obtained from this application is (by the definition of .Z)

(s.[ead; ([22], &) where (3, ([z21,8)) = SpPat([£], ([e:l;, [e2l;), (Static, Dynamic))
("6,> = [8213

Notice from the definition of SpPat that 9} = [ea]; and 6 = Tyz, - The specialized function f;?

is included in the residual program produced; its definition is as follows.
122) = [@alillerd; (fzal,)11
[(@nlfi)(F(Teade), (I22],)))11]

The last equality holds by structural induction hypothesis and by the fact that only constants are
allowed to be propagated for a function specialization. The corresponding entry of f;* in ¢}, is

strict(Mv . E[($nlfil(F([erde), ([z2), 8))IN(LIv/z3), 6L)))

21

Thus, we have

EL£ P ([e21)(pa, b7 11)
= :a+1[fi’p](£[e2lf(Pd’ ¢::+1))

= 1 Snpalf71(Ie2le)) [structural induction hypothesis]
= E[@nlfil(F([eade), ([z2],)N (LIle2)e/z2), 47,)
=1 ¢nlfil(leade, [e2)e) [fixpoint induction hypothesis]

[fi(er, e2)]e

In the derivation above, the fourth equality is valid based on an instance of our fixpoint induc-
tion hypothesis. This is because (L[[es]¢/z2]) is the only environment that satisfies both the pairs

([exde, #([e1)e)) and ([ez)e, ([z2], &')). Therefore, RZL; holds for the application.

On the other hand, consider the case where the application is unfolded. The equality in 'R,f{H becomes

éalfid(lere, [eade) =1 ELBalfil([eadz, [e2dD)NNT (Pay Bhya)-)
For Equation 3 to hold, ps must satisfy both pairs ([ei1]e, [e1];) and ([ez]e, [e2]z). Thatis, Vi € {1,2},

vi =1 E[0il1)(pa, bry1) A vi Cp B:l2.

This is true by the structural induction hypothesis, Property 2 about ¢/, +1, and Theorem 3.
Using pq4, the fixpoint induction hypothesis is

énlfid(lerde, [eale) =1 ELnlfil(Lealz [e2)) 110 (pa, 6)),

Notice that the only difference between the hypothesis and Equation 3 is the usage of ¢/, and brt1-
Let ¢ = (¢n [£:)(([eadp), ([e2]7))) 1 1. Since the domain Exp is flat, the only case where Equation
3 may have failed to hold would be when standard evaluation of ¢/ made references to specialized
functions defined in ¢;, ;. Suppose that f* were such a function, and its call in e’ were [f°P(r})].
This residual call would be the result of partially evaluating a function call. Let the function call be
[7(r1,72)]. Then, it would be the case that at the n** approximation, we had

[f(rl’r2)]5 =4 S[I[f(f‘],?'zmg](pd,¢:,) = S[f”’(r;c)](pd, ;1)

be true vacuously (by the hypothesis), but at the n 4+ 1** approximation, the equation
[f(r,m2)le =1 ELF7(ri))(pa, brts) (4)

became false. However, Equation 4 is the result of function specialization, and we have already proved

its validity. Thus, we arrive at a contradiction, and Equation 3 must therefore hold. Hence, ’Rﬁ‘“

holds.

Hence, Ra (¢, é,¢') holds. This concludes the proof. O

4.3.4 Correctness of 'RE

Now, we are ready to define the relation between £ and £. This is defined in terms of the result
of Theorem 3 and Lemma 5. Firstly, since both £ and £ take variable environments as their
arguments, we need to relate these environments. To do so, we extend the notion of satisfiability
to define the relationship between variable environments, instead of pairs of related values. This is
a variant of the notion of agreeability as defined by Gomard in [Gom92].

22

Definition 5 (Agreeability) Let P be a program. Suppose ¢' is the function environment, defined by the
standard semantics, for a specialized version of P. Also, let p, pg € VarEnv be two variable environments de-
fined by the standard semantics, and p € VarEnv be a variable environment defined by the partial evaluation
semantics. For any ezpression, e in P, p, p and pg agree on e at ¢ if

Vlz] € FV(e), plz] =1 ELAlDN(pa#) A plz] Tz (plz])l2.

The notion of satisfiability can then be expressed in terms of agreeability as follows.

Observation 3 Given that py satisfies all the pairs in the set {(v1,01),...,(vn,0n)}. Let p
Llvi/z1,.. ., v0/20), and p = L[61/z1,...,00/2n]. Then, for any ezpression e tn P with FV(e)
Z1,...,Zn}, we must have p, p and pg agree on e.

