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DPMG: A MULTIGRID SOLVER FOR THE POISSON EQUATION IN
TWO AND THREE DIMENSIONS*

CRAIG C. DOUGLAS

Abstract. A fast Poisson solver (DPMG) based on multgrid methods is presented. DPMG can
be used with boundary value problems defined on uniform or tensor product grids in two and three
dimensions. The calling sequence is described in detail. What the subroutine library does and returns
is also described. Examples of DPMG’s use are included along with sample output.
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1. Introduction. In this paper, a subroutine library DPMG is discussed in detail.
This is a fast, multigrid solver for Poisson’s equation in two and three dimensions. The
discretization techniques and storage methods are discussed in §1. A brief tutorial on
multilevel methods is in §2. The details of how to call DPMG are in §3. Examples are
in §4. How to make the package is in §A.

Consider Poisson’s equation in a d-dimensional (d € {2,3}) rectangular domain

—Au = binQ,
(1) u = goon 0f,

U, = ¢; on Iy,
where 0Q U 9Q; = 90 and 9Qy N 00, = 0.

This is discretized on grids
Q= QU U ;.

In essence, linear systems of the form

are solved approximately for a sequence of grids ;. The vectors z; and b; can be
thought of as “grid functions” on Q;. The values of b, go, and ¢; on Q; are stored in
b; (multiplied by the square of the mesh spacing when a uniform mesh is used). The

values of go on 0§ and an initial guess to the solution u in Q U 8§ are stored in z;
before the call to DPMG.
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DPMG wuses a central difference discretization of Poisson’s equation, even at
Neumann boundary points. Dirichlet boundary points are not eliminated a priori.

The discrete system has a particular form depending on the mesh type (uniform or
tensor). A;is a (2- NDIM + 1)-point operator (i.e., there are at most 2- NDIM + 1
nonzeros in any row of A;). For NDIM = 2, A; has the form

a4 aii41 Qi i+Ny
aii41

Qi i+ Ny

Not all of the a;; listed above are nonzero. For example, if row ! corresponds to a
Dirichlet boundary point, then a; = 1 and a;; = 0 if I # k. For non-Dirichlet points,
the corresponding rows [ all have

—4 unt form mesh,
an _4(h1 + hz) tensor mesh,

where hy and h; are the mesh spacing.
For an interior point, with a corresponding row 7 in A;,

1 unt form mesh,
ani+1 =
+ —2h; tensor mesh,

and

1 unt form mesh,
aLiyN, =
—2hy tensor mesh.

For Neumman boundary points, a “reflection” principal is used. This has the effect of
doubling the coefficient along the same line. For example, consider a boundary point on
the left side of the domain. Then the corresponding row I in A, is a 4 point operator:

[+ @rcvanarigy - 2a 14w, - -]

At Neumann corner points, the corresponding row [ in Aj; is a 3 point operator with
both of the nonzero entries off the main diagonal doubled, e.g., at the lower left corner:

[a112a15 - - 241 14N, - -]




When NDIM = 3, A; has the form

Qs 4 Q541 @i i+N, @i i+ Ny N,
i1

i i+ Ny

Qi i+NyN,

At the non-Dirichlet points, the corresponding rows [ have a main diagonal entry of

—6 unt form mesh,
au —4(h1 + ha + h3) tensor mesh.

For an interior point, with a corresponding row [ in A;,

1 uni form mesh
a =
hit —2hy tensor mesh,
and
1 unt form mesh,
a _
LNy —2h, tensor mesh,
and

1 unt form mesh,

a; =
Ny Ne {—2h3 tensor mesh.

Dirichlet points are once again identity rows and the Neumann points are discretized
again by reflections.

In the uniform mesh case, the right hand side b; must have the square of the mesh
spacing (i.e., h?) factored into it. Otherwise the approximate solution returned will be
off by a factor of A2

2. Introduction to multigrid methods. Once a linear differential equation is
discretized, we must solve

Az =b, ze M,

where M is a vector space. We will solve this using an abstract multilevel (or multigrid)
iteration. An auxiliary set of equations are used which each approximate the original
one:

Ajz; =b;, levelf <j <levele, z; € M,
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where levelc and levelf are natural numbers signifying the coarsest and finest levels,
respectively, Aieveif = A, Tievelf = Z, and bieyers = b.

Multigrid solvers frequently use particular features of an elliptic boundary value
problem and the domain. There are similar procedures, known as aggregation-
disaggregation methods, when A is not derived from partial differential equations; this
routine can be used with either of these procedures. The term multigrid is usually
applied only to problems based on grids, whereas the term multilevel is applied to
problems which may or may not be grid based.

Multilevel methods combine scaled iterative methods (called smoothers or roughers)
with iterative residual correction on coarser levels to reduce the error on a given level.
Iteration ¢ on some level j > levelc consists of a smoothing step (introducing an operator
S ]@), a correction step, and another smoothing step (introducing another operator Tj(i)).

There are p; of these iterations. On level j = levelc, just smoothing occurs (say, S](i));
this may be an iterative or a direct grocedure like sparse Gaussian elimination.
Common smoothers SJ@ and Tj(z are relaxation methods (e.g., Gauss-Seidel, SOR,
line or plane methods), preconditioned conjugate direction methods (e.g., conjugate
gradients, minimum residuals, Orthomin), and the identity operator.
The correction step involves a two way transfer of information between levels. This
is accomplished using mappings between the solution spaces:

(2) Rj . Mj i Mj+1 and Pj.|_1 :Mj+l — Mj.

