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Abstract

Supercomputers with a performance of a trillion floating-point operations per sec-
ond, or more, can be produced in state-of-the-art MOS technologies. Such computers
will have tens of thousands of processors interconnected by a network of bounded de-
gree. Reducing the required data motion through a careful choice of data allocation and
computational and routing algorithms is critical for performance. The management of
thousands of processors can only be accomplished through programming languages with
suitable abstractions.

We use the Connection Machine as a model architecture for future supercomputers,
and Fortran 8X as an example of a language with some of the abstractions suitable for
programming thousands of processors. Some of the communication primitives suitable for
expressing structured scientific computations are discussed, and their benefit with respect
to performance illustrated. With thousands of processors engaged in the solution of a
single scientific problem, several subtasks are often treated concurrently in addition to
the concurrent execution of each subtask. Some issues in constructing scientific libraries
for such environments are discussed. Concurrent algorithms and performance data for
matrix multiplication and the Fast Fourier Transform are presented. The solution of the
compressible Navier-Stokes equation in three spatial dimensions by an explicit finite dif-
ference method, and the solution of a parabolic approximation of the Helmholtz equation
by an implicit method are two examples of applications for which data parallel implemen-
tations are described briefly. The Helmholtz equations models three dimensional acoustic
waves in the ocean.

1 Introduction

In the next decade, supercomputers are expected to have a performance of at least one
trillion instructions per second, and a primary storage of tens to hundreds of Gbytes [5].
At this rate of computation and memory size, the operation code, the operand addresses,
and the operands require 300-400 bits for a single instruction. The storage (including
registers, or caches) must deliver 300—400 trillion bits per second, or about 16 million
bits per cycle at a 25 MHz clock rate. This clock rate is somewhat conservative for



MOS technologies, but it cannot be expected to become higher by more than a small
constant factor. The width of the storage needs to be several million bits. Assuming each
processor can deliver 50 Mflops/sec, 40,000 processors will have a nominal peak capacity of
two trillion floating-point instructions per second. A system of this complexity is entirely
feasible to build. In half micron technology, 40,000 chips with on-chip floating-point units
and memory are projected to have a total of about 64 Gbytes of primary storage. With the
required storage bandwidth and with tens of thousands of processing units, a network is
the only feasible alternative for passing data between processors and storage units. Using
a technology that is an order of magnitude faster than MOS technologies, such as bipolar
GaAs technology (used for the CRAY-3), would still require thousands of processing units
for an architecture with a performance of a trillion floating-point operations per second.

In highly concurrent network architectures, the nominal processing capability is de-
termined by the processing speed of a single processor and the number of processors. The
real processing capability is determined by how well the individual processing units can
be utilized, load balance, and how well the network supports the data motion required
by the computation. The capacity available for the data motion is determined by techno-
logical constraints, and the requirements determined by data placement, computational
algorithms, and routing algorithms. Of the various technological constraints that deter-
mine the performance characteristics of an architecture, the ones related to data motion
are the most unforgiving with respect to performance.

In this paper we first review the communication capabilities of MOS technologies,
and the communication needs of a few typical scientific applications. We then briefly
discuss a programming model for architectures with a large number of processing units.
The Connection Machine® architecture is presented in section four which also discusses
features provided for efficient communication. Two basic computational primitives, ma-
trix multiplication and the Fast Fourier Transform, are described in section five; and two
applications, the solution of the compressible Navier-Stokes equations and the solution
of a parabolic equation forming an approximation to Helmholtz equation are discussed.
The last problem occurs in underwater acoustics.

2 Communication issues

In this section, we consider the communication capabilities of architectures built out of
MOS technologies, the requirements of typical scientific computations, and the potential
benefits of a good data placement or address map. The purpose of a good address map is
to reduce the need for communication resources by placing data that frequently interacts
close to each other.

A suitable metric for measuring locality of reference is determined either by the topol-

ogy of the data set or the communications network. In solving partial differential equation,
1
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ality of the problem domain and p the type of norm. The 2-norm (Euclidean distance)
is often used in the physical domain. The 1-norm measures the distance between two
points corresponding to traversals along coordinate axes. This measure is particularly
interesting for Boolean cube networks. In such a network of n dimensions with z and y
being processor addresses, and z; and y;,0 < ¢ < n being the distances (0 or 1) along the
coordinate axes, the 1-norm is equal to the Hamming distance between the two points.
The Hamming distance is equal to the minimum number of communication links a data
item must traverse to move from processor z to processor y in a Boolean cube network.
The 1-norm is not ideal for all networks. In a completely interconnected network all points
are at unit distance from each other, and the 0-norm is a relevant distance measure.

In state-of-the art MOS technologies, 10® - 104 wires fit across a chip. The total data
motion capacity of 40,000 chips is 100 - 1,000 TBytes/sec at 25 MHz clock rate without
sharing of on-chip channels between different data paths. Assuming current standard
packaging technologies of 100 - 300 pins per chip, the data motion capacity at the chip
boundary is about 10 TBytes/sec. The data transfer rate on a chip is one to two orders
of magnitude higher than the transfer rate at the chip boundary. At the board boundary,
assuming connectors with 500 pins, the data motion capacity for a 200 board system is
about 0.16 TBytes/sec. The transfer rate at the chip boundary is one to two orders of
magnitude higher than the rate at the board boundary. The transfer rate at the board
boundary is two to three orders of magnitude below the required rate for a system with
a performance in the Tflop/sec range. A sustained performance of this magnitude is not
possible with current packaging technologies without locality of reference.

Many mathematical models of physical phenomena, such as (partial) differential equa-
tions, are derived from local interaction rules. The discrete approximation of the con-
tinuous models are typically also derived from local approximations. For instance, the
difference stencils used to approximate derivatives in finite difference techniques are local
approximations. Finite elements provide a different local approximation. The difference
stencils in finite difference techniques and the elements in finite element techniques com-
pletely define the spatial data interactions in one step of an ezplicit method for the solution
of the discretized equations. The data interaction is local in the physical domain. The
classical iterative methods for the solution of linear systems of equations only require local
data interaction in the index space used for the solution variables. The conjugate gradient
method requires a global reduction operation for the computation of scaling factors, and
a global copy, or broadcasting, operation for the distribution of these factors in addition
to the same local communication as required by Jacobi’s method. Though each step in
the iterative methods only involves local communication in the physical domain, most

problems require global communication to attain a correct solution. Elliptic problems are
of this type [6].

