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Abstract

Monolithic approaches to functional language arrays, such as HASKELL array comprehen-
stons, have several advantages over imperative language arrays and incremental functional ar-
rays: evaluation order of elements is imposed only by data dependence, and there is no need
for sophisticated analyses to detect situations where destructive update is safe. However, naive
implementations of monolithic arrays are very inefficient. Even in a strict context, a recursively
defined array, which arises commonly in scientific computing, must represent its elements as
thunks if the compiler does not know a safe evaluation order.

Interestingly, imperative language arrays face a similar problem when they are compiled
for vector and parallel machines. Imperative language arrays overspecify the evaluation order
of array elements, and an analysis is needed to determine the true dependences in order to
allow safe parallel evaluation. On the other hand monolithic functional arrays underspecify
evaluation order, and an analysis is needed to determine the true dependences in order to allow
safe sequential evaluation. Not knowing the true dependences among array elements, both
analyses must make the pessimistic assumption of overestimating dependences, and both must
resort to pessimistic compilation strategies to preserve semantics. Subscript analysis, originally
developed for imperative language vectorizing and parallelizing compilers, can be adapted to
efficient compilation of monolithic functional language arrays.

We first introduce array comprehensions and a new update function called bigupd , which
combines some of the advantages of both the incremental and monolithic approaches. We then
describe the sources of inefficiency in compiling functional arrays, and some ways of eliminating
those inefficiencies. We list the kinds of inter-element dependences that can occur in functional
arrays, and how knowledge of these dependences gained from subscript analysis permits us to
compile efficient code. The main body of the paper presents the graph analysis of array depen-
dences for loop scheduling. The final section presents the number-theoretic basis of subscript
analysis, adopting assumptions appropriate to functional arrays.




1 Introduction

Most of the proposals for incorporating contiguous arrays into functional languages follow
either an incremental or a monolithic approach [13]. Monolithic approaches such as ar-
ray comprehensions in HASKELL (8] have several advantages over incremental approaches:
evaluation order of elements is imposed only by data dependence, and there is no need for
sophisticated analyses such as 7] and (5] to detect situations where destructive update is
safe. Even so, a naive implementation of monolithic arrays still will not approach the effi-
ciency of imperative language arrays. This paper proposes ways to eliminate most of these
inefficiencies; in particular, how to eliminate the need for thunks in sequential compilation
of monolithic arrays.

Let us say a monolithically defined array m is in a strict contezt if it is used in such a way
that all of its elements are evaluated; thus any element being L is equivalent to the entire
array being L. Not knowing whether m is in a strict context requires an implementation
in which the evaluation of array elements is “delayed,” in which case we say that the
elements are represented as “thunks.” This could possibly be avoided if we were to perform
a suitable strictness analysis over the program — such an analysis would be similar to
non-flat strictness analysis of lists, but would be more sophisticated because of the desire
to incorporate subscript analysis.

Determining or declaring that m is in a strict context is a good assumption for scientific
computations, the most common use of arrays, and results in a simpler compilation strategy,
if m 18 not recursively defined. In this situation the order in which m’s elements are
evaluated is irrelevant, and we can compile code that stores m’s final element values directly,
instead of representing them as thunks.

But even if array m in in a strict context, it may be recursively defined, so that some
elements of m depend on other elements of m, thus requiring that we still represent the ele-
ment values as thunks. Such arrays are very common in scientific computation; the LU and
QR matrix factorizations are only two of a vast number of examples. To avoid this overhead
the compiler must determine a sequential evaluation order that guarantees that computing
one element will only require the results of other elements already computed. Imperative
language arrays are efficient because they require the programmer to determine this eval-
uation order. We would like to retain the advantage of not requiring the programmer to
specify the order, while improving on the efficiency of implementing such arrays.

Interestingly, imperative language arrays face a similar problem when they are compiled
for vector and parallel machines. Imperative language arrays (and incremental functional
arrays) overspecify the evaluation order of array elements, and an analysis is needed to
determine the true dependences in order to allow safe parallel evaluation. On the other
hand monolithic functional arrays underspecify evaluation order, and an analysis is needed
to determine the true dependences in order to allow safe sequential evaluation.

Not knowing the true dependences among array elements, both analyses must make
the pessimistic assumption of overestimating dependences: any data dependence consistent
with the assumed evaluation order may be present. In the absence of better information.
both must resort to pessimistic compilation strategies to preserve semantics: imperative
languages must prohibit vectorization and parallelization; functional languages must employ
expensive run-time representations such as thunks.

The imperative language vectorizing and parallelizing compiler community has done
extensive work on subscript analysis to provide compilers with better knowledge about




dependences ([1,3,4,6,9,14]). Subscript analysis is not completely general, but it does work
on a vast number of important scientific applications. This paper shows that subscript
analysis can be adapted to compile highly efficient sequential implementations of monolithic
functional arrays. It has not escaped our attention that these techniques can also be used
in a vectorizing and parallelizing compiler for functional arrays.

We first introduce array comprehensions and a new block-style update function called
bigupd , which combines some of the advantages of both the incremental and monolithic
approaches. We then describe the sources of inefficiency in compiling functional arrays,
and briefly indicate some ways of eliminating those inefficiencies. We list the kinds of
inter-element dependences that can occur in functional arrays, and how knowledge of these
dependences gained from subscript analysis permits us to compile efficient code. The main
body of the paper presents the graph analysis of array dependences for loop scheduling,
treating the single loop case in detail, and sketching the multi-loop case. The final section
presents the number-theoretic basis of subscript analysis, adopting assumptions appropriate
to functional arrays.

2 HASKELL array comprehensions

A HASKELL array is created by the constructor Array ([13], 8]):
a = Array (1,n) [ (i, £4i) Il 1 <- [1..n] ]

b = Array ((1,1), (m,n))
[ (i,5), gdij) Il i< [1..m], j <- [1..n]]

The first argument is a pair of bounds; for a d-dimensional array, each bound is a d-tuple.
The second argument is a list of array elements, which are pairs of the form (indez,value).
Nondistinct element indices in the list cause a collision error. Typically, this list is expressed
as a list comprehension. (Present a better description of list comprehensions.)

Wadler [11] presents a series of program transformations for list comprehensions from
an obvious but inefficient definition to a more complex but efficient implementation that
uses no intermediate lists. When an array comprehension is written using generators of
the form i <- [low,inc..high] , Wadler’s transformation can be easily adapted so that
each generator is compiled as a DO loop, although in general the DOs can only put thunks
in the elements. See [2] for details; if space permits, we will sketch the transformation in
the final paper.

