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NONLINEAR PHASE UNWINDING OF FUNCTIONS

RONALD R. COIFMAN AND STEFAN STEINERBERGER

Abstract. We study a natural nonlinear analogue of a functional decomposition into Fourier
series. Iterative Blaschke factorization allows one to formally write any F ∈ H1 as a series which

successively unravels or unwinds the oscillation of the function

F = a1B1 + a2B1B2 + a3B1B2B3 + . . .

where ai ∈ C and Bi is a Blaschke product. Numerical experiments point towards rapid con-
vergence of the formal series but the actual mechanism by which this is happening has yet to
be explained. We derive a family of inqualities and use them to prove convergence: for ex-

ample, we have convergence in L2 for initial data F in the Dirichlet space D). Furthermore,
we present a numerically efficient way to expand a function without explicit calculations of the
Blaschke zeroes. As the algorithm computes the mean of functions generated through successive

holomorphic high pass filters, it relates naturally to Mallat’s Scattering transform.

1. Introduction

1.1. Blaschke factorization. This paper is concerned with a natural nonlinear way for unravel-
ing the oscillation of a function in the Hardy space F ∈ H1. Our starting point is a fundamental
theorem in complex analysis (Blaschke factorization) stating that any F ∈ H1 can be decomposed
as

F = B ·G,
where B is a Blaschke product, that is a function of the form

B(z) = zm
∏

i∈I

ai
|ai|

z − ai
1− aiz

,

where m ∈ N0 and a1, a2, · · · ∈ D are a finite or infinite number of zeroes inside the unit disk D
and G ∈ H1 has no roots in D. For |z| = 1 we have |B(z)| = 1 which motivates the analogy

B ∼ frequency and G ∼ amplitude

for the function restricted to the boundary. However, the function G need not be constant: it can
be any function that never vanishes inside the unit disk. Nonetheless, one would certainly hope
that, since we have removed some of the ’frequency’ intrinsic to F , it should be ’simpler’.

1.2. A formal series. There is a simple way of iterating: since G has no zeroes inside D, its
Blaschke factorization is the trivial one G = 1 · G, however, the function G(z) − G(0) certainly
has at least one root inside D and will therefore yield some nontrivial Blaschke factorization
G(z)−G(0) = B1G1. Altogether, this allows us to write

F = B ·G
= B · (G(0) + (G(z)−G(0)))

= B · (G(0) +B1G1)

= G(0)B +BB1G1.

At least formally, an iterative application gives rise to what we call the unwinding series

F = a1B1 + a2B1B2 + a3B1B2B3 + a4B1B2B3B4 + . . .

This formal expansion first appeared in the PhD thesis of Michel Nahon [13]. Given a general
function F ∈ H1(D) it is not numerically feasible to actually compute the roots of the function;
a crucial insight from [13] is that this is not necessary – one can numerically obtain the Blaschke

1



2 RONALD R. COIFMAN AND STEFAN STEINERBERGER

product in a stable way; the method is first mentioned in a paper of Guido and Mary Weiss [24]
(see also [4]) and has been investigated with respect to stability by Nahon [13] and Letelier &
Saito [11]. Thorough numerical investigation [13] indicates that the formal series

F = a1B1 + a2B1B2 + a3B1B2B3 + a4B1B2B3B4 + . . .

will converge to the actual function and, generically, this seems to happen at an exponential rate.

1.3. An example. We start with the Blaschke factorization of a function F ∈ H∞(D) given
approximately by a modulated Gaussian on the boundary (obtained by projecting it onto holo-
morphic functions).

F (eiθ) = e−(θ−π)
2 · e10iθ.

The curves in the complex plane are parametrized by B(eiθ) and G(eiθ): indeed, a lot of the
oscillation (and almost the entire phase) is transported from F to B leaving G significantly simpler
than F . It also serves as a good example of the heuristic

B ∼ frequency and G ∼ amplitude.

Figure 1. A picture taken from Michel Nahon’s thesis [13]: the behavior of the
Blaschke decomposition of F on ∂D.

1.4. Related work. Blaschke products have long been used in the signal analysis. We refer to
papers of Eisner & Pap [5], Feichtinger & Pap [7], Pap [15] and Picinbino [14] for some examples.
The unwinding series is first studied in the PhD thesis of Michel Nahon [13]. Subsequently, a
method for numerical stabilization in the case of |F (eiθ)| becoming small has been investigated
by Letelier & Saito [11]. The unwinding series has been used by Healy [9, 10] in the study of
the Doppler effect (see below for additional information). Most closely related to our paper is an
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approach developed by Qian, Ho, Leong & Wang [18] (and elaborated in further papers by Qian
and collaborators [16, 17, 19, 21]), which they call adaptive Fourier transform. The main idea
is to use Blaschke products as a library and proceed by a projection pursuit approach, where at
each step one projects onto the element in the library yielding the largest inner product with the
function:

fn+1 = fn − 〈fn, Bn〉Bn
where Bn is chosen among all Blaschke products with n zeroes as the one yielding the largest inner
product. Since, in particular, the functions zn are elements of that library, this approach may
be understood as a generalization of Fourier series – among their results is also an independent
rediscovery of the Guido and Mary Weiss algorithm [17] and of the formal series [20]. There are
also similarities with recent work of Mallat [12]. Mallat’s scattering transform is a translation-
invariant operator, which is Lipschitz-continuous w.r.t. to C1− diffeomorphisms of the underlying
space (for the Fourier transform even very smooth diffeomorphisms can have a large impact on
high frequencies). The construction is based on an iterative application of wavelet transforms
followed by restriction to the modulus. Our iterative application

Gn(z) = Gn(0) + (Gn(z)−Gn(0)) = Gn(0) +Bn+1(z)Gn+1(z)

uses the modulus of the corresponding functions while the coefficients are given as the mean.
This yields a comparable level of stability: at least the leading coefficient is stable under both
perturbations of the function and reparametrization of the torus.