The requirement for non-local, or global, communication is more apparent in direct
methods. Factoring matrices by Gaussian elimination or Householder transformations can
be performed as a sequence of rank-1 updates of the submatrix that remains to be factored.
(Higher rank updates may yield better performance on some architectures.) For a dense



matrix, the pivot row is distributed to all the rows of the remaining submatrix, and the
pivot column to all the remaining columns. For sparse matrices, the rank-1 update only
affects the rows having non-zero entries in the pivot column, and the columns having non-
zero entries in the pivot row. In Gaussian elimination one variable at a time is eliminated
from the system of equations. Depending on the topology of the graph that the sparse
matrix represents, the elimination process may only require local communication in the
processor network, even for networks of bounded degree.

The problem of determining an address map that takes advantage of locality of ref-
erence in the physical domain, such that local communication in the processing network
is possible, is often formulated as a graph embedding problem. A network of high degree
local communication may be possible also when the references in the physical domain
are non-local. For instance, divide-and-conquer methods for solving linear systems of
equations, such as odd-even cyclic reduction, nested dissection, and multi-grid methods
perform a recursive subdivision of the physical domain. For some of the recursion steps
these methods require interaction between subdomains that are not adjacent in the phys-
ical domain. But, the references may still be performed by local communication in a
network, such as a Boolean cube network. Any lattice can be embedded in a lattice of
higher dimensionality preserving locality, but the converse is not true. It is also possible
that the distance between a pair of lattice points is reduced when the lattice is embedded
in a lattice of higher dimensionality. For instance, with a binary-reflected Gray code
embedding of lattices in Boolean cubes [35,28] lattice points at a distance 27,5 > 0 in the
index space are at distance 2 in the Boolean cube [16].

The communication requirements for explicit finite difference methods are determined
by the grid and the difference stencils. Similarly, the elements, their order, and domain
discretization determine the communication requirements for explicit finite element meth-
ods. The communication requirements for iterative solvers are determined by the adja-
cency matrix. The communication requirements for direct solvers can be determined by
considering the graph underlying the (sparse) matrix, and by viewing variable elimination
as node elimination in the graph [34]. The communication requirements are a function
of the elimination order. The communications for the Fast Fourier Transform is identical
to a butterfly network. Parallel cyclic reduction requires communication in the form of a
data manipulator network or a PM2I (plus-minus 2¢) [37] network. Of regular communi-
cations, the emulation of multi-dimensional lattices, butterfly networks, data manipulator
networks, pyramid networks, and various forms of trees for reduction and copy operations
are the most common.

The potential benefits from exploiting locality of reference is illustrated by three fre-
quently used operations: matrix multiplication, a 7-point symmetric difference stencil
applied at each node in a three dimensional grid, and butterfly based computations (FFT,
bitonic sort). Applying a symmetric, 7-point difference stencil at every point in a three
dimensional grid with k variables per grid point and 2 operations per variable, the number
of operations per remote reference is r = ;—d(%—)%. Ford=3r=1 %-ﬁ Tables 1 and 2
give some values of r for different sizes of the local memories. In the tables, k = 8. If the



Computation | Registers | 4 Mbit 256 4 Mbit 256
only | chips | chips (board) | Boards

Mtx mpy 0.5 104 1600 | 26000
3-d Relaxation 0.17 4.27 26.7 | 170.7
FFT 1 18.8 28.8 38.8

Table 1: Number of operations per remote reference of a single variable.

Computation | 4 Mbit 256 256
1 proc. | Procs. = | boards =

1 chip Board | Machine

Mtx mpy 1 10 160
3-d relaxation 32 480 24600
FFT 3 1140 160000
no locality 300 76800 | 19660800

Table 2: Number of bits across the chip/board/system boundary per cycle.

local variables form matrices and the local operations imply matrix multiplications, then
the number of arithmetic operations per variable is higher. Several linear algebra oper-
ations have a ratio of operations to remote references that can be modeled by the same
expression as was given for the difference molecules, i.e. i( %—)%v' for suitable values of ,
and 7. In the Navier-Stokes flow computation, the local state vectors are of length 5 and
local matrices typically of size 3 x 4, or 4 X 5, or some similar size [32]. For butterfly based
algorithms, such as the Fast Fourier Transform (FFT) and sorting, the dependence is of
the form alog(%’-). For the FFT the ratio is 1.25l0g,( M /2) real operations per remote
reference using a radix-M algorithm, which is optimum [12].

Table 2 gives the number of bits that have to cross the chip, board, and system
boundaries during a single cycle, assuming the optimum locality or no locality of reference.
It is assumed that each chip has one processing unit, that a board has 256 processing
units, and that all variables are in single precision.

Exploiting locality reduces the required communication bandwidth by a factor of 8-
100 at the chip boundary for these computations, a factor of 80-5000 at the board level,
and at least a factor of 125 at the I/O interface. A sustained performance in the Tflops/s
range is possible with state-of-the-art technology only if locality is properly exploited.



3 Programming model

Architectures in which tens of thousands of operations can be performed concurrently are
often referred to as data parallel to distinguish them from control parallel architectures,
which offer a considerably lower degree of concurrency. Algorithms are designed based
on the structure and representation of the problem domain. Objects in data parallel
languages are represented by higher level data types such as the array extensions of
Fortran 8X [31]. In a language with an array syntax, a number of nested loops (often
equal to the number of axes in the array) disappear from the code, compared to a language
without the array syntax. We illustrate this property by two examples. The first example
is the implementation of a 7-point stencil in three dimensions. The second example is
taken from a finite element code for stress analysis.