Notice that p and j as defined in Observation 3 represent how all the variable environments
used in standard and partial evaluation semantics are constructed. Therefore, the result of Lemma
5 can be expressed in terms of an arbitrary expression in program P as follows.

Corollary 1 Given a program P. Let ¢ and ¢ be the two Junction environments for P defined
by the standard and the partial evaluation semantics respectively. Let ¢' be the function environ-
ment, defined by the standard semantics, for a a specialized version of program P. Then, for any
ezpression e in P, Vp, p € VarEnv and pg € VarEnv that agree on e at ¢', we have

Elel(p,8) =1 € [(ELel(h, $))11](par ')

Correctness of the local partial evaluation semantics can be stated as follows:

Theorem 5 (Correctness of Local Partial Evaluation Semantics) Given a program P. Let
¢ and <$ be the two function environments for P defined by the standard and the partial evaluation’
semantics respectively. Let ¢' be the function environment, defined by the standard semantics,
for a specialized version of program P. Then, for any ezpression e in P, ¥V p,p € VarEnv and
pd € VarEnv that agree on e at ¢', we have

Elel(p 4) =1 € [(£led(p, $)I1(par 4

and

Elel(p,) Cr (Elel(p,))12.

Proof : From Theorem 3 and Corollary 1. O

23

5 Off-Line Partial Evaluation Semantics

Off-line partial evaluation consists of two phases: binding-time analysis and specialization. In this
section, we provide an interpretation of the core semantics (Section 2) that defines binding-time
analysis. We then use the technique of logical relation to define and prove the correctness of binding-
time analysis. This formally demonstrates the intuition that binding-time analysis is an abstraction
of on-line partial evaluation. Finally, we describe a systematic way of deriving a specializer from
on-line partial evaluation using the result of binding-time analysis, and we list some optimizations
that can be performed to improve the efficiency of the specializer.

5.1 Binding-time Algebra

Just as the partial-evaluation behavior of the primitives is captured by the partial-evaluation al-
gebra, the binding-time behavior of the primitives can similarly be captured by the notion of
binding-time algebra. The binding-time algebra defines primitive operations over the binding-time
domain Values (defined in Section 4.1). Formally,

Definition 6 (Binding-Time Algebra) The binding-time algebra [Vﬂes; 6] ts an abstraction of a-
partial-evaluation algebra [Values; O); it consists of the following components:

1. The domain Values and the binding-time domain Values are related by the abstraction function T
defined in Section 4.1.

2.Vpe §) of arity n, there ezists a corresponding abstract version p € O such that
- a —
p: Valu~es —->~Values _
P=A(d1,--,dp) . Fje{l,...,n} st dj=L — — 1L —
n

Values Values’
/\(J, = Static) — Static, Dynamic

i=1

Like the partial-evaluation algebra, we notice that the abstract primitives defined in O satisfies
the following safety criterion:

Vo € Va’l;es, Vp € O and its corresponding abstract version € O,
Top (D) g, PoT (D)
The relation between partial-evaluation algebra and binding-time algebra can also be succintly

described by a logical relation C~ . The definition is similar to that defined in Section 4.1, and is
omitted here.

5.2 Specification of Binding-time Analysis

Figure 9 displays the binding-time analysis for our language. The analysis aims at collecting
binding-time information for each function in a given program; this forms the binding-time signature

24

of the function. More precisely, a binding-time signature in domain Sig is created when a function
call is analyzed by the binding-time analysis. It consists of two components: A transformation tag
similar to that used in the partial-evaluation signature, and the argument values of the application
in Values".

The valuation function £ is used to define abstract version of each user-defined function. The
resulting abstract functions are then used by the valuation function A to compute the binding-
time signatures. These signatures are recorded in a cache (from domain Cachez). As usual,

computation is accomplished via fixpoint iteration. Functions K and Kp perform the abstract
computation on constants and primitive operators respectively.
The analysis is monovariant: each user-defined function is associated with one binding-time

signature. Various bmdmg-tlme signatures associated with a function at different call sites are
folded into one signature using the l.u.b. operation. This operation is defined as

V51,62 € Cacheg, 6, UG, = L[(t, 81,...,8a)/f | VIf]1 € Dom(5,) U Dom(5>)]
where (t,6,,...,8,) = (Kf]e(Dom(al)ﬂDom(&g))) — (tut”, §usy, ... 8 ud,
. 5 [71 € Dom(3:) — &:[f], é:[/]
. 8,...,8) = &lf]
(t”, 6;/, .. 61/ = &2[f]