These are referred to as restriction and prolongation operators in the multigrid
literature. Typically, P11 is a standard interpolation operator and R; is its transpose.

There are two basic linear multilevel algorithms: correction ones and nested
iteration ones. Correction multilevel algorithms start on a fine grid and use the coarser
levels solely to correct the approximate solution on finer levels (we will define two such
algorithms shortly, namely, MGC and MGFAS). Nested iteration multilevel algorithms
start on a coarse level and work their way to some finer level, using the approximate
solution on coarser levels to produce initial guesses and corrections on the finer levels
(we will define two such algorithms shortly, namely, NIC and N IFAS).

Define a k-level correction multigrid algorithm by

ALGORITHM MGC(k, {1}, zk, fx)
(1) If k£ = levelc, then solve Agzy, = fi exactly or iteratively
(2) If k # levelc, then repeat & = 1, -+, yuy:
(2a) Smoothing: zx — S (24, fi)
(2b) Residual Correction: zj « z;+
Peyr( MGC(k + 1, {pe}, 0, Ri(Axzs + fi)))
(2¢) Smoothing: x; T,gz)(a:k,fk)
(3) Return zx
This definition requires that geye. = 1. Examples of the flow of control between levels
for the correction algorithm are contained in Figure 1.
Define a k-level nested iteration multigrid algorithm by
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level V cycle: p=(1,1,1,1)

>~ W N

level W cycle: u=(1,2,2,1)

LRI V]

Fia. 1. Correction Algorithm (MGC) V and W cycles

ALGORITHM NIC(k') {p‘la 7/%}) Tlevelc {fl})
(1) For j = levele,levelc—1,- -, k, do
(la) If 5 # levelc, then z; — Pjy12,41
(1b) Set p «— p; and then p; « ;.
(1c) z; —MGC(j, {pe}, x5, ;)
(1d) Restore p; « p.
(2) Return zi
An example of the flow of control between levels for both of the nested iteration
algorithm is contained in Figure 2.

3. Subroutine DPMG. Algorithms MGC and NIC have been encapsulated in
the long precision subroutine DPMG, tailored for Poisson’s equation (1). It calls
the correct multilevel algorithm subroutine(s), which in turn calls the appropriate
interpolation, projection, direct solver, and iterative solver routines. DPMG uses the
subroutine DAMG [5] to do some of its work.

3.1. Syntax of DPMG. DPMG can be called from either FORTRAN or C using
the following convention:

FORTRAN | CALL DPMG ( npts,h,b,z,iparm,resid,
bndend, auz,nauz)

C dpmg ( npts,h,b, z,iparm, resid,
bndcend, auz, &nauz)




level

> W N

F1Gg. 2. Nested Iteration Algorithm (NIC) V cycle

3.2. On entry to DPMG. The arguments to DPMG have the following meaning:

npts
is a vector with the number of grid points in each dimension (Y,
X, and Z coordinates) for the finest grid. Each entry must be
odd.
Specified as: a vector of fullword integers of length at least ndim
(see tparm).

h
is a vector with the mesh spacing in each dimension (Y, X, and
Z coordinates), dimensioned at least ndim (see iparm and the
Notes).
If mesh =1 in iparm, then this is ignored.
Specified as: a vector of long precision real numbers of length
at least ndim (see iparm).

b
is a vector containing the right hand sides b;, stacked one after
the next. See the Notes for a description of how to dimension b
and how to stack the b; inside of b.
Specified as: a vector of long precision real numbers of length
at least brsize (see tparm).

z

is a vector containing the approximate solutions or corrections
z;, stacked one after the next. See the Notes for a description
of how to dimension « and how to stack the z; inside of .
Specified as: a vector of long precision real numbers of length
at least bxsize (see iparm).




parm

is a vector of fullword integer arguments.

e iparm(l) = mgfn determines which of the multilevel

algorithms to use:

1 MGC

2 NIC

tparm(2) = mesh determines which type of mesh to
use:

1 uniform spacing in all directions.

2 tensor product with the spacing specified in h.
tparm(3) = bxsize is the amount of space of the vectors
b and z. See the Notes for a description of how to
dimension b and =z.

iparm(4) = Ina is the size of the a and ja vectors inside
of auz. This is a reserved spot and should not be used.
tparm(5) = ndim is the number of dimensions of the
problem, either 2 or 3.

tparm(6) = levels is the number of levels. One is the
finest level and levels is the coarsest one. This must
be less or equal to 20, but using more than 5 levels is
usually pointless. There is no default.

tparm(7) = itrni is the number of iterations of NIC.
This corresponds to the {1} in the definition of NIC
in §2. The default is 1, but either 1 or 2 is typical.
iparm(8) = itrmg is the number of iterations of MGC.
This corresponds to the {y,} in the definition of MGC
in §2. The default is 2, but either 1 or 2 is typical.
tparm(9) = itrsm is the number of iterations of the
smoother. The default is 2, but any value in the 14
range is typical.

iparm(10) = smethd is the smoother (see Table 1). See
the Notes for suggestions.

eparm(11) = dscoar is whether or not to use a sparse
direct solver (DGSF/DGSS) on the coarsest level. If
tparm(11) = 1, then factorization is required. If
iparm(11) = 2, then use the smoother specified by
smethd instead of the direct solver. If iparm(11) = 3,

then use the factorization from a previous call to pmg.
The default is 1.