In the example below which defines the computation of a 7-point stencil at every
point in a three dimensional grid, the operation csHIFT defines a circular shift. The first
argument is the variable to which the shift is applied, the second defines the axis along
which the shift takes place, and the third argument defines the length and direction of the
shift. Since there is no conditional statement in the code below, it implements periodic
boundary conditions. Note that there are no explicit loops for the array axes.

subroutine psolve(phi, omega, inside, n, iter)
real phi(n, n, n), omega(n, n, n), factor
logical inside(n, n, n)
factor = 1.0/6.0
do 100 i=1,iter,1

phi = factor * (

1 CSHIFT(phi, dim=1, shift=-1) +
2 CSHIFT(phi, dim=2, shift=-1) +
3 CSHIFT(phi, dim=3, shift=-1) +
4 CSHIF T(phi, dim=1, shift=+1) +
5 CSHIFT(phi, dim=2, shift=+1) +
6 CSHIFT(phi, dim=3, shift=+1) ) +
7 omega
100 continue
return
end

In the finite element example below, the elements are brick elements of first order.
There is one nodal point in each corner of an element. The state is represented by three
displacements, z = (u,v,w). The local interaction matrix, the elemental stiffness matrix,
is a 3 X 24 matrix, with one row for each of the three components of the local displacement
vector. The code segment also contains one compiler directive, SEr1AL, which affects the
data layout. The meaning will be explained later. The code fragment is from the iterative
solver which requires the computation of a matrix vector product. In the particular finite
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element code from which the code segment is selected, the elemental stiffness matrices
are not assembled into a global stiffness matrix. Instead, a matrix vector product is
performed for each element, and a total product vector assembled.

CMFSLAYOUT K(:SERIAL, :SERIAL, ,, ), RG(SERIAL, ,, ), X(:SERIAL, ,, )
REAL K(3,34, 33, 32, 33), R(3,33,32,32), U(3,33,32,32), V(3,33,32,83), W(3,33,33,33), X(34,32,33,32)
CALL ALL-TO-ALL-ELEMENT-BROADCAST(U,V,W,X)
R =: 0.0
DO I=1,324

DO J=1,3

B(3,y5,8) =R (T,)1,3,2) + KT, L 1, 3, 2) * X(I, 8, 8, 1)

END DO J
END DO 1
(WHERE (.NOT. I-RIGHT-BOUNDARY)) R=R + EOSHIFT(R, 1, 1)
(WHERE (.NOT. I- LEFT-BOUNDARY)) R= EOSHIFT(R, 1, -1)
(WHERE (.NOT. J-RIGHT-BOUNDARY)) R=R + EOSHIFT(R, 2, 1)
(WHERE (.NOT. J-LEFT-BOUNDARY)) R= EOSHIFT(R, 3, -1)
(WHERE (.NOT. K-RIGHT-BOUNDARY)) R=R + EOSHIFT(R, 83, 1)
(WHERE (.NOT. K-LEFT-BOUNDARY)) R= EOSHIFT(R, 3, -1)

In the above code segment, I-RIGHT-BOUNDARY, I-LEFT-BOUNDARY, etc. are boolean
arrays which define the right-hand and left-hand boundaries of each finite element in the
three dimensions respectively.

4 The Connection Machine Architecture

The Connection Machine [8] is a data parallel architecture. It has a total primary storage
of 512 Mbytes using 256 kbit memory chips, and 2 Gbytes with 1 Mbit memory chips.
The data transfer rate to storage is approximately 45 Gbytes/s at a clock rate of 7 MHz.
The primary storage has 64k ports and a simple 1-bit processor for each port. The storage
per processor is 8 kbytes for a total storage of 512 Mbytes and 64k bytes with 1 Mbit
memory chips. The Connection Machine model CM-2 can be equipped with hardware
for floating-point arithmetic. With the floating-point option, 32 Connection Machine
processors share a floating-point unit, which is an industry standard, single chip floating-
point multiplier and adder with a few registers. The peak performance available from
the standard instruction set and the higher level languages is in the range 1.5 Gflops/s
- 2.2 Gflops/s. The higher level languages do not at the present time make efficient use
of the registers in the floating-point unit for operations that vectorize. With optimum
use of the registers, a performance that is one order of magnitude higher is possible. For
instance, for large local matrices, a peak performance in excess of 25 Gflops/s has been
measured.
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Figure 1: The Connection Machine System

The Connection Machine needs a host computer. Currently, three families of host
architectures are supported: the VAX family with the Bl-bus, SUN 4, and the Symbolics
3600 series. The Connection Machine memory is mapped into the address space of the
host. The program code resides in the storage of the host. It fetches the instructions,
does the complete decoding of scalar instructions, and executes them. Instructions to
be applied to variables in the Connection Machine are sent to a microcontroller, which
decodes and executes instructions for the Connection Machine. Variables defined by array
constructs are allocated to the Connection Machine, unless allocation on the front-end is
requested. The architecture is depicted in Figure 1. The Connection Machine can also
be equipped with a secondary storage system known as the data vault. There exist 8 I/O
channels, each with a block transfer rate of up to approximately 30 Mbytes/s. The size
of the secondary storage system is in the range 5 Gbytes to 640 Gbytes. The Connection
Machine can also be equipped with a frame buffer for fast high resolution graphics. An
update rate of about 15 frames per second can be achieved.

The Connection Machine processors are organized with 16 processors to a chip, and
the chips interconnected as a 12-dimensional Boolean cube. The communication is bit-
serial and pipelined. Concurrent communication on all ports is possible. Through the
bit-serial pipelined operation of the communication system, remote processor references
require no more time than nearest neighbor references provided there is no contention
for communication channels. For communication in arbitrary patterns, the Connection
Machine is equipped with a router which selects one of the shortest paths between source
and destination, unless all of these paths are occupied. The router has several options for
resolving contention for communication channels.



4.1 Configuring the address space

The address field of the Connection Machine is divided into three parts:
(off-chip|on-chipjmemory). The off-chip field consists of 12 bits that encode the Con-
nection Machine processor chips, the on-chip field encodes the 16 processors on each
Connection Machine processor chip, and the lower order bits encode the memory ad-
dresses local to a processor. The lowest order off-chip bit encodes pairs of processor
chips sharing a floating-point unit. On-chip communication is considerably faster than
inter-chip communication. On-chip communication is a local memory reference. Off-chip
communication is slower due to the limited bandwidth at the chip boundary. With the
current chip (VLSI MOS) and interconnection (metal wire) technologies, such a character-
istic is expected. The non-uniformity in access time impacts the optimum data allocation
[15,17].