5.3 Correctness of Binding-time Analysis

The initial input to the binding-time analysis is an abstraction of the initial input of on-line partial
evaluation. The analysis is correct if its final cache (Cache 7) contains the abstraction to all the
partial-evaluation signatures of the on-line partial evaluation. The correctness is shown by relating
the local and global semantics to their respective counterpart in the on-line partial evaluation
semantics. That is, we define a logical relation RE that relates Eand £, and a logical relation RA
that relates A and A. We first show the correctness of the local semantics defined by £ and then
that of the global semantics defined by A.

5.3.1 Correctness of £

To relate € and & , it is sufficient to relate the binding-time values produced at analysis to the
partial-evaluation values produced at on-line. This relation forms the basis of the logical relation,
as defined below.

Definition 7 (Relation ’R,g) RE isa logical relation between domains ofg and £ defined by:

) RRe,u,,~ b & 0l2C86

P RVarEnv P A4 V[z]l € Var’ [13]] R%eault; ﬁ[x]

SRE 5 b © VIf] € Fn, Vi€ {1,...,n},Vi: € Res, Vé; € Values,

/\(vl RRcsult~ 6) = ¢[f](v1’) i}") Riesult; alf](gli T gﬂ)

=1
(dl,d2> RD;ng (d},dz) < d1 RD d1 {.,\ dz 'R,D dz
fRS,op, f & VdeDvieD, dR5 d = f(d)RE,).

25

¢ Semantic Domains

5 € Result~ = Values

p € VarEnv = Var — Values

é € FunEnv = FEnv = Fn — Values — Values
Env = VarEnv x FunEnv

3§ € Sig = (Transf xV;l;es")

G € Result~ = Cachez = Fn — Sig

¢ Valuation Functmns
£p,,,g : Program — Values™ — Cache

Eprog [{fi(z1,+++,20) = e}l (b1, 80) = B(L[(s,b1,-,84)/ F2])

whererec ;E(&) =& U h(U{A [e.] (J.[ﬁk/lk] é) l (-, 81,.. ., bn) = &[£i], VIfi] € Dom(5)})
L ¢ = J-[{X(51, <18n) . € [e)(LIBu/4), 6)}/ i)
E=¢
A=14

¢ Combinator Definitions _

Constz[c] = A(5,9) . IC~[c]

VarLookupy [z] = A(5,¢) . plz]

PrimOp; [P] (k1. Bn) = A(B, ¢) Kell (k:(5,4), . ., kn(5,8))

Cond~ (k;, kz, ks) A5, ¢) .LV;T:“ — ~.LV;~1;;3,

61 Static — 62U 685, T

: where 6. = ki(p,4) Vie {1,2,3} 3

Appz' 1) (ka, .. k") (B, ¢') (Ft[f])ll (61» 6") =u— ¢[f] (6lv 8")’

where § = Fk; (5, 8) Vt €{1,...,n}
Constx [c] = A(5,4) . (Af . Lsig)
VarLookup [z] = A(5,4) . (Af . Lsig)

PrimOpz [p] (@1,...,8n) = M5,9) - | | 4i(5,9)
Cond; (a1,32,85) by = A(5.9) . &2(5.9) U &2(5,9) U as(5,0)
Appz [(@, 8n) (Bryeo Bn) = A(B9) - (|] @i) ud’

i=1

where &' = (Ft[f]){1 (61,...,8,) =nu ;
- L[(ud,.. 5»)/f] -‘-[(8 8, 80/ 1]
By By = (P2 G b)
b = k(p,¢) Vie{l,...,n}

Values

Val ues

. anxtxve Functions
IC Const — Va_]ues
R = 7(ld)__ _
’CP : Po — Values — Values
Kp [p) Gu,....00) = $(bi,...,8n)

Figure 9: Binding-time Analysis

26

Lemma 6 Given a program P. Let & and $ be the two function environments for P defined by the
partial evaluation semantics and the binding-time analysis respectively. Then ¢ RE ¢.