Array comprehensions that append several (indez, value) lists, such as Array (...)
(Ly ++ Lo ++ Lg3), can be compiled as a sequence of non-nested DO loops. Notice that
the semantics of the array constructor does not depend on the order of pairs in the list
argument. We can treat the lists as unordered multisets and append as multiset union:
i <- [low,inc..high] can be replaced by i <- [high,-inc..low] ,and (L, ++ Lo)
can be replaced by (Lo ++ L;).

If an array in a strict context is not recursively defined, the DO loops can directly
evaluate and store the final element values. Even so, there are inefficiencies that do not
arise in imperative language arrays, such as checking for collisions and empties (to be
discussed in in the next section). But if an array in a strict context is recursively defined,




and we do not know a safe evaluation order, we must compile the DO loops to store thunks
for each element, then go through the entire array forcing the thunks.

In this paper we adopt the syntactic sugaring := to separate the components of an
(indez,value) pair. This improves legibility in complicated expressions, and stresses the
resemblance of an array to a set of let definitions:

Array (1,n) [ i :=f i || i <- [1..n] ]

3 Suggested extensions to array comprehensions

3.1 Forall

We introduce an alternative notation, forall , that is more flexible than list comprehen-
sions. Like list comprehensions, this new notation contains one or more generators and
predicates, lexically scoped from left to right. It also contains a list; the generator variables
are treated as free variables over this list.

a = Array (1,n) forall i <- [1..n]; [ i :=f i ]

b = Array ((1,1), (m,n))
forall i <- [1..m], j <- [t..n]; [ (i,j) =g i j ]

The semantics of (forall i <- L1; L2) : L; is type (list a); map the function Ai.Ls
over the list L; to get a list of type (list (list @)); concatenate these lists to get the result,
a list of type (list «). (Present a formal definition).

An array constructor taking a forall (indez,value) list with i <- [low,inc..high]
generators can be compiled into DO loops; the transformation from the simple semantics
to the efficient implementation is nearly the same as the transformation for list compre-
hensions. Again we can view forall lists, in the context of an array constructor, as
unordered multisets, and view list append as multiset union.

Why a new list notation? Our experience has been that list comprehensions, compared
with forall , are not as expressive as we would like in two ways.

(1) List comprehensions make lexical scoping of generators easy, but they make other
kinds of lexical scoping painful, such as using a let to express sharing a computation across
inner loop iterations.

[let k=gi; inE || i <- [1..n], j <- [1..i-1] ]

The subexpression (g ¢) has been abstracted out of the expression E, where perhaps it
occurs multiple times. (g ¢) depends on ¢ but not on j, but we either must rely on the
compiler to hoist the code out of the 7 loop, or resort to something ghastly like this:

LE Il i< [1..n], k<= [(g )], j <= [1..i-1] ]

We find forall more expressive. The scoping of generators is more explicit. Generator
scoping becomes consistent with let scoping rules, permitting us to use both natnrally in
the same expression. forall makes explicit the important idea (buried and impli« it in list
comprehensions) that every generator operates over list-valued (multiset-valucd) function
Mi.L, appending together list instances (unioning multiset instances):




forall i <- [1..n];
let k=g i
in forall j <- [1..i-1]; [E ]

(2) List comprehensions make it impossible to use more than kind of clause (i.e., more
than one kind of (indez. value) expression) at the heart of a set of nested loops. For example,
suppose we want one clause for the top row, another clause for the leftmost column, and a
third clause for inside of an m * n matrix?

a = Array ((1,1), (m,n))
[ (1,5) :=1 |l j <= [1..n] ] ++
[ G,1) (=1 || i<-[1..m] ] ++
[ (1,j) := at(i-1,j) + at(di,j-1)
Il i< [1..m], j <- [1..n] ]

As a programmer, we may find it convenient to think of this array row-wise or column-
wise, but there is no way to express these notions! Also, a programmer frequently uses his
knowledge of how language constructs are implemented to achieve the same semantics with
greater efficiency. Consider this version of the program:

a = Array ((1,1), (n,n))
(forall j <- [1..m], [ (1,j) =117 ) ++
(forall i <- [1..m];
[ (1,1) :=1] ++
(forall j <- [1..n];
[ (,j) := at(i-1,j) + at(di,j-1) 1 N

A programmer may realize that even for a relatively dumb compiler, this version will reduce
loop overhead by sharing the ¢ loop, and even more importantly, will give a much better
cache and page hit ratio for row-major array storage.

In the first version the compiler must detect the opportunity for loop jamming the two
? loops, and realize that this is a beneficial transformation. It is important that compilers
be able to do such things, but it is frustrating that list comprehensions do not permit
us to express the result of such a simple transformation directly. This rest of this paper
suggests many transformations to array comprehensions that are impossible to express in
list comprehensions, but are easy to express with forall .

3.2 Bigupd

Single-element (upd m indez value) takes as arguments array m, and a single (indez, value)
pair. Multi-element bigupd m L generalizes by taking a list L of (indez,value) pairs.
Nondistinct indices in L cause a collision error. Treat L as an unordered multiset. L coded
as list comprehension or forall with appropriate generators will be compiled as DO
loops.

We have found that some problems, such as LU factorization with partial pivoting to
preserve numerical stability, are nearly impossible to program with only a constructor such
as Array that does monolithic creation. This problem is extremely tedious to code without
some kind of incremental update, since we constantly need to specify that these large parts




of new array mo are the same as old array m;, while these small parts of m, are actually
new. The compiler also cannot see that in-place update of m; is possible without a sweeping
interprocedural analysis.

However, the updates are more naturally coded as row-, column-, or submatrix-at-a-
time. bigupd is incremental, but it also resembles a monolithic update. The operational
advantages of bigupd are discussed in the next section.

4 Sources of inefficiency in array comprehensions

Honoring the ancient maxim that a program spends 90% of its time in 10% of the code,
the main slogan of this paper is: Don’t worry about run-time tests in straight-line code;
worry about getting efficient inner loop code.

Problems that can be alleviated by subscript analysis are starred, and are the main
subject of this paper.

Out-of-bounds tests. Each element definition and each select must test whether its
subscript is within array bounds. This is no different than the problem for imperative
languages. We could simply turn off the out-of-bounds tests (and the collisions and empties
tests) and hope for the best, as many imperative compilers do, but even for imperative
languages this is a questionable compromise of semantic reliability.

For most scientific applications, subscript expressions are linear; therefore, before we
enter a loop we can compute a subscript’s minimum and maximum values in the loop.
Therefore, the subscript bounds check can be removed to infrequently executed “front-
door” or guardian code before the loop.