The default data allocation scheme on the Connection Machine first determines how
many data elements need to be stored in each processor for an equal number of elements
per processor, then stores that many successive elements in each processor, consecutive
storage [15]. With the n highest order bits encoding the processors and the lower order
bits encoding memory addresses in each processor, the consecutive assignment can be
illustrated as follows.

Consecutive assignment:(g:mzm_l o Tmontl Tm—nm—n—1 - zg)

4 vp

The field denoted rp encodes real processor addresses as opposed to local memory
addresses vp. For a data set of M = 2™ complex points, m + 1 address bits are required,
n of which are processor address bits. There are m — n 4 1 local storage address bits.
Another frequently used address form is cyclic assignment, for which the lowest order
address bits determine the real processor address.

Cyclic assignment:(ZymZm—1+..%n Tn-1Tn_2..- zg.

vp rp

In the cyclic assignment, all data elements in a processor have the same n low order
bits. In the consecutive assignment, the elements in a processor have the same n high order
bits. The cyclic allocation scheme currently is not supported on the Connection Machine
system. However, for some computations, it offers certain performance advantages [15,27).

Current implementations of the Connection Machine languages encode each axis of
a multi-dimensional array separately. Each axis is extended to a length that is equal
to some power of two. For an axis length P, [log,P| address bits are assigned to the
encoding of the elements along that axis. The consecutive allocation scheme is used for
each axis. The encoding of the axes in the total address space attempts to configure each
part of the address space (off-chip, on-chip, and memory) to conform with the array. To
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the extent possible, all axes have a segment of each address field, and the ratio of the
lengths of segments for different axes is the same as that of the length of the axes.

The default allocation of axes to off-chip, on-chip, and memory bits may not always
be the preferred allocation. For a computation in which the interaction between virtual
processors is equally frequent in each direction, the total amount of communication is
minimized if the virtual processors assigned to a physical processor, or actually a processor
chip, forms a single subdomain with an aspect ratio as close to one as possible [17].
The different Connection Machine languages provide different means for user controlled
data allocation. In CM-Fortran compiler directives allow a user to specify an axis as
SERIAL, which implies that the axis is allocated to a single processor. In PARIS (PARallel
Instruction Set), the Connection Machine native language, a user has full control over
what dimensions of the address space an axis occupies. But, only consecutive allocation
of data to processors is supported.

If an array has fewer elements than the number of real processors in the configuration,
the array is extended such that there is one element per real processor. In CM-Fortran an
axis is added to the array with a length equal to the number of instances of the specified
array that matches the number of real processors.

Array elements in the Connection Machine programming languages are often referred
to as virtual processors [8,1]. In general, several virtual processors (array elements) are
mapped to the storage of each physical processor. The number of virtual processors
per physical processor is called the virtual processor ratio [1]. The storage of a physical
processor is divided between as many virtual processors as is given by the virtual processor
ratio. That many virtual processors time-share a physical processor.

4.2 Encoding of array axes

In the common binary, encoding successive integers may differ in an arbitrary number of
bits. For instance, 63 and 64 differs in 6 bits, and hence are at a Hamming distance of 6
in the Boolean cube. A Gray code by definition has the property that successive integers
differ in precisely one bit. The most frequently used Gray code for the embedding of
arrays in Boolean cubes is a binary-reflected Gray code [15,28,35]. This Gray code is
periodic. The code preserves adjacency for any loop (periodic one-dimensional lattice)
of even length, and for loops of odd length one edge in the loop is mapped into a path
of length two [15]. For the embedding of multi-dimensional arrays, each axis may be
encoded by the binary-reflected Gray code. The embedding of an Ny X Nz X ...x Ny array
requires Y4 , [log, N;] bits. The ezpansion, i.e., the ratio between the consumed address
space and the actual array size, is 9L 1 flogy Nl /0L, which may be as high as ~ 24 [7,10].
The expansion can be reduced by allowing some successive array indices to be encoded
at a Hamming distance of two. The dilation is the maximum Hamming distance between
any pair of adjacent array indices. Every two-dimensional array can be embedded with
minimum expansion and dilation 2 [3]. Minimum expansion dilation 2 embeddings for a
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large class of two-dimensional arrays are given in [10], which also provides a technique
for reducing the expansion of higher dimensional arrays. Minimal expansion dilation 7
embeddings are possible for all three dimensional arrays [4]. Embeddings with dilation 2
for many three dimensional arrays are given in [9].

The lattice emulation by a binary-reflected Gray code embedding is part of the stan-
dard programming environment on the Connection Machine system. In CM-Fortran,
array axes are by default encoded in a binary-reflected Gray code for the off-chip segment
of the address field. In the other Connection Machine languages, the Gray code encoding
is invoked by configuring the Connection Machine as a lattice of the appropriate number
of dimensions. The benefit of the lattice emulation feature is twofold: the virtual proces-
sors are assigned to physical processors such that the communication requirements are
minimized, and lattice organized computations are often easier to express by virtue of
programming constructs corresponding directly to the operations in the problem domain.

5 Scientific Libraries

A library of basic scientific routines on data parallel computers must be capable of han-
dling two forms of concurrency: concurrent execution of multiple, independent problems,
and concurrent execution of a single problem. In a single instruction stream architecture,
such as the Connection Machine, the independent problems must require the same in-
structions for a good load balance. Forinstance, multiple matrix multiplications, multiple
factorizations, or multiple FFT’s can be performed concurrently. The need for multiple
operations of the same type occurs frequently in the solution of partial differential equa-
tions on data parallel architectures, as illustrated in the next section. In this section, we
give two specific examples of concurrency in a single operation by briefly describing how
matrix multiplication and the FFT are performed in the library routines available on the
Connection Machine.