Proof : The proof is similar to the proof for Lemma 3, and is thus omitted. u]

Theorem 6 (Correctness of Local Binding-Time Analysis) EREE,
Proof : From Lemma 6. O

Corollary 2 Given a program P. For any ezpression e in P, and Vp € Va?f’nv,
(€ [el(p,)1 = Static = (£ [e](p,$))l1 € Const U {Lg,,}

where both ¢ € FunEnv and é € FunEnv are fized for the program, and p € VarEnv is defined
such that p R¢ j

5.3.2 Correctness of the Global Analysis

We prove the correctness of the global analysis (1) by relating the semantics of A with that of A

using the logical relation RA, and (2) by showing that all the non-trivial calls that are recorded by
A are captured in the cache produced by A.

Definition 8 (Relation R"‘) RA isa logical relation between the domains of Aand A defined by eztending
relation ’R,g to tnclude the relation between & and & produced by Aand A respectively:

(£, 01,...,00) R&, (1,61,...,8:) © (FCrranss 1) A /\(v.RR,,u,,)
i=1

G RResu,,~ & & VY[f] € Dom(s),V5 € 6[f],35 € G[f] such that & 'R,Stg

We note that the l.u.b. operations defined on both caches are closed under RRew,t,, With this

relation, the next lemma shows that all the partial-evaluation signatures recorded in the final cache
produced by .A are captured in the corresponding cache produced by A in the sense that they are

related by ’R‘A

Lemma 7 Given a program P. Let ¢ and ¢ be two function environments for P defined by the
partial evaluation and the binding-time analysis respectively. For any ezpression e in P, for any p,

p such that pRAp, _
Alel(p4) RA Alel(5,9).

27

Proof : The proof is by structural induction over an expression. Firstly, notice that ¢ RA é. It then
suffices to show that R4 holds for all the corresponding pairs of combinators used by Aand 4 respectively.
By structural induction, it is easy to see that ‘RA holds for constant, variable and primitive calls. We show
below that R4 holds for the case of conditional expressions and function applications.

1. Cond: By the structural induction hypothesis, all the corresponding pairs of arguments are related
by ‘R,"‘ Since the result of Cond~ is the lLu.b. of the caches produced at all the arguments, whereas

the result of Cond 4 is the L.u.b. of the caches produced at some of the arguments, RA must hold.

2. Appz: By the structural induction hypothesis, RA holds for all the arguments to the application.

Let & = L[{(Z,9},...,8)}/f] and & = L[(F, 8, ...,8")/f], we need to show that & R4 &
We consider the cases with different transformation values produced at the binding-time analysis level.

e If { = u, then { = u by the monotonicity of filters. Thus,V i € {1,...,n},

o = _ a;(p, ‘Z’n) [by definition]
R4 ai(p, $n) [structural induction hypothesis)
= & [by definition)

Therefore, & RA &

o If{ =5, then { Crranss ¢ by monotonicity of the filter.
Let (91,...,9,) and (6y,...,6,) be the initial arguments computed for the application. By the
monotonicity of filter,

b C & Vie{l,...,n}

where (b1,...,b,) = (F[f])12 (bi(51),...,b4(5,)) and
(5i,~--,5£) = (Ft[fDI2 (1, ..)
Let (37,...,9)) = SpPat ([f], (%1,.. v,,),(bl,.. b,)). From the deﬁmtlon of SpPat, we have
) _ SpPat ([f],(vl,...,v,.),(bl, . bn)) RA (8,...,8)
Sinc«i (£,6!,...,8%) is the binding-time signature produced for the apphcatlon, we therefore have
6 RAG.

n ~ n - . ~
Thus, (I_I ai(p,dn) U G) RA (U a;(p, ¢n) U 7). Hence, Appz RA App -
i=1 i=1

Hence, R4 holds in general. This concludes the proof. . O

Theorem 7 (Correctness of Global Binding-Time Analysis) Given a program P. Let
(D1y---,05) and (6y,...,6 n) be initial inputs to P for on-line partial evaluation and binding-time

analysis respectively, such that b; RA b, Vi€ {1,...,n}. If 6 and & are the final caches produced
by A and A respectively, then 6 RA &

Proof: Firstly, we notice from the definition of gp,-og that (s, 31, ., bn) is the corresponding binding-time
signature for f; in &. Therefore, (s, 81,...,6n) C &[f]. This captures the initial call to the on-line partial
evaluation: (s,1,...,9,) € 6[f1]. Next h in 8p,og applies A to each bmdmg-txme signature in the cache,
like function A in £p,-og Since l.u.b. operation is closed under ’R,A, I ’R,A u]

28

5.4 Deriving the Specialization Semantics

We now describe the derivation of the specialization semantics (for off-line partial evaluation)
from its on-line counterpart. This derivation is based on the observation that, prior to on-line
partial evaluation, the binding-time analysis has determined the invariants of this process. Indeed,
the result of the on-line partial-evaluation computations has been approximated and is available
statically. Thus, the aim of this derivation is to transform the on-line partial evaluation semantics
so that it makes use of binding-time information as much as possible. The uses of binding-time
information are listed below.