2. Statement of results

2.1. Setup. Given a function F ∈ H1(D), we define G0 as the outer part in the Blaschke factor-
ization

F = B0 ·G0

and then, iteratively, Gn+1 as the outer part in the Blaschke factorization

Gn(z)−Gn(0) = Bn+1(z)Gn+1(z).

We are interested in ensuring that ‖Gn‖X → 0 in some suitable space X and our main statements
will be formulated that way. We remark that this formal series can be understood as the canonical
extension of the Fourier series, which arises if one iteratively applies

Gn(z)−Gn(0) = z ·Gn+1(z),

which is in the same spirit but much simpler. The Blaschke series, in contrast to the Fourier
series, proceeds by factoring out all zeroes inside D – this gives a rise to a much larger library of
functions and makes it seem intuitive that one should not only expect convergence but also faster
convergence than for the Fourier series.

2.2. Algorithm and roots. We start (assuming for simplicity that there are no roots on the
unit circle) with two basic observations. Recall that a general Blaschke factor has the form

B1(z) = zm
∏ ai
|ai|

z − ai
1− aiz

.

Suppose F : C → C is holomorphic, F (0) 6= 0 and F has the set of roots R = {r1, r2, . . . }. If
F = BG, then the roots of G are simply{

ri whenever |ri| > 1

1/ri whenever 0 < |ri| < 1.

Geometrically, this means that the roots of F outside the unit circle stay unchanged while roots
inside the unit circle are inverted along the circle. We emphasize that in every step of the algorithm
consists of studying not Gn(z) but Gn(z) − Gn(0), which will have a very different set of roots.
However, one immediate easy consequence is the following.

Proposition. Let F : C → C be given by a polynomial of degree n. Then the formal series
converges and is exact after n steps.
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Proof. The algorithm is closed in the set of polynomials. Furthermore, since Gk(z) − Gk(0) has
at least one root in 0, the degree of the polynomial decreases by at least 1 in every step. �

This argument is more algebraic than analytic and comes with the obvious limitation that it does
not give any convergence speed (analogously, it is not surprising that a trigonometric polynomial
can be written as finite Fourier series). An illustrative example is given by

F (z) = (z − (1− ε))2n.

The Blaschke factorization F = BG is easy to write down and

G(z) = (1− (1− ε)z)2n = (1− ε)2n
(
z − 1

(1− ε)

)2n

.

By making ε sufficiently small, the functions F and G can be made as close to each other in any
reasonable function space as we wish. These sort of examples immediately imply that it is not
possible to construct a reasonable norm X with ‖Gn+1‖X ≤ (1 − δ)‖Gn‖X for some universal
δ > 0. Exponential convergence, which is observed in practice, will therefore either not always
be the case or be the consequence of an underlying phenomenon ensuring that iterative Blaschke
factorization cannot always stay close to set of functions behaving like these polynomials.

2.3. A general contraction property. This section presents our main convergence result. We
first state the result in the most general form and comment on special cases of particular interest
further below. Let 0 = γ0 ≤ γ1 ≤ . . . be an arbitrary monotonically increasing sequence of real
numbers and let X be the subspace of L2(T) for which

∥∥∥∥∥∥
∑

n≥0
anz

n

∥∥∥∥∥∥

2

X

:=
∑

n≥0
γn|an|2 <∞.

We define a norm Y (merely a semi-norm whenever γ is not strictly increasing)

∥∥∥∥∥∥
∑

n≥0
anz

n

∥∥∥∥∥∥

2

Y

:=
∑

n≥0
(γn+1 − γn)|an|2.

Our main statement is that the Blaschke factorization acts nicely on these spaces. The first
part of our statement is known (being ascribed to Digital Signal Processing in [17]) and can be
equivalently phrased as follows: given a Blasche decomposition F = B · G and assuming both
functions are expanded into a Fourier series

F (z) =
∞∑

n=0

fnz
n and G(z) =

∞∑

n=0

gnz
n,

then, for every N ∈ N
∞∑

n≥N
|gn|2 ≤

∞∑

n≥N
|fn|2.

Phrased differently, inner outer factorization shifts the energy to lower frequencies in a strictly
monotonous way. Our main tool will be a refinement of that inequality.

Theorem 1. If F ∈ H2 has a Blaschke factorization F = B ·G, then

‖G(ei·)‖X ≤ ‖F (ei·)‖X .

Moreover, if F (α) = 0 for some α ∈ D, we even have

‖G(ei·)‖2X ≤ ‖F (ei·)‖2X − (1− |α|2)‖G(ei·)‖2Y .
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The most important implication is convergence of the unwinding series in the space Y if the
initial data lies in X. The argument is straight-forward: the construction of the unwinding series
proceeds by setting

Bn+1Gn+1 = Gn(z)−Gn(0)

and thus, by construction, the functions always have a root in z0 = 0. Furthermore, adding and
subtracting constants has no impact on ‖·‖X because γ0 = 0 and therefore

‖Gn+1(ei·)‖2Y ≤ ‖Gn(ei·)−Gn(0)‖2X − ‖Gn+1(ei·)‖2X
= ‖Gn(ei·)‖2X − ‖Gn+1(ei·)‖2X

Summing on both sides yields a telescoping series and thus
∞∑

n=2

‖Gn(ei·)‖2Y ≤ ‖G1(ei·)‖2X = ‖F (ei·)‖2X ,

which implies that ‖Gn(ei·)‖Y → 0. After n steps, we have the equation

F = a1B1 + a2B1B2 + · · ·+ an−1B1 · · ·Bn−1 +B1B2 · · ·BnGn
and exploiting that |Bi| = 1, we have that

‖f − (a1B1 + · · ·+ an−1B1 · · ·Bn−1)‖L2 = ‖Gn‖L2 .