Collisions*. An array element may receive more than one definition. There is a cost at
definition time, since each definition must test whether the element is empty (if so, set it to
full) or already full (if so, flag a collision error). Subscript analysis can provide compile-time
testing for collisions.

Empties. An array element may receive no definition. Every select on this array must
test for an empty element. However,

if the number of definitions = the number of elements,
and there are no out-of-bounds definitions,
and there are no collisions,

then there can be no empties,

since the indices in the list of (indez,value) pairs must be a permutation of the array
indices. Whether the number of definitions equals the number of elements can certainly
be tested at run-time before entering a loop, and in some cases at compile-time, as can
the out-of-bounds test for linear subscripts. Collisions can be detected by compile-time
subscript analysis in the case of linear subscripts, so we have a complete test for empties
outside of any inner loop.

Thunks*. We must create the thunks and garbage collect them when they are no longer
needed. The thunks may be scattered in heap storage in a way that gives poor cache
and page performance. For an array in a strict context we can partially alleviate these




creation, GC, and memory coherence problems by block allocating and deallocating the
thunks, although they will still be expensive. When we select an element we must test
whether the thunk has already been forced.

With safe scheduling of element evaluation we are always assured that an element’s
value has been evaluated and stored before we ever need it. This schedule is similar to the
goal of preserving true dependences § in Fortran vectorizers ([9]).

Update copying*. For the single-element upd function, this is the reference-counting
problem addressed by [5]. For the multi-element bigupd function, there are two subprob-
lems:

(1) Don’t update an array you may need later in another expression.

(2) Even if you don’t need the array later, don’t destroy an element’s binding which
you may need later in the same bigupd expression.

Subproblem 1 is the reference counting problem again. The difference is that for single-
element upd, run-time reference-counting must be paid by every update, whereas for multi-
element bigupd the cost of a single reference-counting operation can be amortized over
many updates, usually over an entire row/column vector, or a large submatrix. In general,
the larger the problem, the smaller the cost per element update. Even without the compile-
time analysis of [5], run-time reference-counting of arrays may be an acceptably small cost.
In a typed functional language, we know at compile time which expressions are arrays, so
we only need to generate reference-counting code for arrays.

But even if we solve subproblem 1, subproblem 2 could still force us to copy the array.
Subscript analysis of a bigupd can tell us that a righthand-side array select and a lefthand-
side update index refer to the same element, and how to ensure that the select is scheduled
before the update. This is essentially the same notion as preserving output dependences &
in Fortran vectorizers ([9]).

5 Dependences detected by subscript analysis

a = Array ((1,1), (m,n))

forall j <- [1..n]; [ (1,j) =11 ++ Clause C1
forall i <- [1..m];
[ (i.1) := 1] ++ Clause C2

forall j <- [2..n];
[ (1,j) := a!(i-1,j) + a!l(i,j-1) ] Clause C3

We can consider each clause as a template, an instance of which occurs at each point in
the iteration space of its surrounding loops (generators). In this program, the first j loop
defines a 1-D iteration space j € [1..n], at each point of which is an instance of clause C;.
Loop ¢ defines a 1-D iteration space ¢ € [1..m] for Ca, and the nested loop ¢ and loop 5
define a 2-D iteration space ¢ € [1..m], j € [2..n] for Cs. The iteration space for the entire
expression is the union of these iteration spaces.

Deciding how to schedule these loops without compiling thunks requir-~ knowledge of
the data dependences between points of iteration space. We may even dcciic to perform
semantics-preserving transformations that compute the same array, but u-c a different




iteration space, but for this paper, we will usually keep the given iteration space, and try
to derive a good schedule over that space. We make some simplifying assumptions:

For sequential scheduling, a clause instance, once started, runs to completion before
starting any other clause instance.

A clause is strict in every array select appearing in the value component expression of
its (tndez, value) pair. In the rest of this paper, the index and value will be referred to as
the clause’s lefthand and righthand sides (LHS and RHS). For scientific computation this
is a realistic assumption. For scheduling this is the most pessimistic assumption.

In the definition of array m, all RHS recursive selects on m are visible in the clauses;
none are hidden in function calls. In this paper we do not undertake any interprocedural
analysis. Hidden selects could be raised into the array comprehension by partial evaluation.

If the RHS has a recursive select that appears in a RHS loop, it must be easy to figure
out the RHS loop’s iteration space, e.g.:

b = Array (1,n)
[1 :=at1] ++
forall i <- [2..n];
[ i := foldl + a!i (forall k <- [1..i-1]; b!k) ]

Here we make the pessimistic assumption that the element pair for bl is strict in every RHS
blk for k € [1..1—1]. We assume that such an expression can be efficiently compiled into DO
loops without intermediate lists by Wadler’s listlessness or deforestation transformations

([12,7,7]).

5.1 True dependence: loop-carried and loop-independent

Consider the sample program at the beginning of this section. We can see that C3’s RHS at
some typical iteration point (z,y) uses an element computed by Cs at an iteration points
(z-1,y) and (z,y - 1):

(Cs LHS al(i,5)) §(<,=) (Cs RHS al(i - 1,7)),
(Cs LHS al(i,5)) 6(=,<) (C3 RHS al(i,j - 1)).

where

delta can be read as “supports” or “provides data for” and must therefore precede. 6(<, =)
can be read as “provides data from an ‘earlier’ to ‘later’ iteration along the ¢ dimension, and
at the same iteration along the 7 dimension.” The subscript analysis described in the last
section provides this directional information, abstracting away from the actual distances.
For scheduling the ¢ and j loops without thunks, we are safe if we let both loops run
from their lower to upper bounds. A short version tells us everything we need to know:

Cs 5(<,=) C3, Cs 5(=,<) Cs.

We can also see that C3 at some points (z, y) depends on C; at point (z), where the two
iteration subspaces share the ¢ dimension, since C; and Cj3 are surrounded by the common
i loop: C; §() Cs. Furthermore, C3 at some points (z,y) depend on (', at some points
(z), but we cannot provide iteration space directional information, sincc ¢, and Cjs are not
surrounded by any shared loops: C2 6(=) Cs.

6(<.=) and §(=, <) are examples of loop-carried dependences, whereas §(=) and 6()
are examples of loop-independent dependences ([1]).




Without subscript analysis we would have to assume that between each pair of clauses,
every possible loop-carried and loop-independent dependence may occur. With the knowl-
edge we have here, we can see that one way to safely schedule this computation without
thunks:

Complete the j loop around C) first, running either direction;

Run the ¢ loop in the forward direction, being sure to complete Cs each time before
starting the inner j loop; '

Run the inner 7 loop in the forward direction.