TABLE 1
DPMG Solver Information

Solver | Symbolic name | Definition

5 GSNat Gauss-Seidel, natural ordering

6 GSRedBlack Gauss-Seidel, red-black ordering
See DAMG for an explanation of the numbering system.

e iparm(12) = proni is the prolongation method for
Algorithm NIC (see (2)). If iparm(12) = 1, then
use a second order approximation (i.e.., bilinear or
trilinear interpolation). If iparm(12) = 2, then use a
fourth order approximation (LIM). See the Notes for an
explanation of the different methods. The default is 1
if mesh =2 and 2 if mesh = 1.

o iparm(13) = promg is the prolongation method for
Algorithm MGC (see (2)). The only value currently
accepted is 1 for a second order approximation (i.e..,
bilinear or trilinear interpolation).

o iparm(14) = rmethd is the weighting used in the
residual correction method in Algorithm MGC (see
(2)). If i¢parm(14) = 1, then use a fourth order
approximation. If ¢parm(14) = 2, then use a second
order approximation based on discrete £, operator. If
tparm(14) = 3, then use a second order approximation
based on (bi,tri)linear projection. See the Notes for an
explanation of the different methods. The default is 1.

o 1parm(15) = defaults is used to let DPMG pick
reasonable values for most of the elements of iparm.
These are as follows: iparm(1l) = 1, iparm(2) = 1,
iparm(6) =maximum possible, iparm(8) = 2, and
tparm(9) = 2. This corresponds to Algorithm MGC on
uniform meshes with the number of levels maximized, a
red-black Gauss-Seidel iteration for a smoother, a direct
solve on the coarsest level, 2nd order interpolation,
and 4th order projection. The user must remember to
include the h? factor in the right hand side b.




TABLE 2
BNDCND Description

When NDIM=2, bndcnd(z) corresponds to

Side x and b elements
Left (1:npts(1), 1)

Right | (1:npts(l), npts(2))
Bottom | (1, 1: npts(2))
Top (npts(1), 1 : npts(2))

> W N =

When NDIM=3, bndcnd(i) corresponds to

Stide z and b elements

Left (1:npts(1), 1, 1 : npts(3))
Right | (1:npts(1), npts(2), 1 : npts(3))
Bottom | (1 : npts(1), 1:npts(2), 1)

Top (1:npts(1), 1:npts(2), npts(3))
Front | (1, 1:npts(2), 1:npts(3))
Back | (npts(1), 1:npts(2), 1:npts(3))

See DAMG for an explanation of the numbering system.

S T W DN | .

restd
is a vector containing anything.
Specified as: a vector of long precision real numbers of length
at least
npts(1) - npts(2) if ndem = 2,
npts(1) - npts(2) - npts(3) if ndim = 3.
bndend
is a vector containing the boundary conditions. See Table 2 for
the ordering of the elements.
Specified as: a vector of fullword integers of length at least
2 - ndim (see iparm).
auzx
is the storage work area used by this subroutine. Its size is
specified by nauz.
Specified as: a vector of long precision real numbers of length
nauz.
nauz

is the size of the floating point scratch storage.
Specified as: a fullword integer.

3.3. On return from DPMG. The following arguments to DPMG may change
before it returns:
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contains the right hand side for the finest level and is destroyed
on the other levels.

T
contains the approximate solution for the finest level and is
destroyed on the other levels.

resid
is a vector where the residuals are stored.

Specified as: a vector of long precision real numbers of length
at least

npts(1) - npts(2) if ndim = 2,

npts(1) - npts(2) - npts(3) if ndim = 3.

auz
is destroyed in unpredictable ways. However, if DPMG is ever
going to be called with dscoar = 3, auz must not be changed
between calls.

nauz

is the estimate for what nauz ought to have been if the value
supplied in the call to DPMG is too small.

3.4. Errors associated with DPMG. There are three classes of errors: input,
input or computational, and computational ones.

3.4.1. Input errors.

The number of grid points (npts(z)) is not an odd number greater than 2.
brsize is too small.

mgfn is not 1 or 2.

The number of dimensions (ndim in iparm) is not 2 or 3.

levels (see iparm) is less or equal to 0 or is too large. The latter occurs when
levels > 20 or when the number of grid points in some direction on some level
becomes too small or even.

G o=

itrne is negative.

itrmg is negative.

itrsm is negative.

smethd is not 0, 5, or 6.

dscoar is not 0, 1, 2, or 3.

An interpolation method (pronic in iparm) is requested that is incompatible
with the mesh. This occurs when LIM is requested, but a nonuniform mesh
(mesh = 2 in iparm) is used.

12. pronic is not 0, 1, or 2.

13. promgc is not 0 or 1.

14. rmethd is not 0, 1, 2, 3.

15. At least one of the mesh spacings in A is not positive.

16. An element in bndcnd is not 0 or 1.

[u—
e i

[
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17. defaults not 0 or 1.

3.4.2. Input or Computational Errors.
1. nauz is not large enough.

3.4.3. Computational Errors.
1. The sparse direct solver, used on the coarsest level, could not cope with the
vector sizes. Making auz larger solves this problem.

3.5. Notes about DPMG.

1. DPMG assumes an odd number of grid points in each direction on all of the
levels, i.e., an even number of intervals in each direction. Suppose there are
NF grid points in a direction on some level. On the next coarser level there
will be NC' = (NF +1)/2 grid points in that direction. The distance between
any two points in any direction (this is referred to as the mesh spacing, see k) is
constant. When the mesh spacing is the same in each direction then the mesh
is referred to as uniform; otherwise it is tensor product of the one dimensional
meshes in each direction (see mesh in iparm).