This motivates putting special emphasis on the space X arising from γn = n for which Y = L2.
This space is also known as the Dirichlet space D and has special geometric significance and
structure; for algebraic reasons we can get an even sharper inequality in that case (see below).
Another natural (from a geometric perspective) space is given by γn = n2, where X = H1,
Y = D and Theorem 1 can be alternatively proven using Green’s formula (see below). All Sobolev
spaces Hs with s > 0 are also special cases: the statement implies that for F (ei·) ∈ Hs with

s > 0, we have convergence in Hs− 1
2 . All these results have a completely analogous version on

the upper half-space C+ with Blaschke-type products being defined on the real line R; even the
proofs translate almost verbatim (see below).

2.4. A slight generalization. The algorithm is slightly more general than was presented up to
now: indeed, at the n−th step, we could actually pick an arbitrary αn ∈ D and proceed via

Bn+1Gn+1 = Gn(z)−Gn(αn).

Theorem 1 was formulated in a completely general way (for a general root α) and applies to this
more general case as well (at the cost of introducing a factor 1−|αn|2). Choosing a ’good’ value for
αn requires balancing two competing factors: on the one hand, it seems natural that by selecting
αn so as to make |G(αn)| large, we get a large coefficient which seems desirable. On the other hand
|G(αn)| is maximized for αn on the boundary and whenever αn is close to the boundary, we know
that the Blaschke factorization gives a new factor Gn+1 with the root αn inverted by the unit disk:
if αn is the only root inside D and close to the boundary, then Gn+1 will not be very different
from Gn. Furthermore, the entire process being highly nonlinear, it seems very difficult to predict
the effect of picking a particular root after several iteration steps. We set αn = 0 throughout the
rest of the paper but emphasize that in practical applications different choices might be useful.

2.5. A special case. Let us now explore the special cases with obvious geometric significance in
greater detail. We identify functions F ∈ H∞(D) with maps γ : T→ R2 via

γF (t) := F (eit).

This is motivated by the fact that in the algorithm we obtain Gn+1 not from Gn(z) but from
Gn(z)−Gn(0) and it is therefore natural to study translation-invariant (i.e. geometric) quantities
depending on Gn. Let us consider a particular example F (z) = (z+0.3+i/3)(z−0.2)(z−1.5−i/2)
(taken essentially at random) and the Blaschke factorization F (z) = B(z)G(z) (see Fig. 2 and
Fig. 3). Since G(z) has no roots in D, the argument principle implies that G(z) does not wind
around 0. Note that furthermore

|F (eit)| = |G(eit)|
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for all t ∈ R. As suggested by the picture (and many others like it), one would expect that the

-2 -1 1 2

-1

1

2

Figure 2. The curve γF .

0.5 1.0 1.5

1.0

1.5

2.0

2.5

Figure 3. The curve γG.

length of the curve γG(t) is smaller than that of γF (t) but we have been unable to prove that;
instead, we were able to obtain that result for the natural L2−version of length, sometimes called
the energy of a curve

energy(γ) =

∫ 2π

0

|γ′(t)|2dt.

By Hölder’s inequality, we have that

length(γ)2 =

(∫ 2π

0

|γ′(t)|dt
)2

≤ 2π

(∫ 2π

0

|γ′(t)|2dt
)

= 2πenergy(γ).

Therefore, in particular, if the energy of a curve tends to 0, then so will the length. Algebraic
simplifications allow us to quantify the decrease of the H1−norm of the boundary function in
terms of its L2−norm weighted against the Poisson kernel of the roots (having the advantage of
circumventing the use of the Dirichlet space).

Theorem 2. Suppose F ∈ H1(D) satisfies

∫ 2π

0

|F ′(eiθ)|2dθ <∞.

If {αi : i ∈ I} are the roots of F in D and F = B ·G, then

∫ 2π

0

|G′(eiθ)|2dt ≤
∫ 2π

0

|F ′(eiθ)|2dt−
∫ 2π

0

|G(eit)|2
∑

i∈I

1− |ai|2
|eit − αi|2

dt.

Exploiting an additional geometric argument based on random projections and the uncertainty
principle, we were able to obtain the following estimate, which might be useful because it controls
the error in L∞ (again avoiding the Dirichlet space).

Corollary 1. Suppose F : D→ C satisfies

∫ 2π

0

|F ′(eiθ)|2dθ <∞.

Then the formal series converges in L∞. Moreover,

∣∣{n ∈ N : ‖Gn(z)−Gn(0)‖L∞(∂D) ≥ ε
}∣∣ .

(∫ 2π

0
|F ′(eit)|2dt

)2

ε4
.
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2.6. Winding numbers and the Dirichlet space. The previously given examples (Fig. 2 and
Fig. 3) show that the supremum of winding numbers, i.e. the quantity supz∈C windγ(z) need not
decrease under Blaschke factorization (as a matter of fact, it can increase, see Fig. 4 and Fig. 5).
However, the examples strongly suggest that the average winding number, i.e. the quantity∫

C
windγ(z)dz should decrease.

This quantity can be regarded as weighted area, which is the area enclosed by the curve weighted
with the winding number. It arises naturally when one applies Green’s formula to compute the
area surrounded by a simple, closed curve γ : [0, 2π]→ R2 oriented counter-clockwise and written
as γ(t) = (x(t), y(t)) via

1

2

∫ 2π

0

x(t)ẏ(t)− ẋ(t)y(t)dt.

Applying the very same formula in the case of a non-simple closed curve naturally gives rise to

1

2

∫ 2π

0

x(t)ẏ(t)− ẋ(t)y(t)dt =

∫

C
windγ(z)dz.

This interpretation of the area formula dates back at least to a 1936 paper of Rado [22]. If F is
holomorphic, then we have ∫

C
windγF (z)dz =

∫

D
|F ′(z)|2dz.

-4 -3 -2 -1

-2

-1

1

2

Figure 4. γF with F (z) =
(z − 0.8)(z + 1.21)
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-1

1

2

Figure 5. γG has larger max-
imal winding.