5.2 Antidependence

Example: left-shift vector contents one place:

al = bigupd a0
forall k <- [1..n-1]; [ i := a0!(i+1) ] Clause C1

We can see that C; RHS a0!(z + 1) at iteration space point (z) is overwritten by Cy LHS
alli at “later” iteration (z + 1). We write C; 6(>) Ci; we can avoid copying if we run
the ¢ loop backwards. Another example:

al = bigupd a0
forall k <- [1..n-1];
[ i := a0t (i+1) + alt(i-1) 1] Clause C1

Cy 3(<) Cl,
C, 5(<) C;.

Read § as “is overwritten by” and must therefore precede. In a later section on antidepen-
dences. we show an example that exchanges two rows of a matrix. Our analysis can tell us
how to allocate a single temporary variable to minimize copying.

5.3  Output dependence

a = Array (1,n)
[1:=1] ++ Clause C1
forall j <- [1..n];
[j:=2=*at(j-1) 1] Clause C2

We have deliberately miscoded this example: both C; and C; have definitions for a!l. The
semantics of a sequential imperative language requires that one of multiple assignments to
a memory location is defined to be the last update. Any compiler transformation of the
program must preserve these semantics; therefore in imperative language, the later of two
assignments to a single location is output dependent on the earlier assignments: the later
assignment must occur after the earlier.

A functional array comprehension is single assignment. Two assignments t rhe same
location is simply an error; discovering an output dependence between two as-i-uments is
flagged as an error. Since neither is defined to precede the other, the direction of tlic output
dependence edge does not matter.




6 Dependence graphs

(Describe the reduced dependence graph with labeled direction vector edges derived from
subscript analysis. Describe the unrolled dependence graph derived from the reduced de-
pendence graph. Explain that any actual dependence graph generated by the array com-
putation must be a subgraph of the unrolled dependence graph. Therefore, if analysis of
the reduced dependence graph shows that a certain kind of dependence cannot hold in the
unrolled dependence graph, then that kind of dependence certainly cannot occur in any
actual dependence graph.)

Definition 1 Let G = (Vg,Eg) be a reduced dependence graph surrounded by a single loop
t < —[l..n]. Construct H = (Vy,Eg), the corresponding unrolled dependence graph by the
following rules.

Rule 1: Make n copies of G’s nodes: Vg = {u,; | v€V, i € [L..n]}.

Rule 2: For each (=) € E, make a corresponding edge within every iteration in H:

Eg- = {(uyi, uwi) | (v,w) € E, label(v,w) = “(=)”, ¢ € [1..n]}.

Rule 3: For each (<) € E, make a corresponding edge every iteration ¢ to every “later”
iteration j in H:

Eg < = {(uvi, twy) | (v,w) € E, label(v,w) = “(<)”, i € [1..(n = 1)], j€ [+ 1)..n]}.

Similar definition for Eg s.
Rule4: Ey = Eg=- U Eg< U Egs.

The construction of H reflects our knowledge of the dependence direction, but our ig-
norance of dependence distance. Any actual dependence graph A = (V4,E4) is a subgraph
of the unrolled dependence graph H = (Vg ,Eg): V4 CVy,E4 C Ej.

An obvious consequence of this definition:

Theorem 1 Let G be a reduced graph, and let H be the corresponding unrolled graph. If
G 1s acyclic, then H must be acyclic.

Reduced dependence graph versus unrolled dependence graph. [10] refers to reduced
dependence graph; what we call the unrolled dependence graph he simply calls the depen-
dence graph. Here we will always explicityl refer to the unrolled graph; if we say merely
“graph” without qualification, we mean the reduced dependence graph.

If we view each clause as a process, this could be viewed as a process scheduling problem
in the special case of a single processor.

7 Dependence graphs with only true dependence edges

Output dependences have no influence on our decision whether about how 1. schedule
execution order to avoid compiling thunks; therefore, code generation only rcquires us to
consider true dependences and antidependences. For simplicity, we will at fr<t consider




only the case of only the case of clauses surrounded by a single loop, then extend this
strategy to multiple nested loops. We will also at first consider only dependence graphs
containing true dependences (which arise with a new array), then consider graphs including
both true and antidependences (which arise in bigupd) ;

Obviously, if there are no dependence edges among the clauses, there is neither loop-
carried dependence across iterations nor loop-independent dependence within an iteration.
In this degenerate case it does not matter in what order we execute the clauses within an
iteration.

7.1 Acyclic dependence graphs

Now let us consider the case in which the dependence graph is a DAG. The next section
treats a cyclic dependence graph, showing how a cyclic dependence graph can be reduced
to DAG. We need to consider four kinds of acyclic graphs.

Case 1: All edges are §(=). There are no loop-carried dependences, only loop-independent
dependences within a single iteration. It does not matter what direction the loop runs.
Schedule the nodes within a single iteration by topological sort.

Case 2: At least one edge is §(<), all other edges are either §(=) or §(<). There is
a loop-carried dependence from “earlier” to “later” iterations; all other dependences are
either loop-carried in the same direction or loop-independent. The loop must run in the
“earlier-to-later” direction. But the loop-carried edges only influence the loop direction,
and have no bearing on the execution order of clauses within a single iteration. Ignore all
the loop-carried §(<) edges from the graph; the problem is now reduced to case 1 with (<)
loop direction enforced.

Case 3: At least one edge is §(>), all other edges are either §(=) or §(>). All the loop-
carried dependences are from “later” to “earlier” iterations. Reverse the specified direction
of the loop; now the problem is reduced to case 2.

Case 4: At least one edge is (<) and at least one edge is'6(>). Apparently neither
loop direction can satisfy both loop-carried dependences. However, since the dependence
graph is acyclic, the unrolled dependence graph is also acyclic. We can therefore embed the
acyclic unrolled graph in a total order, but we will need multiple passes through the loop.

Definition 2 Let G = (V,E) and v,w € V. w is said to be 6(<)/6(=) supported by v +f
on every path from v to w, every edge is §(<) or 6(=).

There is similar definition for v6(>)/6(=) supports w. An obvious theorem:

Theorem 2

(1) If there 1s no path from v to w, then v both §(<)/6(=) supports and §(>)/6(=)
supports w.

(2) If v both §(<)/6(=) supports and 6(>)/6(=) supports w, then cither there is no
path from v to w, or every edge of every path from v to w 1s §(=).