2. The right hand sides {b;} and approximate solutions {z;} are stacked one
after each other in the b and = vectors. The finest level’s vectors are stored
first, followed immediately by the next to finest level’s vectors, and so forth.
Suppose there are 172, 92, and 5% grid points on 3 levels. This corresponds to
npts(1) = npts(2) = 17, npts(3) = 1, ndim = 2, and levels = 3. Then

Level | Number Locations in b and
(4) |ofpoints =z for b; and z;
1

289 1—289
2 81 290 — 370
3 25 371 — 395

The minimum for bzsize is 395 in this example. Each z; begins in z at the
same location as the corresponding b; in b.

3. While the order of storage for b and z is (y,x,z), the program will run fastest if
the number of unknowns N,, N,, and N, in each dimension is ordered so that
Ny > N; > N,. This may require transforming the problem.

4. When a direct solve is used on the coarsest level, a matrix using a 2 - ndim + 1
point stencil is generated and factored by DPMG. The sparse direct factoriza-
tion routine is called exactly once to factor the matrix and the sparse solver is
called to do the actual solves during the execution of a typical call to DPMG.
The “storage by rows” sparse matrix format is used (see DAMG). One REAL*8
vector A along with two INTEGER*4 vectors I A and JA are generated inside
of auz.

Suppose there are N total grid points on the coarsest level. Vectors A, JA,
and A must be of length greater than

(2 - ndim + 1)N
11




each. In addition, 4 words of auz are used so that DPMG can be called again.
Also, an additional

10N + 100

locations of auz are used by DGSF and DGSS (when the ESSL version of
DPMG is used) to store information. Actually, the size of A, JA, and A is
mostly determined by what the sparse factorization routine requires to factor

the matrix. For example, on square or cube domains with M grid points in
each dimension, with DGSF,

N | naux minimum nauz realistic
M? 20N + 120 2N3/2 + 20N + 120
M3 24N + 120 ON5/3 4 24N + 120

The potential fill in during Gaussian elimination should be at worst

2M3 if ndim = 2,
2M® if ndim = 3.

This is pretty grim since it has to be added to the minimum. Luckily, the N is
for the coarsest level, not the finest. See the description of DGSF to determine
the actual amount of space that should be allocated to IA, JA, and A.

Some hints are as follows based on DGSF not having to do any compressions:

ndim =2 | ndim =3
N nauz |N nauz
32 400 | 33 850
52 1250 | 5% 8200
723100 | 7* 53000
92 4900 | 9% 144000
172 58000

Note that all of auz is used no matter how much extra space is given to DPMG
by the user. This is a greedy routine.
Finally, most of the computational errors are caused by nauz (and/or Ina in
iparm) being too small. Increasing nauz will eliminate most error conditions.
. One of the interpolation methods for Algorithms NIC is a fourth order method
referred to as LIM (Local Inversion Method, see [6]. This should only be
used with a uniform mesh (mesh = 1); it is an error otherwise. This uses
the difference operator, similar to a Gauss-Seidel iteration with a three color
ordering and a rotated operator, to improve the order of interpolation.
. The restriction methods are based on stencils. These are described in detail in
[2]. The two second order methods are based on [1,2,1] and [1,4, 1] weightings
in one dimension. Tensor products are used to generate the stencils in higher
dimensions. The fourth order stencil is an average of the [1,4, 1] tensor product
stencil and injection.
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10.

. When the mesh spacing is identical in each direction, the best choices for

interpolation and restriction methods are as follows: rmethd = 1, proni = 2,
and promg = 1. The theoretical justification for these choices is contained in

[2] and [3].

. When the mesh spacing is not identical in each direction, the best choices for

interpolation and restriction methods are as follows: rmethd = 3, pron: = 1,
and promg = 1.

The standard choices for the number of smoothing iterations are 1-4. One of
the principals aims of multigrid methods is to reduce the number of iterations
of some iterative procedure. This is done by changing levels often while not
doing much computation on any level at any one time. This is discussed in
detail in [1] and [T7].

Boundary conditions are determined for each side of the domain as a block,
not pointwise (currently). The supported boundary conditions are as follows:

Condition | Value
Dirichlet 0
Neumann 1

Whenever one side has a Neumann condition and an adjoining one has a
Dirichlet condition, the Dirichlet condition is assumed at the corner point where
the boundaries intersect. See Table 2 and the description of bndcnd.
WARNING: There must be at least one boundary point with a Dirichlet
condition or the problem is ill posed.

4. Examples of DPMG Usage. All runs in this section were on an IBM RISC

SYSTEM/6000™. In §4.1, a simple two dimensional problem is explored in depth. In
§4.2, a three dimensional problem is examined.

It is implicitly assumed that you have already made a working version of DPMG
and DAMG. If you do not know how to do this, please see Appendix A.

4.1. Example 1: a two dimensional problem. The first example solves

Uz +Uyy = F in the unit square (0,1)2

U(z,y) =0 on 9(0,1)2.

F' is chosen so that the solution is

Ul,y)=z-(x—1)-y-(y—1)

Fz,y)=2z-(z—1)+y-(y-1)].

Algorithm NIC is used with the red-black Gauss-Seidel smoother on all levels except
the coarsest where a direct solver is used. A uniform mesh is used. LIM is used for the

13




NIC interpolation, the fourth order projection method, and bilinear interpolation for
MGC.