1. Predicates testing whether an expression partially evaluates to a constant can safely be re-
placed by a predicate testing whether this expression returns Static at binding-time analysis.

2. Filter computation for a function call can safely be replaced by an access to the function’s
binding-time signature; it contains the call transformation to be performed.

The use of binding-time information collected for an expression requires that this information be
bound to the expression. That is, each expression in a program should be annotated with the infor-
mation computed by the binding-time analysis. We achieve this annotation by assigning a unique
label to each expression in a program and binding this label to the corresponding binding-time
information. A cache, noted 7, maps each label of an expression to its binding-time information.
For a label I, we write (1/) 1), to denote the binding-time value corresponding to I. If is the label
of a function call, then (4 I), refers to its transformation (i.e., unfolding or suspension).

5.4.1 Specification of the Specializer

Note that this annotation strategy only requires a minor change to the core semantics. Namely, the
labels of an expression must be passed to the semantic combinator.® For example, in specializing a
labeled conditional expression [(if e €2 e5)!], the combinator Cond; takes as an additional argu-
ment (l,1l1,1,13). Besides passing labels to combinators, we extend the usual pair of environments
to include the cache (i.e., ¥ € AtCache).

Figures 10 and 11 depict the detailed specification of the specialization process. Each interpreted
combinator is similar to that of on-line partial evaluation, except in the following cases:

1. For both Cond; and Condy, the predicate that determines whether the conditional test
evaluates to a constant has been replaced by a predicate that tests the staticity of its binding-
time value.

2. For primitive call, the predicate testing whether the result of the operation is a constant has
been replaced by a predicate testing the staticity of the resulting binding-time value.

3. For both App; and App 2, filter computation has been replaced by an access to the static
information about the functlon call: binding-time value of the arguments and function call
transformation.

®Note that for simplicity we did not introduce labels in the core semantics presented on page 6. Indeed, labels are
only used for the specialization semantics.

29

¢ Semantic Domains

! € Labels ? € ResultA = Res = asin On—Line Sem.
§ € Values = asin On—Line Sem. 7 € Values = asin Ofi—Line Sem.
{, 5) € Att = (Transf x V;l:es) 6 € Rcsult = asin On—Line Sem.
¥ € AtCache = Labels — Att é € FunEnv = asin On—Line Sem.
p € VarEnv = asin On—Line Sem. Env =VarEnv x FunEnv x AtCache

¢ Valuation Functions
£prog : Prog — Res” — AtCache — Prog, B
Eprog [{f"(z_lv""zﬂ) = el}] (1,.. ’”ﬂ) Y = MkP"OQ (ﬁ(l[{(siﬁh“"6">)}/f1]))'/’¢
whererec h(5) = auh(U{A [e.](.L[i:k/:l:k] 6, 9) | (-,v,, -19n) € 6[£:], VIfi] € Dom(6)})
= L[strict {/\(vl, =y 0n) - Eg [ed(Lon/zk), 6, %)}/ £)

MkProg Definition

MkProgé 4 ¢ = { fP(z1,...,2x) = 8|1 | Y(s,d1,...,n) € 6[f], VIfi] € Dom(5)}
where fi? = SpName([f],91,...,%n)

o' = Eg [ed(L[ox/24], 6, 9)
Z1,...,2Zk) = ResidPars ([fi],9111,...,9al1)
Local Combinator Definitions N
Constz, [] () = M2 4,9) . K []
Varg, T o) = Mp,$,9) - b [2] R
Prtm0p~ [p) (k1o Bn) 8 (L, 0 = A(5,8,9) - Ksp [p] (F1(5,6,9), .-, En(58,8)) (& D)o
C’ond~ (kl,kz,ka) (I 11,12,13) =
)\(p,qﬁ l/)) (¥ I;)., = Static — (K(9111) — 92, 93), ([if 9111 9201 93]1], 9242 U 932)
where ¥ = k(p,¢ P) Vie{l, 2, 3}
Appg, [by, skn) (Lol = M5,6,9) . (F e =u— §[f] (1,...,0n),
([fpler, .. e T)

where 9; = l};(ﬁ,iﬁ,:/;) Vie{l,...,n}
fep = SpName([f],91,...,9;5)) }
(e),...,ek) = ResidArgs ([f], (61,...,8.), (011,...,9a(1))
(81,.--,9n) = SpPat ([f],(b1,...,%n), (§1,...,8L))
b= L) Vie{l,...,n}