5.1 Matrix Multiplication

The matrices to be multiplied are in general distributed across several, but not necessarily
all, processors. In many cases, several different matrix products will be formed concur-
rently in disjoint sets of processors. Within each set, some data motion is required to
compute a matrix product. Typically, each processor will have several matrix elements of
each operand assigned to it. A suitable local matrix multiplication algorithm is required
in addition to a global algorithm that implements the appropriate data motion given the
allocation of the input and output matrices.
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5.1.1 The basic algorithm

The current Connection Machine library routine for matrix multiplication is based on
mesh emulation. The data motion for multiplying two matrices on a mesh can be par-
titioned into two phases; Alignment and Multiplication. The purpose of the alignment
is to make sure that the range of “inner” indices for one matrix is a subset of the range
of “inner” indices of the other matrix [15,21,20]. All processors can concurrently per-
form a multiplication and an addition. The data motion during the multiplication phase
preserves this property. The essence of the data motion is best illustrated for the multi-
plication of two P X P matrices on a P X P mesh of processors [2].

forall 4,5 € {0,1,...,P -1} x {0,1,...,P —1} do
Alignment:

a(i, j) < a(i, (i + j) mod P)
b(i,5) < b((i + j) mod P, j)

Muliplication:

c(i,§) « (i, 5) + a(i, 5) x b(3, )
forki=1to P—-1
a(i,j) « a(%,(j + 1) mod P)
b(, j) « b((¢ + 1) mod P, j)
(i, )  ei, ) + a(i, §) X b(3, 5)
endfor k
endforall 7, 5

By a binary-reflected Gray code encoding of array indices, the data motion in the
above algorithm only requires nearest neighbor communication. All array indices are
extended to the nearest greater power of two. For the multiplication of matrices of
arbitrary shapes on any size Boolean cube configured multiprocessor, it is necessary to
generalize the algorithm to the following cases:

The set of processors are configured with Ny processors along axis zero, and N,
processors along axis one, Ny # N;.

A submatrix per processor instead of a single element

Arbitrary P, @Q, and R

Parallelization of the loop on the “inner” index.
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The first generalization is necessary for several reasons. One reason is that the number
of processors N, to which the matrices are allocated, may not be a square. Another reason
is that for small matrices and a large number of processors, the operands for a matrix
product may only extend over a subset of processors, even if only a single element of each
operand is assigned to each processor. In this case, as well as in the case where each
operand has several elements assigned to each processor, the optimum configuration of
the physical processors is an array of the same shape as that of the product matrix C
[21]. The need for the second and third generalization is apparent. The last generalization
is motivated by the fact that the number of processors N may be significantly greater
than the number of elements PR of the product matrix C. For N > PR, all three
loops in a Fortran 77 code for matrix multiplication by the standard algorithm may
be parallelized. The third axis, i.e., the axis for the “inner index” can be instantiated
partially, or totally, in space. With all three axes instantiated in space, the operands are
assigned to orthogonal planes. For instance, the matrix A can be assigned to the plane
defined by axes zero and two, the matrix B to the plane defined by axes one and two, and
the matrix C to the plane defined by axes zero and one. The matrix A is copied along
axis one, and the matrix B along axis zero. The matrix C is obtained by reduction along
axis two.

5.1.2 Arbitrary Matrix Shapes and Sizes

We assume that a submatrix of each operand is stored in each processor to which any
matrix element is assigned, and that the submatrices in different processors are of the same
shape and size. We first define a matrix multiplication algorithm for a two-dimensional
mesh of processors. The third axis, i.e., the axis of the inner index, is entirely instantiated
in time. The set of processors are assumed to be configured with Ny processors along axis
zero and N; processors along axis one. If Ny # Np, then the range of the inner index for
the two operands is clearly different in every processor. The alignment must assure that
the inner index range for one operand is a subset of the inner index range of the other
operand. This property must be maintained during the multiplication. In the case of the
Connection Machine implementation, the ratio %-‘l’- = 2* for some integer s. For a small
matrix and sufficiently many processors, the third axis can also be parallelized, and the
set of processors are configured as an array with three axes.

Configuring the Connection Machine processors with the same number of processors
along each axis of a two-dimensional array, and using Gray code encoding of the axes,
allow the alignment and data motion during multiplication to be based entirely on pro-
cessor addresses [18]. The data motion during the multiplication phase implements an
all-to-all broadcasting [25] within rows for the matrix A and columns for the matrix B:
C — C + A x B. The broadcasting is accomplished by cyclic rotation. Memory require-
ments are conserved which is an important property for the multiplication of matrices
having large submatrices allocated to each processor. The minimum number of rotation
steps along axis zero is No — 1 and along axis one N; — 1. The algorithm implemented
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on the Connection Machine moves a complete submatrix assigned to a processor when
communication is needed. No local data motion is required. If Ny > N;, then %9- rotation
steps are performed along axis zero for every rotation step along axis one. Only a fraction
of the local submatrix of the matrix subject to the fewest rotation steps is used in a local
matrix-matrix multiplication for each rotation step along the longest processor axis. But,
for the matrix subject to the largest number of rotation steps, the entire submatrix is

used for each rotation step. Figure 2 illustrates the data motion of the matrices 4 and
B for No =4 and N, = 8.

The alignment along the longest axis is performed as if the processor array was square
with the number of processors along an axis equal to the number of processors along the
shortest axis. The alignment along the shortest axis is performed as if the processor array
was square with the number of processors along an axis equal to the number of processors
along the longest axis. With this alignment, the multiplication can be accomplished by
the minimum number of rotation steps along each axis [18].

With the third axis entirely instantiated in time, the matrix product requires 2-1%%
arithmetic operations in sequence. The arithmetic time is proportional to the number of
matrix elements per physical processor of the matrix C, and the length of the “third” axis,
Q. The communication time for the multiplication phase is proportional to 21»8’ for the
matrix 4 and to 91% for the matrix B. The alignment phase carried out as shifts along the
axes of the mesh requires approximately the same amount of time as the multiplication
phase if the cyclic shifts only can be performed in one direction at a time. For the
Connection Machine implementation, the router is used for the alignment, and the time
for large values of N, and N, is considerably less than the time required by a sequence of
cyclic shifts. However, the time for alignment on a Boolean cube network can be further
improved by optimizing the cyclic shifts [15].

The algorithm presented above is correct for all array shapes and sizes, and matrix
shapes and sizes. However, the processor utilization can be improved when Q is small
compared to P and/or R, and to Ny and N;. The matrix C is computed in-place. Only
the set of processors to which C is allocated participate in the arithmetic operations. If
@ < R, then only @ columns of C are computed concurrently. The set of Q columns is
a function of the step of the algorithm such that at the end of the algorithm all columns
of C are computed. Similarly, if @ < P, only @ rows are computed concurrently in any
step.