Due to the uniform mesh and the discretization method, DPMG requires F in the
following form:

F(z,y) =2kz-(z— 1) +y-(y - 1),
where h is the mesh spacing. So, on level ¢, the grid points are
yJ:(J_l)hh j:17'°'3Ni,y
and

ze=(k=1)-h;, k=1,--- Ni,.

k)

Thus, the right hand side on level 7 is '
(3) Bi(yj, zx) = 2h[zx - (x5 — 1) +y; - (95 — D).

Note that elements of B; corresponding to boundary points are zero in (3) due to the
contrived nature of the example.
A sample FORTRAN main program is presented here. The declarations section is
simply,
program main
integer npts(2) / 5,5 /
real*8 h(2) / 0.0, 0.0 /
real*8 b(34)
real*8 x(34)
integer iparm(40) / 40 * 0 /
real*8 resid(25)
integer bndcnd(4) / 0,0, 0,0 /
real*8 aux(400)
integer naux / 400 /
real*8 hh
integer i, 12
The right hand sides and initial guesses are made by calls to a subroutine bxfn1:
12 = npts(1) * npts(2) + 1
hh = 1.0 / (npts(1) - 1)
call bxfnl( hh, npts(1), npts(2), x, b )
call bxfn1( 2*hh, (npts(1)+1)/2, (npts(2)+1)/2, x(12), b(12) )

The various nonzero entries in iparm are filled in:

14



iparm( 1) = 2 % mgfn = nic

iparm( 2) = 1 % mesh = uniform
iparm( 3) = 34 % bxsize

iparm( 5) = 2 % ndim

iparm( 6) = 2 % levels

iparm( 7) = 1 % itrni

iparm( 8) = 1 % itrmg

iparm( 9) = 2 % itrsm

iparm(10) = 6
iparm(11) = 1
iparm(12) = 2

% smethd = red-black Gauss-Seidel
% dscoar = factorization needed
% proni = 2nd order

iparm(13) = 1 % promg = 2nd order

iparm(14) = 1 % rmethd = 4th order
DPMG can now be called using the following:

call dpmg( npts, h, b, x, iparm, resid, bndend, aux, naux )
Finally, the results are printed using the following:

write (*,*¥) ’X =’

write (*,’(1p,(5d14.5))’) (x(i), i=1,25)

write (*,*) 'RESID =’

write (*,’(1p,(5d14.5))") (resid(i), i=1,25)

end
This produces the following output:

X =

0.00000D+00 0.00000D+00 0.00000D+00 0.00000D400 0.00000D+00
0.00000D+00 3.53275D-02  4.72175D-02  3.53326D-02  0.00000D-00
0.00000D+00 4.72175D-02  6.28526D-02  4.72378D-02  0.00000D~+00
0.00000D+00 3.53326D-02  4.72378D-02  3.53377D-02  0.00000D--00
0.00000D+00 0.00000D+00 0.00000D+00 0.00000D400 0.00000D--00
RESID =

0.00000D+00  0.00000D+00 0.00000D+00 0.00000D+00 0.00000D+00
0.00000D+00 -6.93889D-18 6.69691D-04  6.93889D-18  0.00000D--00
0.00000D+00 6.69691D-04  0.00000D+00 7.40899D-04  0.00000D+00
0.00000D+00 0.00000D+00 7.40899D-04  -1.38778D-17  0.00000D-+-00
0.00000D+00 0.00000D+00 0.00000D+00 0.00000D400 0.00000D--00

The subroutine bxfn1 is quite simple. One thing to note is that b; and z; are treated
as matrices in this subroutine while they are just sections of a larger vector in the main
program. While this feature of FORTRAN is portable with respect to FORTRAN-77,
it is not a very good programming habit.
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subroutine bxfnl( h, nl, n2, x, b )
real*8 h

integer nl, n2

real*8 x(n1,n2)

real*8 b(nl,n2)

real*8 zero / 0.0 /

real*8 hfac, xfac, xk, yj

integer j, k

hfac = 2.0 * h ** 2

call dcopy( n1*n2, zero, 0, x, 1)
call dcopy( n1*n2, zero, 0, b, 1)

do k = 2,n2-1
xk=(k-1)*h
xfac = xk * (xk - 1.0 )
doj = 2,n1-1
yi=(-1)*h
b(j,k) = hfac * ( xfac + yj * (yj - 1.0))
enddo
enddo
return
end

On a machine where double precision corresponds to 128 bits, the call to dcopy above
has to be changed to a call to scopy. Also, some FORTRAN compilers do not recognize
real*8 as a legal construct; the obvious change must then be made.
We could just as well have designed subroutine bxfnl to construct right hand sides
for uniform and tensor product grids. For example, if the line
hfac = 2.0 * h ** 2
in bxfnl is changed to

hfac = 2.0
and the line
iparm( 2) = 1 % mesh = uniform
in the main program is changed to
iparm( 2) = 2 % mesh = tensor

then we can compare results. What we discover is that the solution X is identical for
both cases, but that the elements of the residual vectors are different by exactly a factor
of h%. This is exactly what we would expect to happen.

4.2. Example DPMG-2: 3 dimensional problem. The second example solves
{ Uso + Uy +U., =F 1in the unit cube (0,1)3

U(z,y,2) =0 on 9(0,1)3.