¢ Primitive Functions
K : Const — Res
K [c] = (asin On—Line Semantics)

ESP Po — Res" — Va‘jl;es — Res
Ksp [p] ((e1,81),..., (eh,) § =

(6 Valuec) - ('LE‘p’ Values) (6 - Stat:c) - <6 6) ([P(Cl,) ’e:'l)]?g)
where § = (61, -+, 6n)

Figure 10: Specialization Semantics — Part 1

30

o Global Combinator Deﬁnitjoqs
Const— [] (I} = A(p,d) ¥) . Al L
Var~ [z] O = X5 6, 9%) . Al Lawe

PrimOpz [s] (a1, dn) (L, 0n) = M5,6,9) . |]ai(5,6,9)
=1

Cond~ (al,ag,as) k1 (I I],Iz,la) =
’\(P,¢ ¥) - (a1(5,6,9))U (())o = Static) — K(b1) — - a2(p, 6, ¥),43(5, 4, 9),
az(P, ¢»¢')Ua3(P;¢ ¢'))

Appgg U1 ooy) (B, B) Qb lo) = 2G,6,9) - ([as(5 6,9 0

=1
(p 6, %) Vie{l,---,n)
$li=u— J—[{(“ 01,..,00)}/f), L[{(s,01,...,80)}/f]
:x) SpPat ([ﬂ)(vly ’”n) <6l, 6n))
(l)V V' e {1 1“'}

[}

where 9 =

ks
(

OHA Qi

Figure 11: Specialization Semantics — Part 2

5.4.2 Optimization of Specialization

At this point it is important to determine whether the specialization semantics that we derived
indeed describes a specialization process. In fact, as mentioned in [BJMS88, JSS89], binding-
time analysis was introduced for practical reasons. Namely, by taking advantage of binding-time
information, the partial-evaluation process can be simplified and its efficiency improved. This is a
key point for successful self-application [JSS89).

Thus, the off-line strategy aims at lifting as many computations as possible from specialization
by exploiting static information. In other terms, there exists a wide range of specializers for a
given language; each possible specializer reflects how much has been computed in the preprocessing
phase.

As a matter of fact, the specialization semantics-derived in the previous section may be used as
a basis to introduce many optimizations. In particular, it is possible to infer statically the actions to
be performed by the specializer. The basic actions of a specializer consists of reducing or rebuilding
an expression. Such actions can be determined using the binding-time value of an expression. This
technique has been used in off-line partial evaluation [Con89, CD90].

6 Conclusion

Based on the technique of factorized semantics, we provide semantic specifications and correctness
proofs for both on-line and off-line partial evaluation of functional programs. Using the technique
of collecting interpretation and the introduction of partial-evaluation algebra, we are able to prove
the correctness of polyvariant specialization.

Furthermore, this paper addresses and solves a series of open issues in partial evaluation such
as relating on-line partial evaluation to standard semantics, showing that binding-time analysis is

31

an abstraction of the on-line partial-evaluation process, and formally defining the specialization
semantics.

As such, this work should improve the understanding of partial evaluation. Also, it should
provide a basis for implementation. In fact, the specifications presented in this paper have been
generalized by the authors to the specification of parameterized partial evaluation — a generic form
of partial evaluation aimed at specializing programs not only with respect to concrete values, but
also with respect to static properties [CK91, CK92]. Parameterized partial evaluation has already
been successfully implemented at CMU [CL91] and at Yale [Kho92].

Future work includes extending the results of this paper to higher-order programs. Our pre-
liminary studies in this direction indicate that such an extension should be minor since it would

be based on an existing framework for abstract interpretation of higher-order programs, such as
[HY88, Jon91].

References

[Abr90] A. Abramsky. Abstract interpretation, logical relations and Kan extensions. Logic and
Computation, 1(1):5-40, 1990.

[BJMS88] A. Bondorf, N. D. Jones, T. Mogensen, and P. Sestoft. Binding time analysis and
the taming of self-application. Diku report, University of Copenhagen, Copenhagen,
Denmark, 1988.

[CD90] C. Consel and O. Danvy. From interpreting to compiling binding times. In N. D. Jones,
editor, ESOP’90, & European Symposium on Programming, volume 432 of Lecture
Notes in Computer Science, pages 88-105. Springer-Verlag, 1990.