By replicating 4 min(g,%*-) times along axis one, and matrix B along axis zero
min( %, %9-) times, all processors to which the matrix C is allocated are used.

The optimum aspect ratio of the physical processor array is the same as the aspect
ratio of the product matrix C. If there is only one matrix element of each operand per

processor, then the optimum aspect ratio of the physical machine is 1, since it is desirable
to minimize the maximum axis length: No = N; = v'N.
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PxQx R |Gflops/s| P xQx R | Gflops/s P x Q x R | Gflops/s
64x4x1 7.84 64x4x8 9.20 64 x 4 x 32 9.38
64x8x1 11.98 64x8x8 13.53 64 x 8 x 32 13.71

64x16 x1 16.35| 64x16 x 8 17.74 | 64 x 16 x 32 17.88

64x32x1 17351 64x32x8 18.02 | 64 x 32 x 32 18.11

64 x64x1 19.08| 64x64x 8 19.55 | 64 x 64 x 32 19.61

64 x 256 x 1 20.38 | 64 x 256 x 8 20.51 | 64 x 256 x 32 20.52

Table 3: Performance data for the local matrix kernels.

5.1.3 Parallelizing the third axis.

The set of processors participating in the multiplication using the extended algorithm is
approximately min(P, No) X min(R, N;). If P < Ny, and/or R < Nj, only a subset of size
~ PR of all N processors are used. If N >> PR, then substantially improved processor
utilization can be achieved by also instantiating the third axis at least partially in space.
To generate two instances in space, we partition the matrix A as (404,) and B as (%‘1’-),
where Ao and A, are P x g— matrices and By and B, are g— X R matrices. Then, the
products A¢B, and A, B, are computed on disjoint sets of PR processors. Each set is
configured as a mesh. By employing the algorithm above for each mesh, each product
only requires approximately g— steps. Denote the two meshes 0 and 1. Mesh 0 contains
twice as many copies of Ay and By as before, but no copies of 4; and B;. Mesh 1 contains
twice as many copies of A; and B, as in the case of a single mesh, and no copies of A4

and By.

We introduce a third processor axis for the enumeration of the meshes of size ~ PR
each. The product A xB is obtained through a plus-reduction along the third axis, the axis
of the inner index Q. The number of planes in the third dimension is min(Q, %"— x 3) =
gmin(¢n-p-r) and the length of the “parallelized” inner axis is Q = omin(0g+ptr—n)

5.1.4 CM implementation issues

The local matrix multiplication kernel makes use of matrix-vector kernels. These kernels
read a segment of a vector into the registers of the floating-point unit, then use it for a
matrix-vector multiplication. The timings for a few matrix shapes are given in Table 3.
The standard allocation scheme for arrays implies that, in general, the configuration of the
physical machine is different for arrays of different shapes. However, for the algorithms
described above, the operands need to be allocated assuming the same physical machine.
The reconfiguration of the set of physical processors to a common shape is performed as
part of the alignment. The alignment is performed by the Connection Machine router.
Timings are given in Table 4.
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Px@xR| 8k |16k | 32k | 64k

128 x 1024 x 1024 | 117 | 196
256 x 1024 x 1024 | 190 | 321 | 582 | 968
512 x 1024 x 1024 | 281 | 496 | 825 | 1468
256 x 256 x 256 | 107 | 210 | 316 | 488
512 x 512 x 512 { 199 { 362 | 558 | 1062
1024 x 1024 x 1024 | 357 | 664 | 1045 | 1936
2048 x 2048 x 2048 1829 | 3463
4096 x 4096 x 4096 5814

Table 4: Performance in Mflops/s of the non-local matrix multiplication.

5.2 The Fast Fourier Transform (FFT)

The network interconnecting processor chips in the Connection Machine forms a 12-
dimensional Boolean cube. In a Boolean cube of N = 2" nodes, n bits are required for
the encoding of the node addresses. Every node u = (%n—1%n—2 - . - U . . . Ug) is connected
to nodes v = (Up_1Un-2 .- Tm .- Up), Ym € [0,n —1].

A radix-2 butterfly network for P inputs and outputs has P(p+1) nodes. Let the node
addresses of the butterfly network be (¥p-1Yp—2 - - - Yo|Ze-12t-2 - . - 20), Where ¢t = [log,(p +
1)]. The butterfly network is obtained by connecting node (y]z) to the nodes (y &
27-1-%|z 4+ 1) and (ylz + 1), z € [0,p — 1], where @ denotes the bit-wise exclusive-or
operation. For the computation of the radix-2 FFT the last ¢ bits can be interpreted as
time. The network utilization defined as the fraction of the total number of nodes that
are active at any given time is 1. During step z, the communication is between ranks z
and z + 1. Complex multiplications are made in rank z for decimation-in-time FFT and

rank z + 1 for decimation-in-frequency FFT.

By identifying all nodes with the same y value and different z values, node y becomes
connected to nodes y @ 2*, Vz € [0,p — 1], which defines a Boolean p-cube. All nodes
participate in every step in computing an FFT on P elements on a p-cube. In step 2,
all processors communicate in dimension z. Only :—,th of the total communications band-
width of the p-cube is used. The full arithmetic power, instead of only half, can be used
by splitting the butterfly computations between the pair of nodes storing the data. Each
node performs 5 real arithmetic operations. This splitting of butterfly computations was
implemented on the Connection Machine model CM-1. The parallel arithmetic complex-
ity for computing an FFT on P = 2? complex elements on a Boolean n-cube becomes
5[-5—] log, P real arithmetic operations, ignoring lower order terms. The speed-up of the
arithmetic time is min(P, N) The communication complexity is 3[%1log, N element ex-
changes in sequence.

In computing an FFT on P complex elements distributed evenly over N =N < P
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processors, there are ]—}:,- elements per processor. If the cyclic assignment is used, then the
first p—n ranks of butterfly computations are local to a processor. The last n ranks require
inter-processor communication. For consecutive assignment the first n steps require inter-
processor communication, and the last p — n steps are local to a processor. If the data
is allocated in a bit-reversed order, then the order of the inter-processor communication
and the local reference phases are reversed.