F' is chosen so that the solution is

Ulz,y,z)=z-(z—=1)-y-(y—1)-2-(2—1)
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or
F(z,y,z)=2[z-(z—1)4+y-(y—1)+2- (2 —=1)].
where h is the mesh spacing. So, on level ¢, the grid points are

Zm=(m—1)-h;; m=1,---,N;,,

yi=0—1) hi, j=1,--+,Niy,
and

zgr=(k—=1)-h;y k=1,---,N;,.
Thus, the right hand side on level 7 is
(4) Bi(yjs @ky 2m) = 2k [k (2 — 1) + 95 - (45— 1) + 2 - (2 — 1)+]-

Note that elements of B; corresponding to boundary points are zero in (4) due to the
contrived nature of the example.
A sample FORTRAN main program is presented here. The declarations section is
simply,
program main
integer npts(3) / 5, 5,5 /
real*8 h(3) / 0.25, 0.25, 0.25 /
real*8 b(152)
real*8 x(152)
integer iparm(40) / 40 * 0 /
real*8 resid(125)
integer bndend(6) / 0,0, 0,0,0,0 /
real*8 aux(1300)
integer naux / 1300 /
real*8 hh
integer i, j, 12
The various nonzero entries in iparm are filled in:

iparm( 1) = 2 % mgfn = nic

iparm( 2) =1 % mesh = uniform

iparm( 3) = 152 % bxsize

iparm( 5) = 3 % ndim

iparm( 6) = 2 % levels

iparm( 7) =1 % itrni

iparm( 8) =1 % itrmg

iparm( 9) = 2 % itrsm

iparm(10) = 6 % smethd = red-black Gauss-Seidel
iparm(11) =1 % dscoar = factorization needed
iparm(12) = 2 % proni = 2nd order

iparm(13) = 1 % promg = 2nd order
iparm(14) = 1 % rmethd = 4th order

17




The right hand sides and initial guesses are made by calls to a subroutine bxfn2:
12 = npts(1) * npts(2) * npts(3) + 1
hh = 1.0 / (npts(1) - 1)
call bxfn2( iparm(2), hh, npts(1), npts(2), npts(3), x, b )
call bxfn2( iparm(2), 2*hh, (npts(1)+1)/2, (npts(2)+1)/2,
& (npts(3)+1)/2, x(12), b(12) )
Note that the reason why the order of sections differs from that of the main program
in §4.1 is due only to using the value of ¢parm(2) in the call to bxfn2. DPMG can now
be called using the following:
call dpmg( npts, h, b, x, iparm, resid, bndend, aux, naux )
Finally, the results are printed using the following:
write (*)*¥) 'X =’
doi=1,12525
write (%) (1p,(514.5))’) (x(7), j=i,i+24)
write (*,*) 7’
enddo
write (*,*) 'RESID =’
doi=1,12525
write (*,’(1p,(5d14.5))’) (resid(j), j=i,i+24)
write (*,*¥) 7
enddo
end
This produces the following output:
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X =
0.00000D+00
1.99543D-03
0.00000D+-00
0.00000D+-00
0.00000D+-00

0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00

0.00000D+-00
0.00000D+00
0.00000D+-00
0.00000D+00
0.00000D+00

0.00000D+00
0.00000D+-00
0.00000D+00
0.00000D+00
0.00000D+00

0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D4-00

0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00

0.00000D+-00
3.30726D-02
4.22524D-02
3.30591D-02
0.00000D+-00

0.00000D+00
4.22320D-02
5.45593D-02
4.22542D-02
0.00000D+-00

0.00000D+00
3.29955D-02
4.22311D-02
3.30791D-02
0.00000D+-00

0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00

0.00000D+00
2.89564D-03

0.00000D+00
0.00000D+00
0.00000D+00

0.00000D+00
4.28516D-02
5.46982D-02
4.22861D-02
0.00000D+00

0.00000D+00
5.46394D-02
7.02792D-02
5.47028D-02
0.00000D+00

0.00000D+00
4.22416D-02
5.46280D-02
4.22789D-02
0.00000D+00

0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+-00
0.00000D+00
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0.00000D+-00
3.16133D-03

0.00000D4-00
0.00000D+-00
0.00000D+-00

0.00000D+-00
3.36787D-02
4.23885D-02
3.31315D-02
0.00000D+00

0.00000D+00
4.23671D-02
5.46978D-02
4.22992D-02
0.00000D+-00

0.00000D+00
3.30616D-02
4.22751D-02
3.31384D-02
0.00000D+00

0.00000D+-00
0.00000D+-00
0.00000D+00
0.00000D+00
0.00000D+00

2.26112D-03

0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00

0.00000D+-00
0.00000D+00
0.00000D+00
0.00000D+-00
0.00000D+-00

0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00

0.00000D-+00
0.00000D+00
0.00000D+-00
0.00000D+00
0.00000D+-00

0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+00
0.00000D+-00




RESID =

0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00

0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00

0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00

0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00

0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00

0.00000D+-00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+-00

0.00000D+00
7.86954D-04
-3.46945D-17
1.24961D-03
0.00000D+00

0.00000D+-00
-1.38778D-17
2.16937D-03

-4.85723D-17
0.00000D+-00

0.00000D+-00
9.55636D-04
-4.85723D-17
1.39784D-03
0.00000D+-00

0.00000D+00
0.00000D+00
0.00000D+-00
0.00000D+00
0.00000D+-00

0.00000D+00
0.00000D+00
0.00000D+-00
0.00000D+00
0.00000D+00

0.00000D+-00
-1.38778D-17
2.19390D-03

-2.08167D-17
0.00000D+-00

0.00000D+-00
1.92763D-03
0.00000D+-00
2.88137D-03
0.00000D+-00

0.00000D+-00
-2.77556D-17
2.52430D-03

-4.16334D-17
0.00000D+-00

0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00

0.00000D+00
0.00000D+00
0.00000D+-00
0.00000D+00
0.00000D+00

0.00000D+00
9.91187D-04
2.77556D-17
1.50272D-03
0.00000D+00

0.00000D+00
6.93889D-18
2.64020D-03
-4.85723D-17
0.00000D+00

0.00000D+00
1.17336D-03
-3.46945D-17
1.66444D-03
0.00000D+-00

0.00000D+00
0.00000D+-00
0.00000D+-00
0.00000D+00
0.00000D+00

The subroutine bxfn2 is quite similar to bxfnl (see §4.1):
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0.00000D+-00
0.00000D+00
0.00000D+00
0.00000D+-00
0.00000D+-00