Writing that representation in Fourier space gives the so-called area theorem stating that if

f(z) = a0 + a1z + a2z
2 + . . . , then

∫

C
windγF (z)dz = π

∞∑

n=1

n|an|2.

The Dirichlet space

D =

{
f : D→ C

∣∣ f holomorphic and

∫

D
|f ′(z)|2dz <∞

}
.

was first introduced by Beurling & Deny [1, 2] .When equipped with the inner product

〈f, g〉D = 〈f, g〉H2 +
1

π

∫

D
f ′(z)g′(z)dz,

it becomes a Hilbert space. A monotonicity statement for Blaschke decomposition in that space
is well-known and follows at once from Carleson’s formula [3] (see also [6, Theorem 4.1.3]).

Corollary 2 (Special case of Carleson’s formula). Assume F ∈ H∞(D) with roots {αi : i ∈ I} in
D and has the Blaschke factorization F = B ·G, then

∫

D
|F ′(z)|2dz =

∫

D
|G′(z)|2dz +

1

2

∫

∂D
|G|2

∑

i∈I

1− |ai|2
|z − αi|2

.
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2.7. A curious stability property. When doing Blaschke factorization F = BG numerically,
we will introduce some roundoff errors; even though we never actually compute the roots of the
functions, this roundoff error can be imagined as perturbing the roots a little bit. We have the
following curious and purely algebraic pointwise stability statement.

Theorem 3. Suppose F1, F2 : C→ C are polynomials having the same roots outside of D and the
same number of roots inside D. Then the Blaschke factorizations

F1 = B1G1 and F2 = B2G2,

satisfy

|G1(z)−G2(z)| = |F1(z)− F2(z)| for all z ∈ ∂D.
2.8. An unwinding series on R. The inner-outer factorization was the crucial ingredient to our
entire approach; however, the same factorization can be achieved on the upper half-space and the
entire notion of an unwinding series as well as all our statements transfer almost verbatim. This
connection is established by the Cayley-transform, which is the conformal mapping from C+ to D
given by

C(z) =
i− z
i+ z

z ∈ C+.

Moreover, the linear map T : H2(D)→ H2(C+) given by

(Tf)(z) =
1√
π

1

z + i
(f ◦ C)(z)

is an isomorphism. Conversely, any function on C+ for which T−1 is defined allows us to apply
the process on D detailed above. However, one could also rephrase the entire process to C+. The
role of Blaschke products would then be played by functions indexed by λ1, . . . , λn ∈ C+ of the
form

n∏

k=1

z − λk
z − λk

, where again |B(z)| = 1 on R.

Let ψ : [0,∞]→ [0,∞] be a monotonically increasing, differentiable function with ψ(0) = 0. The
natural continuous extensions of the spaces are induced by the norms

‖f‖2X :=

∫ ∞

0

|f̂(ξ)|2ψ(ξ)dξ and ‖f‖2Y :=

∫ ∞

0

|f̂(ξ)|2ψ′(ξ)dξ.

The main inequalities now have a slightly different form but can be proven the same way.

Theorem 4. If F has roots λ1, . . . , λn ∈ C+, then
∥∥∥∥∥F

n∏

i=1

z − λk
z − λk

∥∥∥∥∥

2

X

≤ ‖F‖2X .

For the removal of a single root F (λ) = 0, we have the stronger estimate
∥∥∥∥F

z − λ
z − λ

∥∥∥∥
2

X

≤ ‖F‖2X − (2=(λ))

∥∥∥∥F
z − λ
z − λ

∥∥∥∥
2

Y

.

Moreover, in the Dirichlet space ψ(ξ) = ξ, we even have
∥∥∥∥∥F

n∏

i=1

z − λk
z − λk

∥∥∥∥∥

2

X

≤ ‖F‖2X −
∫

R
|F (z)|2

n∑

i=1

2=(α)

|z − λk|2
dz,

where the sum ranges over all roots of F on C+.

3. Computation and application

In this section we provide a collection of known facts, additional background material, a way of
computing the Blaschke factorization without ever having to compute the roots (dating back to a
1963 paper of Guido and Mary Weiss) and some sample applications.
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3.1. Analytic signals. A classical way of using complex analysis when faced with a periodic,
real signal u(t) : [0, 2π] → R is to associate a natural imaginary part to the function. Already in
1946 Gabor [8] argued that

it has long been recognized that operations with the complex exponential ejωt [...]
have distinct advantages over operations with sine or cosine functions.

and proposed to analyze the signal

f = u+ iHu instead,

where H is the Hilbert transform. Vakman [23] proved that requiring certain natural assumptions
on the complexification process, this is the canonical complexification. A convenient fact for actual
computation is that if

u(θ) =
a0
2

+
∑

k≥1
ak cos kθ + bk sin kθ,

then

(Hu)(θ) =
∑

k≥1
ak sin kθ − bk cos kθ and (u+ iHu)(θ) =

a0
2

+
∑

k≥1
(ak − ibk)eikθ.

3.2. The Guido and Mary Weiss algorithm. Let now f(θ) be a complex signal (possibly
obtained from a real signal using the process above). Assume additionally that f(θ) 6= 0. Note
that any such f(θ) has only positive frequencies

f(θ) =

∞∑

k=0

ake
ikθ

to which we may associate the function F : D→ C

F (z) =
∞∑

k=0

akz
k,

which, assuming sufficient regularity, has f as boundary function. It is now our goal to construct
the Blaschke decomposition of F = B ·G without computing the roots of the function.
The algorithm proceeds as follows.

(1) Compute the function g(θ) = log |f(θ)|.
(2) Compute the analytic signal from g, i.e.

h(θ) = (g + iHg)(θ).

(3) Then we have the Blaschke factorization F = B ·G, where

G(θ) = eh(θ) and B(θ) = F (θ)/G(θ)

on the unit circle.