The embedding defined above is the binary encoding of array indices. Every index is
directly identified by an address in the address space. For arrays embedded by a binary-
reflected Gray code array, elements that differ by a power of two greater than zero are at a
distance of two, i.e., Hamming(G(3), G(i +27)) = 2,7 # 0 [16]. Even though the elements
to be used in a butterfly computation are at a Hamming distance of two, it is still possible
to perform an FFT with min(p,n) nearest neighbor communications {19]. The current
Connection Machine implementation assumes that the array axes are encoded in binary
encoding. If the data is encoded by Gray code, then an explicit reordering to binary order
is performed before the FFT computation. The Connection Machine router is currently
used for this reordering. An optimum reordering is given in [15].

If there is only one element per processor, then every element is either involved in
a computation or a communication. With multiple elements per processor, the com-
munication efficiency can be increased from minzp‘n) to aen)  which for p > n is one.
The increased communication efficiency is achieved by communicating concurrently in as
many dimensions as possible.

5.2.1 Maximizing the communication efficiency

The radix-2 FFT implemented on the Connection Machine makes use of pipelining to
achieve a high utilization of the communication (and computation) resources. For details
of the implementation, and alternate implementations see [26,27]. High radix FFT’s are
discussed in [13]. With N processors performing %’e butterfly computations concurrently,
% butterfly computations must be performed sequentially in each stage. In each of the
first n butterfly stages, the lowest order p—n bits are identical for the pair of data elements
in a butterfly computation. The first n butterfly stages can be viewed as consisting of
% independent FFT’s, each of size N with one complex data element per processor.
This property was used in [14] for devising sorting algorithms on Boolean cubes. The
independent FFT’s can be pipelined. Every FFT performs communication in processor
dimensions n — 1,n — 2,...,0. Each FFT is delayed by one communication with respect
to the preceding one. After the n butterfly stages with inter-processor communication,
the remaining p — n stages are entirely local. The high order n bits identify N different
FFT’s of size % each.

The number of complex data element transfers in sequence for the pipelined FFT is
n + % —1. The communication efficiency, measured as (the sum of the communication
resources used over time)/((total number of available communication resources)*(time)),
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Axis Time | Mflops
length msec /s
32 1.126 | 1455
64 2.184 | 1800
128 4.130 | 2222
256 8.326 | 2519
512 17.446 | 2705
1024 | 38.452 | 2727
2048 | 78.796 | 2928
4096 | 167.645 3002
8192 | 355.822 3065

Table 5: Performance for 2048 concurrent local radix-2 DIF FFT.

FFT Time (msec) Mflops/s
2k | 4k| 8k | 16k| 2k| 4k| 8k | 16k
128x128 34.1 [ 16.7 | 13.6 7.4 11075 | 1101 | 673 | 621
512x 512 574 | 292 | 136 72 11315 | 1291 | 1390 { 1308
2048x2048 2213 | 1313 1668 | 1405
32x32x 32 ]99.5 | 50.4 | 242} 13.7| 791 | 780 }{ 811 | 720
64x64x 64 548 | 411 | 198 | 108 | 1378 | 919 | 956 | 875
128x128x128 1611 | 885 1093 | 995

Table 6: Performance for some two- and three-dimensional radix-2 DIF FFT.

P
for the stages requiring communication is ;%_—1, P 2> n. The efficiency is approximately

P
one for ¥ > n.

Table 5 gives the performance for a collection of local, radix-2 FFT as a function of size
for a Connection Machine system model CM-2. The same data are plotted in Figures 3
and 4. The performance data is for single precision floating point data. Both decimation-
in-time and decimation-in-frequency FFT are implemented. Some sample timings for
two- and three-dimensional radix-2 FFT are given in Table 5.2.1.

A higher radix FFT yields a better performance by a better utilization of the memory
bandwidth, and a better load balance for the inter-processor communication stages [26,27].
Figure 5 illustrates the difference in performance for the FFT computations local to a
processor for a mix of radix-4 and radix-8 kernels. The local maxima are for data sets of
size 8* for some s.
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Comparison of Radix-2, -4, and -8 Kernels
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Figure 5: Performance of local radix-2 and radix-4/8 FFT computations.
6 Data Parallel Applications

In this section we present two applications. The first is the solution of the compressible
Navier-Stokes equations, and the second the computation of the forward propagation of
acoustic waves in the ocean. Both problems are formulated in three spatial dimensions.
The purpose with these applications is to illustrate how problems are formulated for a
data parallel computer and some of the functions that are needed. The examples are also
intended to make it obvious that multiple concurrent instances of a computation often
are both necessary and occur naturally. Both examples are based on finite difference
techniques. An explicit technique is used for the Navier-Stokes problem, and an implicit
technique for the underwater acoustics problem.

6.1 A compressible Navier-Stokes flow solver

The Navier-Stokes equation describes the balance of mass, linear momentum and energy,
and models the turbulent phenomena that occur in viscous flow. In three dimensions, the
equations in conservative form are

0g O6F+F, 06G+G, O6H+H,
ar- o€ T o T ac 1)

where the variable vector q(§,7,¢,7) has five components: one for density, three for the
linear momentum in the three coordinate directions z,y and z, and one component for
the total energy. The coordinates of the physical domain are z,y and z, whereas £, 7 and
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¢ are coordinates in the computational domain. F,G and H are the flux vectors and
F,,G, and H, are the viscous flux vectors.

For regular computational domains, the solution can be approximated by discretizing
the domain by a three-dimensional grid. The grid may be stretched in order to get a
good resolution of the boundary layers without an unnecessarily large number of grid
points in the interior. A stretched grid is topologically equivalent to a regular grid, and
any efficient embedding of such grids can be used advantageously. In [32,33], an explicit
finite difference method is used. To stabilize the numeric method, artificial viscosity is
introduced through a fourth order derivative. Centered difference stencils are used. The
approximation of the derivatives of the flux vectors is second order accurate. There are
two difference stencils being used in each lattice point, and the stencils vary for interior
points, points on or close to a surface, edge, and corner. Given the directional dependence
there are one interior stencil, six face stencils, 12 edge stencils, and eight corner stencils
of second order accuracy. The number of different types of stencils increases with the
order of approximation. A central difference stencil with 2N 41 points in each of three
dimensions gives rise to a total of 8N*+12N? + 6N +1 stencils because of the boundaries.
For the derivates, N = 1 in our case, and for the artificial viscosity, N = 2, and the total
number of stencils are 27 and 125, respectively. All these stencils are subgraphs of the
stencil in the interior, and can be represented by a set of vectors [32]. A three step
Runge-Kutta method is used for the integration.