10




Case 4 program transformation:

Let G = (V,E) = the original dependence graph. Let B = set of all root nodes in V,
i.e., nodes with no incoming 6 edges. Since G is acyclic and non-empty, B is guaranteed
to be non-empty. The nodes in B do not depend on the loop direction or any other nodes,
and can be scheduled freely.

Let V} = the set of all nodes in V' that are §(<)/6(=) supported by every B node. Let
G = (V1, E;) where E| is the set of all edges in E that connect nodes in V;.

B C V1, since by theorem 2, every B node §{<)/é(=) supports itself and every other B
node. By definition E; contains no §(>) edges.

Now let G3 = (V3, Ep), where Vo =V -V}, and E2 = E minus any edges entering or
leaving V7 nodes. Consider G; and G2 as subgraphs of G.

Definition 3 Edge (v, w) € E 13 said to bridge G to G2 if v € V] and w € V,. Similarly,
edge (v,w) bridges Gy to Gy if v €V, and w € V7.

Theorem 3 There are no edges in E that bridge G4 to G;.

Proof: Suppose the exists an edge (v, w) bridging G3 to G1. v € Vo, so for there exists at
least one b € B such that at least one path P from b to v includes a §(>) edge. w € V7, so
for every b € B no path from b to w includes a §(>) edge. But the path P concatentated
with edge (v, w) includes a 6(>) edge, which puts us in a contradiction.

Since there are no § edges bridging G2 to G, the bridging dependences will be satisfied
if we wrap separate versions of the loop around each subgraph, and completely execute the
G loop before starting the Go loop. The bridging edges, which may be 6(<), 6(=), or
6(>), are no longer enclosed in a loop, and are therefore converted to loop-independent §()
edges.

Since the G edges are all §(<) or §(=), we can schedule the loop surrounding G; by
either case 1 or 2 above. Recursively invoke this transformation with new G = old G5 until
we reach G = a null graph. Since G in each step is finite and acyclic, B in each step is
guaranteed non-empty, so G in the next step is guaranteed smaller than the previous step,
and the transformation must terminate.

We can improve this transformation by maximizing the number of nodes executed in
each loop pass. Let N¢ = the number of nodes in V' that are §(<)/6(=) supported by B;
define Ny similarly. If N¢ > N5, then let G include only 6(<)/é6(=) supported nodes and
choose (<) for the Gy loop pass direction; otherwise choose (>).

If we mark each G; graph according to the direction its surrounding loop must run to
eliminate thunks, we can ignore all the loop-carried edges, leaving only §(=) edges. Each
G graph is then reduced to case 1, and its nodes can be scheduled by topological sort.

Notice that cases 1-3 can be treated as simply special instances of the case 4 trans-
formation. In these instances, the entire graph is consumed in the first and only loop”’
pass.

7.2 Cyclic dependence graphs

We can discover cycles in a reduced dependence graph by finding the strongly connected
components. By the definition of a SCC, every node v in a SCC C tuke~ part in at least
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one cycle with every other node w in C, and v takes part in no cycles with any node r not
in C.

A cyclic unrolled graph H can only arise from a cyclic reduced graph G, but not every
cyclic G gives rise to a cyclic H. If H is cyclic, we cannot schedule its nodes to guarantee
a node is executed only after all its dependences have been satisfied; we must compile the
array comprehension using thunks. But if H is acyclic, we want an algorithm to schedule
the nodes so thunks are unnecessary. Looking at G, we want an algorithm that tells us
whether H is acyclic, and if so, gives us a good schedule for its nodes.

Since cycles in H can only arise from cycles in G, and cycles in G can only occur in G’s
SCCs, we concentrate on SCCs in reduced graphs.

Definition 4 In a reduced dependence graph:
A §(=) cycle contains only 6(=) edges.
A §(<) cycle contains at least one §(<) edge and no 6(>) edges.
A §(>) cycle contains at least one 6(>) edge and no §(<) edges.

A §(<)/6(>) cycle contains at least one 6(<) edge and at least one 6(>) edge.

The following theorems give us a simple algorithm for determining what kind of cycles a
SCC must contain and what kind it must not contain. The proofs of the first two theorems
are easy.

Theorem 4 Let C = (V,E) be an SCC in a reduced graph, and let C' = (V,E') where
E' = E after deleting all §(<) and 6(>) edges. C contains a §(=) cycle if and only if C'
contains a cycle.

Theorem 5 Let C = (V,E) be an SCC in a reduced graph. If E contains at least one §(<)
edge and no §(>) edges, then C must contain a 6(<) cycle.

This implication cannot be if-and-only-if, since E containing both 6(<) and §(>) edges does
not prohibit C containing a §(<) cycle. An equivalent theorem holds with all § directions
reversed.

Theorem 6 Let C = (V,E) be an SCC in a reduced graph. C contains a 6(<)/6(>) cycle
if and only if E contains at least one 6(<) edge and at least one 6(>) edge.

s

Proof: The “only-if” follows immediately from the definition. The “if” follows because
in an SCC, the sink vertex of every edge can reach the source vertex every other edge,
therefore every pair of 6(<) and 6(>) edges must take part in a cycle.

So we have easy algorithms to establish whether SCC C has a §(=) or 5(<)/6(=) cycle.
We also have an easy algorithm to establish whether C has §(<) cycle or a 8( <) cycle in the
absence of a §(<)/6(=) cycle. The next theorem shows that if either a §(=) »r a §(<)/6(=)
cycle is present, we don’t care whether there are any §(<) or §(<) cycles.
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Theorem 7 Let C be a SCC in a reduced graph G, let H be corresponding unrolled graph
for G, and let Hc be the subgraph of H whose nodes and edges were generated from nodes
and edges in C.

[1] If C contains a (=) cycle or a §(<)/6(>) cycle, then Hc contains a cycle.

If C contains no 6(=) cycle and no §(<)/6(>) cycle, then Hc cannot contain a cycle.

Proof of (1): Let C contain a §(=) cycle; then a single iteration in H¢ contains a cycle.

Now let C contain a §(<)/6(>) cycle. Assume n is large compared with the number of
6(<) and 6(>) edges. Since we do not know the dependence distance of the loop-carried
edges, it is possible the sums of the distances will cancel in H¢, bringing a path starting at
node v in iteration ¢ in H¢o back to the same v in the same iteration 1.

Proof of (2): If C contains no §(=) cycle and no §(<)/6(>) cycle, then C must contain
a 6(<) or a 6(>) cycle; theorem 6 tells us C cannot contain both kinds of cycles.