Clearly, the algorithm won’t work whenever there is a root on the boundary of the unit disk
because log |f(θ)| will be unbounded; also, whenever |f(θ)| becomes very small, the algorithm
naturally becomes unstable. Various ways for additional stabilization have been proposed: the
stabilizing effect of adding a small constant has been investigated by Nahon [13] whereas Letelier
& Saito [11] propose adding a small pure sinusoid.

3.3. Removal of multiplicative noise. We return to the analogy

B ∼ frequency and G ∼ amplitude.

B is constructed from F by its roots inside the unit disk; conversely, given F (ei·) as boundary
data, we can uniquely reconstruct the values of F inside D by convolving with the boundary data
with the Poisson kernel. This compact integral operator enjoys a variety of smoothing properties;
as a consequence it is stable against all sorts of perturbations (assuming they roughly preserve the
local averages).
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1 2 3 4 5 6

-4

-2

2

4

Figure 6. A multiplicatively
perturbed pure frequency.
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Figure 7. The Blaschke prod-
uct after two iterations.

A particular example given above consists of a function

f(θ) = cos (2θ)

(
50∑

n=1

αn
cosnθ√

n
+ βn

sinnθ√
n

)
,

where α, β are instances of i.i.d. N (0, 1) random variables. Applying the Blaschke decomposition
twice, we see that the arising frequency part recovers the underlying pure frequency.

3.4. As a versatile tool. We believe that the stability properties of the unwinding series (coming
from the relationship of the roots of F inside D with the boundary values of F on ∂D via the
Poisson kernel as mentioned above) makes it a valuable tool. We give one particular example from
a presentation of Healy [9, 10] who used the method to investigate the Doppler effect.

Figure 8. Standard approximation (red) of the Doppler effect with short-time
Fourier transform (ground truth between the thin red lines).

The first picture shows the standard approach via the short-time Fourier transform; while the
ground truth is within the thin red lines (and almost flat), the approximation deviates quite a bit.
Note, in contrast, the increased stability from the series.

3.5. The instanteous phase problem. Given a complex signal, we may write it in polar coor-
dinates as

F (θ) = a(θ)eiφ(θ).

It is of interest in practice to understand how fast the frequency changes; naturally

F ′ = |F |′eiφ + iφ′|F |eiφ
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Figure 9. Approximation via nonlinear phase unwinding superimposed.

and thus
F ′

F
=
|F |′
|F | + iφ′.

However, the direct computation via this identity can be challenging and numerically unstable;
various methods have been proposed (including one using Blaschke products due to Picinbono
[14]) Blaschke products are well known to have the following particularly nice property: if

eimθ
∏

k∈I

ak
|ak|

eiθ − ak
1− akeiθ

= a(θ)eiφ(θ),

then one has

φ′(θ) = m+
∑

k∈I

1− |ak|2
|eiθ − ak|2

> m ≥ 0.

The unwinding series is therefore an approximation using strictly increasing frequencies, which
greatly stabilizes numerical computation (see [13] for details).

4. Proofs

4.1. Proof of Theorem 1.

Proof. We study the action of moving a single root from inside the unit disk D to the outside (by
inversion along the unit circle). Let |α| < 1 be the root; we compare

f(z) = (z − α)F (z) and g(z) = (1− αz)F (z)

on the boundary ∂D. Expanding F
∣∣
∂D into a Fourier series

F (z)
∣∣
∂D =

∞∑

n=0

anz
n,

we immediately get

f(z)
∣∣
∂D = −αa0 +

∞∑

n=1

(an−1 − αan)zn

g(z)
∣∣
∂D = a0 +

∞∑

n=1

(an − αan−1)zn.
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From the definition of ‖ · ‖X

‖f(z)
∣∣
∂D‖

2
X − ‖g(z)

∣∣
∂D‖

2
X = −γ0(1− |α|2)|a0|2 +

∞∑

n=1

γn(|an−1 − αan|2 − |an − αan+1|2)

= −γ0(1− |α|2)|a0|2 + (1− |α|2)
∞∑

n=1

γn(|an−1|2 − |an|2)

= (1− |α|2)
∞∑

n=0

(γn+1 − γn) |an|2

= (1− |α|2)‖F
∣∣
∂D‖

2
Y .

Suppose now that we apply the result to F = B · G and assume furthermore that F (α) = 0.
We may then first remove all other roots one after the other which can only decrease the norm.
Finally, we apply this result in the last step and obtain the desired statement. �

The last part of the argument highlights a fundamental difficulty: while there is an effective gain
every time we move a root to the outside, it is not clear to us how the sum of these gains could
be properly controlled (which is why we only take the last one). This we only managed to do in
the case of the Dirichlet space, where an additional (algebraic) simplification takes place.

4.2. Proof of Theorem 2. We study again the action of moving a single root to the outside by
inversion along the unit circle. The computation resembles the computation in the more general
case except that we are able to invoke Green’s formula at the end of the argument.

Lemma 1. Let F ∈ H1(D) and a ∈ C with |a| < 1. If

f = (z − a)F and g = (1− az)F
then ∫ 2π

0

|g′(eiθ)|2dt ≤
∫ 2π

0

|f ′(eiθ)|2dt− (1− |a|2)

∫ 2π

0

|F (eit)|2dt

whenever all terms are defined and finite.

Proof. Obviously

f ′ = F + (z − a)F ′

and thus

|f ′|2 = |F |2 + F (z − a)F ′ + F (z − a)F ′ + |z − a|2|F ′|2.
At the same time

g′ = −aF + (1− az)F ′

|g′|2 = |a|2|F |2 − aF (1− az)F ′ − aF (1− az)F ′ + |1− az|2|F ′|2.
If |z| = 1, then |z − a|2 = |1− az|2 and since we only integrate over ∂D, we get
∫

∂D
|f ′|2 − |g′|2 = (1−|a|2)

∫

∂D

|F |2+

∫

∂D
F (z − a)F ′ + F (z − a)F ′ + aF (1− az)F ′ + aF (1− az)F ′.