For the computations, the Connection Machine was configured as a regular 3D-grid.
There are approximately 170 variables per virtual processor (grid point). The maximum
virtual processor ratio with 8k bytes per physical processor is 8. The subgrid for each
processor is a 2 X 2 x 2 grid. By using difference stencils on or close to the boundaries
that are subgraphs of the stencils in the interior, the stencils can be implemented as
- EOSHIFT operations in Fortran 8X. With periodic boundary conditions, csHIFT should
be used. The measured bandwidth for nearest neighbor communication in this grid was
on the average about 2.5 Gbytes/s for a Connection Machine with 64k processors. The
execution time as a function of the virtual processor ratio and the machine size are given
in Table 7. The aspect ratio of any pair of dimensions of the physical domain was either
one or two, and the size ranging from 16 x 16 x 32 to 64 x 64 x 64.

From Table 7, it is clear that the execution time per time step is independent of the
machine size, as expected. The execution time as a function of the virtual processor
ratio is shown in Figure 6. The processor utilization increases by a factor of 2.75 as the
virtual processor ratio increases from 1 to 8. The work increases by a factor of 8, but the
execution time only by a factor of 2.9. Figure 7 shows the floating-point rate at a virtual
processor ratio of 8. With this virtual processor ratio, grids with up to 524,288 points
were simulated.

In the Navier-Stokes code, the operations in each virtual processor consist of stencil
computations applied to vectors of length five. Each floating-point processor performs
a three dimensional convolution (on vector arguments) within the physical subdomain
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Navier-Stokes Performance on 64K CM-2
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Figure 7: The Execution Speed for the Compressible Navier-Stokes Solver.
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virtual Machine Size
processor 8k 16k 32k
ratio | CM-time | Total time | CM-time | Total time | CM-time | Total time
1 2.61 4.43 2.61 4.42 2.61 4.42
2 4.12 4.74 4.12 4.74 4.12 4.74
4 7.07 7.08 7.04 7.05 7.01 7.02
8 12.70 12.70 12.83 12.83 12.83 12.83

Table 7: Execution Time for Different Virtual Processor Ratios.

mapped into the memories of the processors served by a floating-point unit. In addition,
the computation of the flux vectors requires matrix-vector multiplication and matrix-
matrix multiplication on small matrices and vectors in each virtual processor. Optimized
routines for these operations were not available at the time this code was implemented
and evaluated with respect to performance. Incorporating optimized routines is expected
to increase the performance by a factor of about three.

6.2 Acoustic field computation by an Alternating Direction Method

The forward propagation of acoustic waves by the so called Wide Angle Wave Equation
[30] implies the solution of an equation of the form

1 1 ' 1 1
1+ Z(l -8§)X)(1- ZY)u(r +Ar)=(1+ Z(l +8)X)(1+ ZY)u(r) (2)
where ko is a reference wave number, and n(r,0,z) = k(r,0,2)/ko 6 = tkoAr, and
1
"~ k2022

1 &

X k2r? 562

+ (n*(r,0,z) — 1), and Y =

This equation is a parabolic approximation of Helmholtz equation. The solution to
the equation above can be marched out in the range (r) direction with an Alternating
Direction Method [36,29]. Tridiagonal matrix-vector multiplications are performed in the
@ and z directions, followed by the solution of tridiagonal systems in the same directions.
Both operations consist of a number of one-dimensional problems that can be solved in-
dependently and concurrently. In addition, each system can be solved concurrently by
substructuring, pipelined Gaussian elimination, partial or complete transposition of equa-
tions, and odd-even cyclic reduction, or any combination thereof [23] (which for multiple
systems may be performed as balanced cyclic reduction). The communication pattern
(in one dimension) of odd-even cyclic reduction is given in Figure 8. The communication
pattern of balanced cyclic reduction is the same as that of parallel cyclic reduction [11].
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The communication is defined by the grid and the difference stencil for the matrix-
vector multiplication, but for the solution of the tridiagonal systems of equations, the
communication depends on the selected algorithm. For pipelined Gaussian elimination,
communication in the form of a Hamiltonian path is required. For equation transposition,
the communication is equivalent to all-to-all personalized communication (or all-to-some
some-to-all personal communication), which can be performed through butterfly network
communication [22,25]. For balanced cyclic reduction, communication is required in the
form of a data manipulator network. The communication requirements for odd-even cyclic
reduction is a subtree of the data manipulator graph with the root at the top center and
the leaf nodes being all nodes at the bottom level.

In the Connection Machine implementation, the processors are configured as a two di-
mensional grid. The tridiagonal systems are solved by substructured elimination followed
by odd-even cyclic reduction for the reduced system of equations. The performance for
the substructuring phase is about 1 Gflops/s without using any optimized library routines.
The reduction phase in the current implementation uses a straightforward implementa-
tion of odd-even cyclic reduction. By using balanced cyclic reduction instead, a higher
processor utilization and better performance can be achieved [24]. Note, that with the
lattice emulation there is no need to perform a transposition of the data when the com-
putations switch from one axis in the physical domain to the other. Communication time
and storage accesses are the same for both directions.

7 Summary

Supercomputers with a performance in the Tflops/s range are becoming technically and
economically feasible to build in state-of-the-art technologies. Such computers will have
thousands to tens of thousands of processing units interconnected by a bounded degree
network. The most critical resources with respect to performance are the communication
and memory subsystems. The efficient utilization of these resources is imperative to high
performance. We have presented a few examples of how data allocation, data motion
between processors, and algorithms can be chosen such that good utilization of data
parallel architectures is accomplished. Performance data for matrix multiplication, Fast
Fourier Transforms, a compressible Navier-Stokes solver, and an underwater acoustics
code on the Connection Machine are provided.
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