[CK91] C. Consel and S. C. Khoo. Parameterized partial evaluation. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 92-106, 1991.

[CK92] C. Consel and S.C. Khoo. Parameterized partial evaluation: Semantic specifications
and correctness proofs. Research Report 896, Yale University, New Haven, Connecticut,.
USA, 1992.

[CL91] C. Colby and P. Lee. An implementation of parameterized partial evaluation. Bigre
Journal, 74:82-89, 1991.

[Con88] C. Consel. New insights into partial evaluation: the Schism experiment. In H. Ganzinger,
editor, ESOP’88, "¢ European Symposium on Programming, volume 300 of Lecture
Notes in Computer Science, pages 236-246. Springer-Verlag, 1988.

[Con89] C. Consel. Analyse de Programmes, Evaluation Partielle et Génération de Compilateurs.
PhD thesis, Université de Paris VI, Paris, France, June 1989.

[Con90] C. Consel. The Schism Manual. Yale University, New Haven, Connecticut, USA, 1990.
Version 1.0.

32

[Fut71] Y. Futamura. Partial evaluation of computation process — an approach to a compiler-
compiler. Systems, Computers, Controls 2, 5, pages 45-50, 1971.

[GJ85] H. Ganzinger and N. D. Jones, editors. Programs as Data Objects, volume 217 of Lecture
Notes in Computer Science. Springer-Verlag, 1985.

[Gom92] C. K. Gomard. A self-applicable partial evaluator for the lambda-calculus: Correctness
and pragmatics. ACM Transactions on Programming Languages and Systems, 14(2):147-
172, 1992.

[HM89] J. Hannan and D. Miller. Deriving mixed evaluation from standard evaluation for a
simple functional language. Technical Report MS-CIS-89-28, University of Pennsylvania,
Philadelphia, Pennsylvania, 1989.

[HY88] P. Hudak and J. Young. A collecting interpretation of expressions (without Powerdo-
mains). In ACM Symposium on Principles of Programming Languages, pages 107-118,
1988.

[JM76] N.D. Jones and S. S. Muchnick. Some thoughts towards the design of an ideal language.
In ACM Conference on Principles of Programming Languages, pages 77-94, 1976.

[JM86] N. D. Jones and A. Mycroft. Data flow analysis of applicative programs using minimal
function graphs. In ACM Symposium on Principles of Programming Languages, 1986.

[JN90] N. D Jones and F. Nielson. Abstract interpretation: a semantics-based tool for program
analysis. Technical report, University of Copenhagen and Aarhus University, Copen-
hagen, Denmark, 1990.

[Jon88a] N.D Jones. Binding time analysis and static semantics (extended abstract). Diku report,
University of Copenhagen, Copenhagen, Denmark, 1988.

[Jon88b] N.D. Jones. Automatic program specialization: A re-examination from basic principles.
In D. Bjgrner, A. P. Ershov, and N. D. Jones, editors, Partial Evaluation and Mized
Computation, pages 225-282. North-Holland, 1988.

[Jon90] N. D. Jones. Partial evaluation, self-application and types. In M.S. Paterson, editor,.
17th International Colloguium on Automata, Languages and Programming, volume 443
of Lecture Notes in Computer Science, pages 639-659. Springer-Verlag, 1990.

[Jon91] N. D Jones. A minimal function graph semantics as a basis for abstract interpretation
of higher order programs, 1991. Presented at the 1991 Workshop on Static Analysis of
Equational, Functional and Logic Programs.

[JSS89] N. D. Jones, P. Sestoft, and H. Sgndergaard. Mix: a self-applicable partial evaluator for
experiments in compiler generation. LISP and Symbolic Computation, 2(1):9-50, 1989.

[Kho92] S. C. Khoo. Parameterized Partial Evaluation: Principle and Practice. PhD thesis, Yale
University, 1992. Forthcoming.

[Kle52] S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.

33

[Lau90] J. Launchbury. Projection Factorisation in Partial Evaluation. PhD thesis, Department
of Computing Science, University of Glasgow, Scotland, 1990.

[MS90] M. Mizuno and D. Schmidt. A security flow control algorithm and its denotational
semantics correctness proof. Technical Report CS-90-21, Kansas State University, Man-
hattan, Kansas, 1990.

[Nie89] F. Nielson. Two-level semantics and abstract interpretation. Theoretical Computer
Science, 69:117-242, 1989.