This is already almost what we want, it remains to show that
∫

∂D
F (z − a)F ′ + F (z − a)F ′ + aF (1− az)F ′ + aF (1− az)F ′ ≥ 0.

The expression can be rewritten as
∫

∂D
FF ′((z − a) + a(1− az)) + FF ′((z − a) + a(1− az)),

which is

(1− |a|2)

∫

∂D
FF ′z + FF ′z,
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Now we go back from the classical derivative f ′(z) to the angular derivative along the boundary

of the disk ḟ(z). As before

d

dθ
f(eiθ) = f ′(eiθ)eiθi

which can be rewritten as

f ′(z) = −izḟ(z) whenever |z| = 1.

Using this, we can rewrite the terms as

FzF ′ = Fz(−i)zḞ = iF Ḟ whenever |z| = 1

F ′zF = −izzḞF = −iḞF whenever |z| = 1.

We need to show that

i

∫

∂D
FḞ − ḞF ≥ 0.

If we write

F (eit) = x(t) + iy(t),

then

i(FḞ − ḞF ) = 2(x(t)ẏ(t)− ẋ(t)y(t)).

The problem consists now of evaluating
∫

∂D
2(x(t)ẏ(t)− ẋ(t)y(t))dt.

This corresponds to integrating the vectorfield

2(−y, x)

over the curve

γ(t) = (x(t), y(t)).

Green’s theorem states that this implies
∫

∂D
2(x(t)ẏ(t)− ẋ(t)y(t))dt = 4A ≥ 0,

where A is the area of the domain enclosed by the curve γ (weighted at each point with the winding
number with respect to γ). Note that Green’s theorem is only valid as long as the integration along
the curve is counterclockwise, which is the case because x(t) + iy(t) comes from a holomorphic
function. �

If F = B ·G has more than one root in D, the Lemma can be applied iteratively.

Proof of Theorem 2. The previous language establishes a relationship between f, g and F . How-
ever, only the modulus of F ever appears in the argument: exploiting that

|z − αi| = |1− αiz| whenever |z| = 1

allows for an iterative application of the previous Lemma inverting several roots along the unit
circle while keeping a closed form expression (the function F changes but its modulus is pointwise
constant throughout the process). Note that by construction we can always set α1 = 0 and
therefore the gain is always at least

∫ 2π

0

|G(eit)|2
∑

i

1− |ai|2
|eit − αi|2

dt ≥
∫ 2π

0

|G(eit)|2dt.

�
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4.3. Proof of Corollary 1. The proof of Corollary 1 is quite interesting in itself. While we have
that ∫ 2π

0

|G′n+1(eiθ)|2dθ ≤
∫ 2π

0

|G′n(eiθ)|2dθ −
∫

∂D
|Gn(eiθ)−Gn(0)|2dθ,

there is no way of turning this into a quantitative decay estimate because the gain

∫

∂D
|Gn(eiθ)−Gn(0)|2dθ need not be proportional to the size of

∫ 2π

0

|G′n(eiθ)|2dθ.

Put geometrically, Gn(eiθ) may wind around Gn(0) very quickly while |Gn(eiθ) − Gn(0)| could
be quite small all the time. The crucial insight is as follows: if that were actually case and
‖Gn(eiθ)−Gn(0)‖L2([0,2π]) is small, then one would certainly hope that ‖Gn(eiθ)−Gn(0)‖L∞([0,2π])

is also small. Now we reverse the order of that argument: suppose that ‖Gn(eiθ)−Gn(0)‖L∞([0,2π])

is not small. This means that |Gn(eiθ)−Gn(0)| is big for some θ, which does not at all mean that
the function is large in L2, it could just be big in one place and very small everywhere else: this,
however, would imply that the L2−norm of the gradient is large and we know it cannot exceed
that of the initial data.

Figure 10. A curve γ with ‖γ‖L∞ large but ‖γ‖L2 small has ‖γ′‖L2 large.

4.3.1. Sobolev embedding. The second ingredient of the argument may be formulated as follows:
let h : T→ R be differentiable. If ‖hx‖L2 is not very big and ‖h‖L∞ has a certain size, then ‖h‖L2

cannot be arbitrarily small (depending on the first two quantities): the only way to be big in L∞

but small in L2 is quick decay around the point where the supremum is assumed. The inequality
is merely the classical embedding of the sobolev space H1(T) ↪→ L∞(T).

Lemma 2. Let h : T→ R be a differentiable function which changes sign. Then

‖h‖2L2 ≥ 1

16

‖h‖4L∞
‖hx‖2L2

.

Proof. Assume w.l.o.g. that h(0) = 0. Assume x to be such that |h(x)| = ‖h‖L∞ . Then

‖h‖4L∞ = |h(x)|4 =

∣∣∣∣
∫ x

0

4h(z)3h′(z)dz

∣∣∣∣ ≤ 4‖h‖2L∞
∫ x

0

|h(z)h′(z)|dz.

Using Cauchy-Schwarz, we get

‖h‖2L∞ = |h(x)|2 ≤ 4

(∫ x

0

|h(z)|2dz
) 1

2
(∫ x

0

|h′(z)|2dz
) 1

2

.

Squaring both sides, we get the statement. �
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4.3.2. Random projections. We apply the statement to a curve γF : ∂D → C, which is different
object than a periodic function h : T→ R. The natural approach to reduce one to the other would
be to fix a vector n ∈ R2 with unit length |n| = 1 and consider the projection

h(t) = 〈γ(t), n〉 .
The next Lemma states that there exists a vector n such this reduction does not change the
L2−norm and L∞−norm by more than an absolute constant

∫ 2π

0

|γ(t)|2dt ≤ 6

∫ 2π

0

| 〈n, γ(t)〉 |2dt. and |h(0)| = | 〈γ(0), n〉 | ≥ 1√
2
|γ(0)|.