Let C contain a §(<) cycle. Choose any C node v in the cycle and any corresponding
H¢ node v; in any iteration :. Follow the cycle in C, tracing one of the corresponding paths
in Hc. The path in C must cross a §(<) edge before returning to v, so every corresponding
path in Hc must leave 7 from some “later® 5 € [(¢ + 1)..n]. Since there are no §(>) edges
in the C cycle, it is impossible for any H¢ path to return to <.

A similar proof holds when C contains a §(>) cycle. End of proof.

In the preceding theorem SCC C is a subgraph of reduced graph G, therefore Hc,
C’s unrolled graph, is a subgraph of H, G’s unrolled graph. We can see that if reduced
graph G contains either a 6(=) cycle or a §(<)/6(>) cycle, the unrolled graph H must be
cyclic, so an actual dependence graph A may be cyclic. Either every dependence in this
cycle is strict, which means non-termination at run-time, or else at least one dependence is
non-strict, which subscript analysis alone cannot detect at compile time. Without further
information, we have no choice but to compile the array comprehension using thunks.

Likewise we can see that if reduced graph G contains no §(=) cycle and no §(<)/6(>)
cycle, H and A must be acyclic; a thunkless schedule is possible.

Let us reduce each SCC C in cyclic reduced graph G to a single node C in acyclic
reduced graph G'. Give C the label §(=), §(<)/6(>) or both, if it contains one of those
cycles; otherwise give C one of the mutually exclusive §(<) or §(>) labels.

Case 1: In G’ there exists a §(=) SCC node. Compile using thunks.

Case 2: In G' there exists a §(<)/6(>) SCC node. Compile using thunks.

Case 3: G’ contains only §(<) and §(>) SCC nodes. Noncyclic edges may be §(<),
6(=), or 6(>).

Case 3 program transformation: We can take an approach similar to the program
transformation of the previous section. The following is a sketch; we will describe the
transformation in more detail and prove its correctness in the final paper.

Let G = (E.V) be the acyclic reduced graph with labeled SCC nodes. Let B = set
of all root nodes in V, i.e., nodes with no incoming § edges; and let Bs = the set of all
reduced 6(>) SCC nodes in B. Expand the Bs nodes; the resulting graph can be executed
in a (>) loop.
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Let V7 = the set of all nodes in V that are 6(<)/6(=) supported by every B node, but
excluding any §(>) labeled SCC nodes. Notice that V is 6(<)/6(=) supported by every
Bs node, but that: .

Bs NV = ¢,

(B-Bs)CW.
The only reduced SCC nodes in V; are labeled §(<). The expanded §(<) SCC nodes and
the other nodes in V; can be executed in a (<) loop.

Finally, let G2 = (V2, E3), where V, = V — (V; U B;), and E3 = E minus any edges
entering or leaving V; or B> nodes. Recursively invoke the transformation on a new graph
G = G9; terminate when G is the null graph. End of tranformation.

8 Dependence graphs with antidependence edges

Now let us consider dependence graphs in which a clause C; may overwrite a variable
needed by clause Cj, either within an iteration or across iterations; graphs that include
antidependence edges C16C2. The function bigupd gives rise to such graphs.

Let us first concentrate on the simplest case of all §(=) antidependence edges: all
antidependences are within a single iteration. Recall that there is an C,6C edge if and
only if the storage for a variable on C;’s RHS is overwritten by C3’s LHS; Ci’s use of the
variable’s binding must precede Cs’s reuse of the variable’s storage.

8.1 Acyclic and cyclic loop-independent antidependences

Consider these two versions of a row exchange example from Linpack.

2 al = bigupd a0
forall j <- [k+1..n];
in ( [ (k,j) := a0!(1,j) ] ++ Clause Ci
[ (1.j) := a0!(k,j) 1) Clause C2

)Cl’
) C

Cy §(=
C1 §(
al = bigupd a0

forall j <- [k+1..n];

let temp = a0!(1,j); Clause C1'°’
in ( [ (1,j) := a0!(k,j) ] ++ Clause C2
[ (x,j) := temp ] ) Clause C1’
C 5( ) la
é( )CQ»
Cg 6(=) C|

The first program contains an antidependence cycle. The second program breaks this
cycle by introducing a temporary variable that splits C; into two nodes C}] and CY, con-
verting the cycle to a DAG. We can break an 6(=) antidependence cycle of any length by
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splitting any arbitrary node in the cycle this way, which introduces a backward-pointing
5(=) edge.

How to break an §(=) antidependence cycle embedded in a general dependence graph:
Choose an arbitrary edge C 6(=) D in the cycle, where C’s RHS variable z gets overwritten
by D. Split C into nodes C' and C”. C" is a let clause that binds a copy of z’s value to
the new variable temp; C’ is the same as C, but with every occurrence of z on the RHS
replaced by temp. The connectivity rules for the new graph are:

Rule 1: Introduce the true dependence C" §(=) C'.

Rule 2: C" must copy z’s binding before D destroys it, so introduce c" §(=) D.
Essentially C” inherits the edge C 6(=) D.

Rule 3: Except for z, C' inherits all the RHS variables of C, therefore C’ inherits all
C §(*) Y edges for all nodes Y # D, and all Y §(x) C edges for all nodes Y. Here (*)
means C' inherits an edge whatever its directionality.

Rule 4: C’ writes the same LHS variable as C, therefore C' inherits all C §(*) Y edges
and all Y () C edges for all nodes Y.

Notice this algorithm for antidependence cycle-breaking assumes the only occurrences
of r that can be reached by executing clause C appear explicitly on C’s RHS. This has
been our assumption throughout the paper; could be ensured by searching call graph, or
by lambda-lifting.

Deciding the execution order of clauses in graphs involving loop-independent antidepen-
dences now comes down two cases. Notice that §(=) cycles can never prevent thunk-free
compilation.

Case 1: All § edges are (=) and there are no §(=) cycles. Then treat the §(=) edges
the same as §(=) edges; the problem is reduced to the the case of a general § graph treated
above.

Case 2: All § edges are (=) and there is at least one §(=) cycle. Choose any (=) cycle,
then break the cycle by splitting any node C in that cycle. Repeat until all the §(=) cycles
are broken. The problem is now reduced to case 1.

So we can always break §(=) cycles; 6(=) cycles require us to compile thunks, as
described above. But what about a cycle that has at least one each of both §(=) and
5(=) edges?