[Ses85] P. Sestoft. The structure of a self-applicable partial evaluator. In [GJ85], pages 236-256,
1985.

[Ses88] P. Sestoft. Automatic call unfolding in a partial evaluator. In D. Bjgrner, A. P. Ershov,
and N. D. Jones, editors, Partial Evaluation and Mized Computation. North-Holland,
1988.

A Correctness of Instrumentation

Lemma 8 Given a program P. Let ¢ be the function environment for P defined by the instrumented
semantics. If the standard evaluation of P with input (vq,...,v,) terminates, and o is the cache
computed for P by A, then

1. For any ezpression e in P, if a non-trivial function call occurring in e is performed when e
is evaluated, then A records the call in the cache.

2. For any function definition in P of the form

fi(zl""’z‘n) = v fj(ejlla°'°’e:1)

Let (v,...,vy,) € o[fi]. If evaluating f; with argument (v},...,v,) results in a call to f;
with (v, ...,vy), where v! = E[el](L[vi/zk],) Vi € {1,...,n}, then (vV,...,v!) € o[f;],
provided v!' # L,Vi € {1,...,n}.

Proof (Sketch):

1. We want to show that the predicate “if a non-trivial function call occurring in e is performed when
evaluating e, then the call is recorded in the cache produced by A” is true. The proof is done by
structural induction over e.

2. The second part of the lemma is shown by examining local function h in function EProg. If
(vi,...,v;) € o[fi], then A will be called to collect non-trivial calls in the body of f;. Using the
first result of this lemma we know that (v{,...,v)) € of;], provided v/ # L,Vie {1,...,n}. O

Theorem 1 (Correctness of Instrumented Semantics) Let P be a program evaluated with
input (v1,...,v,). For any user-defined function f in P, if f is called with non-bottom argument
(v1,...,v,) during the standard evaluation, then (vi,...,v.) € o[f].

Proof : From Lemma 8, and noticing that, since none of the initial input should be bottom, the initial
call to f; is captured in the cache (by the definition of £proy) - |

34

B Partial Evaluation Semantics Subsumes Standard Semantics

Theorem 2 Given a program P. Suppose that (1) the input to P is completely known at partial-
evaluation time, and (2) all function calls in P are unfolded during partial evaluation, then for any
ezpression e in P,

#(€ [e)(p,8) = (£ [el(p P

where both ¢ € FunEnv and ¢ € FunEnv are fized for the program, p € VarEnv, and p € VarEnv
is defined as:

Proof :

p = Mzl . (#(ple]), #(pl=]))) for (plz]) € D.

The proof is by induction on the structure of expression, proving Efe] R 8[6] for the logical

relation ’R between domains of £ and £ defined by:

v 'R,R,,uu,\ & 7(v) = 9]l = 9|2 whereve D

P R«VarEnv p & V[x] € Var, p[z] RRemltA p[z]

é RFunEnv ¢ < V[f] €Fn,Vie {1 ,Tl} Vv; € Values, Vi; € Res,
A(vo RRe:uHA 'vs) = ¢[.f](vla ,vn) ﬁReault? &[f]l(f)l, ceey i)n)
s=l

(d1, da) 'RD,xD, (di,d2) & d 'RD, d1 A dy Rp, da

fRDl—-Dz f L =4 VdED],VdED], dRD, d = f(d) RD, f(d)

It suffices to show that R holds for all the corresponding pair of combinators used by £ and £

¢ The proofs for Conste and VarLookups are easy, and thus ignored.

¢ PrimOpe : This is done by structural induction and a case analysis over all the possible argument
values of the primitive.

e Conde : This is done by structural induction and a case analysis over the possible values produced
by kl (p) ¢)

o Appe : For any user-defined function f, suppose that all correspondmg _arguments of Apps and
App; are related by R. Vie {1,...,n}, let v; = ki(p,4) and ¥; = k(p, ¢) We have Vi €.

{,.

.on}, oy ’R,R,_,M,A 9;. Since both ¢ and ¢ contain only strict functions, R holds when some

of the arguments is bottom On the other hand, under the condition that all function applications are
unfolded, App fl(ky, .. , ky) is reduced to ¢ [f1 (41,...,%). From the supposition that ¢ R runy ar é,
we have

¢ ﬁFunVar é = ¢[f](1)1, ey 'vn) ﬁResuh? &[fﬁ('ﬁl; ey i}n)-

Hence, Apps R App;.

This concludes the proof. , . O

35