0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00

0.00000D+00
0.00000D4-00
0.00000D4-00
0.00000D+00
0.00000D+-00

0.00000D+-00
0.00000D+00
0.00000D+00
0.00000D4-00
0.00000D+00

0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00
0.00000D+-00




subroutine bxfn2( mesh, h, nl, n2, n3, x, b )
real*8 h
integer mesh, nl, n2, n3
real*8 x(n1,n2,n3)
real*8 b(nl,n2,n3)
real*8 zero / 0.0 /
real*8 hfac, xfac, xk, yj, zfac, zm
integer j, k, m
if ( mesh .eq. 1) then
hfac = 2.0 * h ** 2
else
hfac = 2.0
endif
call dcopy( n1*n2*n3, zero, 0, x, 1)
call dcopy( n1*n2*n3, zero, 0, b, 1)
do m = 2n3-1
zm= (m-1) *h
zfac = zm * (zm - 1.0 )
do k = 2,n2-1
xk=(k-1)*h
xfac = xk * ( xk - 1.0 ) + zfac
doj = 2mnl-1
vi=@G-1)*h
b(j,k,m) = hfac * ( xfac + yj * (yj-1.0))
enddo
enddo
enddo
return
end
A more realistic version of this subroutine would allow for a vector with initial values
for the z, y, and z points and would also pass the h vector intact.
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A. Making DPMG. Anyone using this code would probably do themselves a
favor by sending an e-mail note to the author. Announcements of updates will be made
through the MGNet (multigrid network) mailing list [4]. To join MGNet, send a request
to mgnet-requestsQcs.yale.edu.

The source code for DPMG can be found on the Internet. Two possible anonymous
ftp sites are the following;:

Machine name IP address
software.watson.ibm.com | 129.34.139.5
casper.cs.yale.edu 128.36.12.1

There are other machines with copies at this point, but these should do. Do not attempt
to get the files or unpack them directly on a mainframe unless it is running UNIX; use
a workstation initially if your target is a mainframe.
Before all else, make a new directory and change to it:
% mkdir madpack4
% cd madpack4
where % is the prompt assuming you are using the C-shell. To retrieve information,
from your Internet connected machine, run the ftp program with one of the machine
names as its argument, e.g.,
% ftp software.watson.ibm.com
You will be prompted for an account name and password: use the account name
anonymous and your e-mail address as the password. Then change directory to one
with the software and look at the directory (the prompt for the ftp program is “ftp> ”):
ftp> cd pub/pdes
ftp> dir
You should see something like the following:
total 888
drwxr-xr-x 512 Jul 22 1992
drwxr-xr-x 512 Dec 11 08:50
-TW-r-1— 3691 Apr 28 1992 AGREE.damg
-TW-T-T— 3691 Apr 28 1992 AGREE.dpmg
-TW-T-T— 7229 Jul 16 1992 README.damg
-TW-I-T— 7997 Jun 03 1992 README.dpmg
-TW-I-T— 182136 Jul 22 1992  damg.tar.Z
-TW-T-T— 236555 Jul 16 1992  dpmg.tar.Z
WARNING: On MGNet (casper.cs.yale.edu), you will find the codes in the directory
mgnet/madpack/ instead of pub/pdes.
You should get all of the Ascii files first:
ftp> prompt
ftp> mget A*
ftp> mget R*
Read the two AGREE files since these are your software licenses for DPMG and DAMG
(a copy of DPMG'’s license is Appendix B). Assuming there is nothing in the license
that you find objectionable, then get both software packages and quit:
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ftp> binary
ftp> mget d*
ftp> quit
Now you are ready to unpack the files into their own directories:
% mkdir damg dpmg
% cd damg
% zcat ../damg.tar | tar xvf -
% cd ../dpmg
% zcat ../dpmg.tar | tar xvf —
Both zcat and tar are standard utilities on workstations.
You are now in the dpmg directory. The first thing to notice is that there are a
number of subdirectories. These contain specialized versions of subroutines for different
types of machine architectures:

Directory | Contains

Generic Poisson solver routines, examples, user information,
Makefile, etc.

chaining | Routines tailored for machines with hardware multiply-add
chaining (e.g., IBM RISC System/6000).

chain-no | Routines tailored for machines without chaining (e.g., SUN
Sparc 1 or an Intel 80486 microprocessor).

vec-f77 Routines tailored for machines with vector units and Fortran
compilers capable of vectorization (e.g., Cray Y-MP).

vec-370 Routines tailored for IBM 3090 or IBM ES9000 machines with

vector units and vector assemblers.

Given a machine, you will want to select the correct set of routines to get as much
performance as possible. As is described in §A.1, this has been automated to some
extent.