Redefine an §(=) cycle to be any cycle that contains only §(=) and §(=) edges, at least
one which is §(=). If we choose any node C that contributes an outgoing 6(=) edge to the
cycle, we can always break the cycle by the same node-splitting algorithm described above;
essentially we are prefetching the variable binding that causes the outgoing §(=) edge. Case
2 now applies using the new definitions of §(=) cycles and of §(=) cycle-breaking.

8.2 Acyclic and cyclic loop-carried antidependences

At first we will consider only graphs that include loop-carried true dependences in only
the (<) direction. Graphs that include only §(>) loop-carried true depen:l uces are easily
converted to §(<) by reversing the loop direction. Graphs that include loop-carried true
dependences in both directions are an easy variation on the §(<) single-dircction case.

Case 1: There is at least one §(<) edge; all § edges and all other § edy~ are either (<)
or (=). If there are any §(=) cycles, break them as described above. Now .. & cycles left
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contain at least one 8(<) edge that leads to a later iteration; there is no 6 or § edge that
can lead back to the earlier iteration; so the unrolled dependence graph cannot contain any
cycles involving § edges (although 6(=) cycles are still possible). All the loop-carried §(<)
and §(<) edges agree on the loop direction; treat all 6 edges as if they are &, reducing the
problem to the case of a general § graph.

Case 2: There is at least one §(>) edge; all § edges are either (<) or (=); all other § ’
edges are either (<), (>) or (=). Two subcases:

Case 2.1: There are only §(=) edges, no §(<) edges. The loop direction is only con-
strained by the 6(>) edge’s need to use bindings before they are destroyed; there is no true
data flow dependence. However, there may be conflicting 6(<) constraints.

Case 2.2: There are §(<) edges, which conflict with the §(>) constraint.

If we can remove all the §(>) edges, we can then reduce case 2 to the purely §(<) case
1 above. We do this by a variation on the node-splitting algorithm described for breaking
8(=) cycles, but here we introduce a vector of temporary variables. Let C §(>) D be the
offending edge. C uses variable z’s binding in a “later” iteration, D destroys the binding in
an “earlier” iteration. The following is only a sketch of the transformation; details will be
provided in the final paper.

Rule 1: Split node C into nodes C’ and C”. Introduce the true dependence C” §(<) C’.
Essentially we have kept C’, which uses z’s binding, in the same “later” iteration in which
C was using z, but we have move C”, which copies z’s binding to a temporary, into the
same “earlier” iteration with D.

Rule 2: C” must copy z’s binding before D destroys it, so introduce C” §(=) D. Essen-
tially C” inherits the edge C §(>) D, but in the “earlier” iteration with D.

Rules 3 and 4: Same as 6(=) node splitting.

Essentially we are copying the old array into a temporary array before updating the old
array to get the new array, just as a naive implementation of bigupd would copy the old
array into a new array and then update the new array. But there are advantages to our
approach. For example, we may only need to copy a single row or column vector from a
2-D array instead of the entire array, and perhaps only part of the vector at that. If the
“distance” between the loop iteration that destroys a binding and the iteration that uses
the binding is small, we could use a circular buffer to hold temporarily the old bindings:
if the distance is very small, let us say only 1 or 2 iterations, the compiler may be able to
implement this circular buffer efficiently in fast floating point registers.

However, getting the details right with this optimization is fraught with complications.
This transformation sketch for case 2 will be discussed in more detail in the final paper.

Case 3: There is at least one of loop-carried § edge (either §(<) and §(>)); and there are
loop-carried & edges in both directions (both §(<) and 6(>)). We can certainly eliminate
the loop-carried § edge by node splitting, but the conflicting § edges still don’t permit a safe
direction for the loop, so we must use thunks at least for the new array. Further discussion
in the final paper.

9  Multiple nested loops

Multiple nested loops will be treated in detail in a future paper; here we will confine
ourselves to some general remarks.
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Multiple nested loops surrounding an acyclic reduced dependence graph can be treated
as a generalization of a single loop surrounding an acyclic dependence graph. Consider the
case of two nested loops with loop index variables 7 and 7. Let us visualize the unrolled
dependence graph as a matrix in which 7 indexes rows and 7 index columns.

When deciding the direction for the outer ¢ loop, only the (<,*) and (>,*) edges
influence the ordering of rows. The (=, *) edges can be ignored since in the unrolled graph
they only describe edges within a row. We may need to apply some of the antidependence
cycle-breaking and loop-splitting transformations to the graph G, obtaining a new graph
G'. But then G’ is treated as the inner j loop’s new graph; the outer ¢ loop will treat the
entire inner j loop as a single node graph.

Now decide the direction for the inner j loop. We can now eliminate the (<,*) and
(>, *) edges, since they reach across rows; only (=, *) edges influence ordering within a row.
For any arbitrary number of loops #1,...,24 surrounding an acyclic dependence graph, when
we consider loop k we only look at edges

(=la"'s=k—17ik3*k+13“'7*d)

where i}, is either < or >; and as we pass inward to consider loop k£ + 1, we eliminate these
edges, retaining only edges for which i is =.

Once we have set the directions for all the loops, we are left with in problem of ordering
the nodes within a single iteration. At this point we are left only with (=,...,=4) edges,
just as we would expect. :

Demonstrating that a multiloop cyclic reduced dependence graph cannot give rise to a
dependence cycle in the unrolled graph is more difficult than the same analysis of a single-
loop cyclic reduced graph. This problem will be treated in a future paper, but we can show
some of the difficulties in an example. A graph with a cycle that includes both (<,=) and
(>,=) edges may result in an unrolled graph with a cycle. So may a graph with a cycle
that includes (=, <) and (=, >) edges. But we must also watch for graph cycles in which
the paths such as

(=<)=(<=) = (=>) = (>,=)
are possible. In the unrolled graph we could read this path as “right — down — left —
up,” which may give rise to a cycle in the unrolled graph. This case also may not give
rise to an unrolled graph cycle, but we cannot detect this with only dependence direction
information.

Unfortunately, the obvious generalization of the SCC labeling algorithm from the single
loop to the multiple loop case is too conservative; it may flag cycles that cannot possibly
give rise to unrolled dependence graph cycles, even based only on dependence direction
information.

17




10 Subscript analysis

We will briefly outline subscript analysis in the case of one-dimensional subscripts. Consider
two references to array v, both surrounded by d shared loops.

Array (. . .)
forall 7; <- [1..MN];

'fo.rall ig <= [1..Ng4];
[...m!(f1y ...29)...
coemt(gty ... tg). .. ]

We want to know if there should be a dependence edge § from reference m!(f ¢; ... 14) to
reference m!(g 41 ... i4). We use § here to represent any kind of dependence edge, 8, §, or
6°; the particular kind depends upon the context and is not relevant here.