It is easy to see by Cauchy-Schwarz that h varies slower than γ∣∣∣∣
d

dt
h(t)

∣∣∣∣ = |〈γ′(t), n〉| ≤ ‖γ′(t)‖.

Therefore, after having established the existence of such a vector n and reparametrizing the curve
in such a way that |h(0)| ≥ 2−1/2 maxt ‖γ(t)‖, we could deduce that

∫ 2π

0

|γ(t)|2dt ≥
∫ 2π

0

|h(t)|2dt ≥ 1

16

‖h‖4L∞
‖hx‖2L2

≥ 1

64

maxt |γ(t)|4∫ 2π

0
|γ′(z)|2dz

which is a quantitative version of our intuition described above: in order for the function to be big
at some point, it cannot be too small on average. Let us now prove the statement. The argument
says that it is sufficient to take that vector at random to have the desired property to be true on
average (in particular, there exists at least one vector for which it is true).

Lemma 3. Let γ : T→ R2 be a periodic curve in the plane and assume γ(0) 6= (0, 0). Then there
exists a unit vector |n| = 1 with

| 〈γ(0), n〉 | ≥ 1√
2
|γ(0)|

as well as ∫ 2π

0

|γ(t)|2dt ≤ 6

∫ 2π

0

| 〈n, γ(t)〉 |2dt.

Proof. The line from the origin to γ(0) defines a unique angle α. Let us now chose n randomly
from α−π/4 and α+π/4. Any such vector satisfies the first condition and the expectation of the
L2−norm is

2

π

∫ α+π
4

α−π4

∫ 2π

0

| 〈(cos s, sin s), γ(t)〉 |2dtds ≥ 2

π

∫ 2π

0

|γ(t)|2
∫ π

4

−π4
| 〈(cos s, sin s), (0, 1)〉 |2dsdt

=

∫ 2π

0

|γ(t)|2 2

π

∫ π
4

−π4
sin2(s)dsdt

=
π − 2

2π

∫ 2π

0

|γ(t)|2dt ≥ 1

6

∫ 2π

0

|γ(t)|2dt

Since a random vector has that expectation, there exists at least one vector with that value. �

4.3.3. Proof of Corollary 1.

Proof. Our monotonicity formula implies that
∫ 2π

0

|(Gn(eit)−Gn(0))′|2dt =

∫ 2π

0

|G′n(eit)|2dt is monotonically decreasing in n.

Suppose that for some n and some z ∈ ∂D
|Gn(z)−Gn(0)| ≥ ε.

We can identify Gn(z)−Gn(0) : ∂D→ C with a curve γ : T→ R2 and reparametrize it using our
Lemma so that

| 〈γ(0), n〉 | ≥ ε√
2
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and ∫ 2π

0

|γ(t)|2dt ≤ 6

∫ 2π

0

| 〈n, γ(t)〉 |2dt.

We can now apply our second Lemma to the function

h(t) = 〈γ(t), n〉 .
Since Gn(z) − Gn(0) has winding number at least 1, so has γ and therefore h vanishes at least

in two points. h and Gn(z) − Gn(0) have comparable L∞−norm (up to a factor of
√

2) and
comparable L2−norm (up to a factor of 6) and elementary geometric considerations (projections
make vectors only smaller) show that the derivative of h satisfies

|h′(t)| ≤ |γ̇(t)|.
We can now apply our second Lemma and conclude that

∫ 2π

0

|(Gn(eit)−Gn(0))|2dt ∼ ‖h‖2L2 &
‖h‖4L∞
‖hx‖2L2

≥ ε4∫ 2π

0
|F ′(eiθ)|2dθ

,

where the second inequality follows from the assumption that |Gn(z) − Gn(0)| ≥ ε and the fact
that the L2−norm of the derivative is decreasing. Now, let’s look at the next step in the algorithm,
where we decompose

Gn(z)−Gn(0) = BGn+1.

Our inequality tells us that the squared L2−norm of the derivative decreases at least by a factor
of (using |B| = 1 for Blaschke products)

∫ 2π

0

|Gn+1(eit)|2dt =

∫ 2π

0

|Gn(eit)−Gn(0)|2dt & ε4∫ 2π

0
|F ′(eiθ)|2dθ

.

This yields
∫ 2π

0

|G′n+1(eiθ)|2dt ≤
∫ 2π

0

|G′n(eiθ)|2dt−
∫ 2π

0

|Gn(eit)−Gn(0)|2dt

≤
∫ 2π

0

|G′n(eiθ)|2dt− c ε4∫ 2π

0
|F ′(eiθ)|2dθ

for some universal constant c > 0. However, since all the involved quantities are nonnegative, this
immediately implies that number of n ∈ N for which

|Gn(z)−Gn(0)| ≥ ε for some z ∈ ∂D
is bounded from above by

(∫ 2π

0

|F ′(eiθ)|2dθ
)
/

(
c

ε4∫ 2π

0
|F ′(eiθ)|2dθ

)
=

1

c

(∫ 2π

0
|F ′(eiθ)|2dθ

)2

ε4
.

�

4.4. Proof of Corollary 2.

Proof. We recall the action of removing one root, i.e. comparing

f(z) = (z − α)F (z) and g(z) = (1− αz)F (z).

As was shown in the proof of Theorem 1, we have the identity

‖f(z)
∣∣
∂D‖

2
X − ‖g(z)

∣∣
∂D‖

2
X = (1− |α|2)‖F

∣∣
∂D‖

2
Y .

In the Dirichlet space X = D, we have γn = n and thus Y = L2. We will now illustrate the effect
of applying the identity twice (to remove two roots α, β from D). The arising functions are

f1(z) = (z − α)(z − β)F (z), f2(z) = (1− αz)(z − β)F (z) and f3(z) = (1− αz)(1− βz)F (z).
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Applying the identity twice yields

‖f1(z)
∣∣
∂D‖

2
D − ‖f2(z)

∣∣
∂D‖

2
D = ‖(z − β)F

∣∣
∂D‖

2
L2

‖f2(z)
∣∣
∂D‖

2
D − ‖f3(z)

∣∣
∂D‖

2
D = ‖(1− αz)F

∣∣
∂D‖

2
L2

The crucial ingredient is now an algebraic identity on ∂D for all |α|, |β| < 1 and z ∈ ∂D
|z − α||z − β| = |1− αz||z − β| = |1− αz||1− βz|.