A.1. Making DPMG on a workstation. To make some examples using DPMG,
you merely have to run the command
% make

A number of library files (ones with an extension of “.a”) will be produced:

File Contains
../damg/libamg.a | Abstract multilevel solver
libdpmg.a Generic Poisson solver routines

chain-no/libpcn.a | Routines tailored for machines without chaining
chaining/libpch.a | Routines tailored for machines with chaining
vec-f77/libpvf.a | Routines tailored for machines with vector units

Most of these are not needed, but are included as an example of how to make them.
Also, six executables will be made (only p23d_chain and yale_chain are useful, but the
others will still execute correctly).
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On an IBM RISC System/6000, you will probably be better off making a new
library archive with just the components that are useful. You can do this with the
commands,

% ar crs libdpmg.a dpmg.o mgp?.o

% ( cd chaining ; ar ts ../libdpmg.a *.0 )
Then move the file libdpmg.a to someplace easily accessible (e.g., /usr/local/lib). You
should also copy the file ../damg/libdamg.a to the same directory. Then you can refer
to both files when linking programs as simply

—ldpmg — ldamg

instead of having to know where the archive files are.

You can type the examples from §4 into your computer yourself or you can get
them from MGNet as part of mgnet/madpack4/doc.tar.Z. To unpack the document,
use the commands

% cd ..

% zcat doc.tar | tar xvf —
To compile and link the first example, use the commands

% cd doc

% xIf -c dpmg-ex1.f

% xIf -o dpmg-ex1 dpmg-exl.o -ldpmg -ldamg -lessl
To execute the program,

% dpmg-ex1

A.2. Making DPMG on a mainframe. If your mainframe is running AIX, the
directions in §A.1 will work with the exception that the compiler name is different (fvs
instead of xIf). The remainder of this section assumes your mainframe is running VM.

First, transfer the file vec-870/getcmp.ezxec to your mainframe. Second, edit it to
reflect your workstation login name (replace bells with your own login name) and your
workstation name (replace noisy). Third, execute getemp. The last step will transfer
all of the appropriate files to your mainframe, compile them with the correct compiler
options, create a library, and compile and link two test programs.
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B. DPMG’s software license. DPMG and DAMG were written while the
author was an IBM employee. As such, IBM owns the software. Be that as it may, IBM
has a program for releasing software to the public with very few strings attached. After
the author filled out a 17 page form (all answers to the really important questions were
“not applicable”) and collected signatures (only three), the software was made available
to Internet users in July, 1992. The author is indebted to Shmuel Winograd, Ashok
Chandra, and Larry Carter for signing this form and to Jim McGroddy for not killing
this program.

Note that part of the license specifies that updates and bug notifications will be
provided through MGNet. The full text of the license agreement is the remainder of
this appendix.

— (C) Copyright International Business Machines Corporation 1992.
— All Rights Reserved.
— See the file USERAGREEMENT distributed with this software for full

— terms and conditions of use.

1. COPYRIGHT
Program Name: DPMG

(C) Copyright International Business Machines Corporation 1992. All
Rights Reserved.
2. RESEARCH SOFTWARE DISCLAIMER

As experimental, research software, this program is provided free
of charge on an ”as is” basis without warranty of any kind, either
expressed or implied, including but not limited to implied warranties
of merchantability and fitness for a particular purpose. IBM does
not warrant that the functions contained in this program will meet
the user’s requirements or that the operation of this program will
be uninterrupted or error-free. Acceptance and use of this program
constitutes the user’s understanding that he will have no recourse to
IBM for any actual or consequential damages, including, but not limited
to, lost profits or savings, arising out of the use or inability to use
this program. Even if the user informs IBM of the possibility of such
damages, IBM expects the user of this program to accept the risk of
any harm arising out of the use of this program, or the user shall not
attempt to use this program for any purpose.
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3. USER AGREEMENT
BY ACCEPTANCE AND USE OF THIS EXPERIMENTAL PRO-

GRAM THE USER AGREES TO THE FOLLOWING:

a. This program is provided for the user’s personal, non-commercial,
experimental use and the user is granted permission to copy this
program to the extent reasonably required for such use.

b. All title, ownership and rights to this program and any copies remain
with IBM, irrespective of the ownership of the media on which the
program resides.

c. The user is permitted to create derivative works to this program.
However, all copies of the program and its derivative works must
contain the IBM copyright notice, the EXPERIMENTAL SOFTWARE
DISCLAIMER and this USER AGREEMENT.

d. By furnishing this program to the user, IBM does NOT grant either
directly or by implication, estoppel, or otherwise any license under
any patents, patent applications, trademarks, copyrights or other rights
belonging to IBM or to any third party, except as expressly provided
herein.

e. The user understands and agrees that this program and any derivative
works are to be used solely for experimental uses and are not to be sold,
distributed to a commercial organization, or be commercially exploited
in any manner.

f. IBM requests that the user supply to IBM a copy of any changes,
enhancements, or derivative works which the user may create. The user
grants IBM and its subsidiaries an irrevocable, nonexclusive, worldwide
and royalty-free license to use, execute, reproduce, display, perform,
prepare derivative works based upon, and distribute, (INTERNALLY
AND EXTERNALLY) copies of any and all such materials and
derivative works thereof, and to sublicense others to do any, some, or
all of the foregoing, (including supporting documentation).

Copies of these modifications should be sent to:
software@yktvmv.bitnet or
na.cdouglas@na-net.ornl.gov

Announcements of updates will be made through the MGNet (multigrid network)
mailing list. To join MGNet, send a request to mgnet-requests@cs.yale.edu.
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