Definition 5 The bounded integer solution test: m!(f i1 ... iq) 6 m!(g 1y ... ig) if and
only if within the region of interest

R={(z1, ..., Zd, ¥1, .-+, ¥a) | 21,51 € [1..N1], ..., Zd,yd € [d..Ng|}

there ezists an integer solution to the dependence equation
hzy ...zayy o..ya = (fz1 ... 24)— (g1 ... ya) = O.

We also want to label the dependence edge with a constraint on each loop, each of which
represents a constraint on R. For example, m!(f ¢ 12 i3 14) 6(=,<,>,*) m!(g 7 12 13 i4)
means a dependence holds with the constraints z; = y;, 2 < y2, T3 > y3, no constraint
on the values of z4 and y4. The list of constraints (?1,...,74), where 7 € {*,<,=,>}, is
called a direction vector.

There are tractable decision algorithms when the subscript functions are linear in the
loop variables:
fz1...24 = ap+ T4, apzy,
g1 - Ya = bo+ iy bk
Then the dependence equation becomes

d d
Z ATk — Z bkyk = bo = agp.
k=1 k=1

The d nested loops are labeled from the set Q = [1..d]. Partition Q according to the
constraints placed on z; and y; by region R:

Q. = {klk € Q and 7 is “¥”},
with similar definitions for Q<, @=, and Q5. We can then write the dependence equation

Z (ak = be)zr + Z aQpTE — Z bryr = bo — ao.

keQ= kE(Q-Q=) ke(Q-Q=)

Linear diophantine equation theory gives us an exact test (necessary and sufficient),
“but it is exponential in the number of surrounding loops ([14], [6]). For 1 or 2 levels of
nesting this algorithm is reasonable. But we can derive two inexact tests (necessary but
not sufficient) that are linear in the number of loops. There is a dependence only if there
is an integer solution to the dependence equation, regardless of whether the solution falls
within R.
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Theorem 8 The any integer solution test: m!(f ¢y ... ig) 6§ m!(g 11 ... tq) only of

ged(...,a; — by, .. ak,...,b...) | bo — ao
where 7 € Q=
and k€ (Q< UQ) UQ..).

And there is a dependence only if there is a rational solution to the dependence equation
within R.

Theorem 9 The bounded rational solution test: If (h 2y ... 24 y1 ... ya) 13 cbntinuous,
then m!(f ¢y ... 1g) 6(%1, ..., %4) ml(g ¢y ... iq) only if

m}%n(h Ty «. TG YL .- yd)SOSm}%.x(h Ty oe. Zd YL -.- Yd)

This last theorem is developed into the Banerjee test. The GCD test is cheaper than either
the exact test or the Banerjee test, and is therefore applied first. If a pair of references
satisfies the GCD test, try to disprove the dependence with the Banerjee test; and if we
cannot disprove it, find the direction vector for the dependence from the Banerjee test.

Definition 6 If t denotes a real number, then the positive part t* and the negative part
t~ oft are defined as:

tt= t, i t>0,
0, ft<O.

t—= —t, i t<0,
if t>0.

Let £ € Q.. By an easy variation of the proof of Theorem 4 in [1], we can find the
minimum and maximum for the term axzi — bryx, where the relative values of z; and yi
are unconstrained in region R:

(ag = bg) = (a,: + b:)(l\fk —-1) £ arzp—bryr < (ar — br) + (a;: + b;)(Mk -1)

Similar minima and maxima can be derived for the cases k € Q<, Q=, and Q> in which re-
gion R constrains the relative values of z; and y; (see [1], [14]). Gathering these inequalities
we get:

minph= i olar—br)
+ Yreq. —(ag + ) (Mp = 1) + Tipeg (—bk = (ag +be)* (Mi - 2))
+ Trego(—(ak = be)T (M = 1)) + Tieq, (ar — (ar + bF)~ (M - 2))

<0<

maxp h = ZZ:o(ak - bg)
+ Treo.(af +05)(Me - 1) + Tieo (=0 + (af — be)* (M - 2))
+ Treo=(—(ak = b))t (Mr = 1)) + Tieq, (ar + (ar + bp) (M - 2))

This inequality can be checked for any one direction vector in O(d) time; there are 3¢ fully
constrained direction vectors (direction vectors for which no ?; = x, therefore Q. = 9).

[6] suggests a search tree approach. Let the search tree root be §(*i,...,*4). The
Banerjee inequality poses a necessary test. so if it cannot be satisfied over this unconstrained
region R, it certainly cannot be satisfied over a more constrained rcuion.
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1]

But if it can be satisfied, expand the root node into three children, each presenting an
added constraint on R; e.g., 6(<1,*2,...,%4), 6(=1,%2,...,%4), and §(>1,*2,...,%4). Each
new Banerjee inequality can be computed from the parent node’s inequality in constant
time. If any given node fails.the Banerjee inequality, there is no need to search the tree
rooted at that node. The search time can be as bad as d + (3¢ — 1)/2), which although
exponential, is still better than d 39, but it can be as good as d + 3d when a dependence
exists, or even d when there is no dependence.

10.1 Unshared loops

We have developed this for the case in which both array references are surrounded by d
common loops. But within the d shared loops, the references a and b may be further
surrounded by respectively d, or dy unshared loops. Arbitrarily label these loops:

k€ Qa=|[(d+1)..(d+d,)],
ke Qy=[(d+ds+1)..(d +da + dy)].

In the following example, d = 2,d; = 1, and dp = 1:

m = Array (. . .)
forall i1 <- [1..N1];
forall i2 <- [1..N2];
(forall i3 <- [1..N3];
[...m1(a0 + al*il + a2#*i2 + a3%i3)...]) ++
(forall i4 <- [1..N4];
[...m!(bO + bil*il + b2*i2 + b4d*i4)...]):

Now the dependence equation becomes:
(a0 + z arzi) — (bo + Z brzg) = 0
kE(QUQ.) k€(QuUQs)

For an unshared loop k € Q,, the value zx has no corresponding value yi, so we need to
find the minimum and maximum of the term a;z; (again, see the proof of Theorem 4 in

[1]):

ap — a;(Mk - 1) < Ar T < ag + at(]\/fk - 1)

For an unshared loop k € Qy:

br + b-l: (Mg - 1) < bryk < b + b; (ka - 1)

For every k € Q,; and every k € Qs, add these terms into the Banerjee inequality developed
in the previous section. Since z; for k € Q, cannot be constrained relative to any y; for
k € Qp, the direction vector has components only for the d shared loops.
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