This algebraic identity is merely another way of writing |B(eiθ)| = 1 for a general Blaschke product
with two factors; generalizations to three and more factors hold for the same reason. This allows
us to simplify

‖(z − β)F
∣∣
∂D‖

2
L2 + ‖(1− αz)F

∣∣
∂D‖

2
L2 =

∫

∂D
|f3(z)|2

(
1

|z − α|2 +
1

|z − β|2
)
,

where the f3 could be just as well replaced by f1 or f2. The general case follows analogously. �

The argument could be easily summarized as saying that the algebraic structure of X = D implies
that Y = L2; the additional algebraic ingredient is |B(eiθ)| = 1 which implies that the various
‖F
∣∣
∂D‖2Y one gets from successive removal of roots can actually be summed up in closed form.

4.5. Proof of Theorem 3.

Proof. The statement is pointwise and invariant under multiplication with polynomials having all
roots outside of D: it thus suffices to prove it for polynomials having all their roots inside of D.
We write

F1 =
n∏

i=1

(z − αi) and F2 =
n∏

i=1

(z − βi).

Obviously

B1 =

n∏

i=1

z − αi
1− αiz

as well as B2 =

n∏

i=1

z − βi
1− βiz

and thus

G1 =

n∏

i=1

(1− αiz) as well as G2 =

n∏

i=1

(1− βiz).

An explicit computation yields that

G1(z)−G2(z) =
n∑

k=0

zk




∑

A⊂{1,...,n}
|A|=k

∏

j∈A
(−αj)−

∑

B⊂{1,...,n}
|B|=k

∏

j∈B
(−βj)




while

F1(z)− F2(z) =

n∑

k=0

zk




∑

A⊂{1,...,n}
|A|=n−k

∏

j∈A
(−αj)−

∑

B⊂{1,...,n}
|B|=n−k

∏

j∈B
(−βj)


.

Altogether, this implies that if

G1(z)−G2(z) =
n∑

k=1

ckz
k then F1(z)− F2(z) =

n∑

k=1

cn−kz
k.

It remains to show that both quantities have the same norm if |z| = 1

|F1(z)− F2(z)| =
∣∣∣∣∣
n∑

k=1

cn−kz
k

∣∣∣∣∣ =

∣∣∣∣∣
1

zn

n∑

k=1

cn−kz
k

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=1

cn−k

(
1

z

)n−k∣∣∣∣∣

=

∣∣∣∣∣
n∑

k=1

cn−k z
n−k

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=1

cn−kz
n−k

∣∣∣∣∣ = |G1(z)−G2(z)| .

�
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4.6. Proof of Theorem 4.

Proof. We imitate the argument in the case of Fourier series and again study the effect of removing
one root by comparing

f(z) = (z − α)F (z) and g(z) = (z − α)F (z).

Note that

f̂(ξ) = i
d

dξ
F̂ (ξ)− αF̂ (ξ) and ĝ(ξ) = i

d

dξ
F̂ (ξ)− αF̂ (ξ).

and therefore

‖f‖2X − ‖g‖2X =

∫ ∞

0

(∣∣∣∣i
d

dξ
F̂ (ξ)− αF̂ (ξ)

∣∣∣∣
2

−
∣∣∣∣i
d

dξ
F̂ (ξ)− αF̂ (ξ)

∣∣∣∣
2
)
ψ(ξ)dξ

After simple computation we arrive at
∣∣∣∣i
d

dξ
F̂ (ξ)− αF̂ (ξ)

∣∣∣∣
2

−
∣∣∣∣i
d

dξ
F̂ (ξ)− αF̂ (ξ)

∣∣∣∣
2

= i(α− α)
[
F ′F + FF ′

]
.

Writing F (ξ) = a(ξ) + ib(ξ) as real and imaginary part, we see that

F ′F + FF ′ = 2(a′a+ b′b).

This implies that we can write
∣∣∣∣i
d

dξ
F̂ (ξ)− αF̂ (ξ)

∣∣∣∣
2

−
∣∣∣∣i
d

dξ
F̂ (ξ)− αF̂ (ξ)

∣∣∣∣
2

= i(α− α)
d

dξ
|F̂ (ξ)|2

and therefore with integration by parts

‖f‖2X − ‖g‖2X =

∫ ∞

0

(
i(α− α)

d

dξ
|F̂ (ξ)|2

)
ψ(ξ)dξ = 2=α

∫ ∞

0

|F̂ (ξ)|2ψ′(ξ)dξ,

which is clearly nonnegative because α ∈ C+. It remains to study the special case of the Dirichlet
space: if ψ(ξ) = ξ we have with Plancherel that

∫ ∞

0

|F̂ (ξ)|2ψ′(ξ)dξ =

∫ ∞

0

|F̂ (ξ)|2dξ =

∫

R
|F (ξ)|2dξ.

The key ingredient is again of an algebraic nature: the difference can be quantified in terms of a
quantity whose behavior can be controlled while removing several roots one after the other. Let
us illustrate this again with

f1(z) = (z − α)(z − β)F (z), f2(z) = (z − α)(z − β)F (z) and f3(z) = (z − α)(z − β)F (z).

Applying the identity twice yields

‖f1(z)‖2D − ‖f2(z)‖2D = ‖(z − β)F‖2L2

‖f2(z)‖2D − ‖f3(z)‖2D = ‖(z − α)F‖2L2

and we see once more that the sum of the gain can be controlled. This yields the statement. �
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