A detailed analysis is presented of all pseudodifferential operators of orders up to 2 en-
countered in classical potential theory in two dimensions. In a sequel to this paper, the
obtained apparatus will be used to construct stable discretizations of arbitrarily high order
for a variety of boundary value problems for elliptic partial differential equations.
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1 Introduction

Integral equations of classical potential theory are a tool for the solution of the Laplace equa-
tion; they have straightforward analogues for many other elliptic partial differential equations
(PDEs). From the point of view of a modern mathematician, they are relatively simple objects.
Indeed, a second kind integral equation (SKIE) is a sum of the unity operator and a compact
operator; for most practical purposes, such an object behaves like a finite-dimensional system of
linear algebraic equations, with the Fredholm alternative replacing the theory of determinants.
Integral equations of the first kind (FKIEs) are a considerably more complicated object than
those of the second kind. Since a first kind integral operator is compact, solving a first kind in-
tegral equation involves the application of the inverse of a compact operator to the right-hand
side; depending on the right-hand side, the result might or might not be a function. Since
the classical boundary value problems (Dirichlet, Neumann, and Robin) are easily reduced to
SKIEs, the original creators of the potential theory simply ignored the FKIEs. Later, FKIEs
of classical potential theory have also been investigated, and are now a fairly well-understood
object.

In a nutshell, when the solution of a Dirichlet problem is represented by the potential of a
single layer, the result is an FKIE; when the solution of a Dirichlet problem is represented by
the potential of a double layer, the result is an SKIE. When the solution of a Neumann problem
is represented by a single layer potential, the result is an SKIE; and when the solution of a
Neumann problem is represented by a double layer potential, the result is not a classical inte-
gral equation, but rather an integro-pseudodifferential one (in computational electromagnetics,
this particular object is known as a hypersingular equation). Once the integral equation is
constructed, the question arises whether it has a solution, whether that solution is unique, etc.
Generally, questions of this type are easily answered for the Laplace and Yukawa equations,
and less so in other cases.

As a computational tool, SKIEs were popular before the advent of computers; between
1950 and 1970, they were almost completely replaced with Finite Differences and Finite Ele-
ments. The only areas where integral equations survived as a numerical tool were those where
discretizing the whole area of definition of a PDE is impractical or very difficult, such as the
radar scattering and certain areas of aerodynamics. The reasons for this lack of favor have to
do with the fact that discretization of most integral equations of potential theory leads to dense
systems of linear algebraic equations, while the Finite Elements and Finite Differences result in
sparse matrices (hence the name “Finite Elements”). During the last 15 years or so, it has been
discovered that many integral operators of potential theory can be applied to arbitrary vectors
in a “fast” manner (for a cost proportional to n for the Laplace and Yukawa equations, and for
a cost proportional to n -log(n) for the Helmholtz equation, with n the number of nodes in the
discretization of the integral operator). Detailed discussion of such numerical issues is outside
the scope of this paper, and we refer the reader to [5, 6]. Here, we remark that the interest
in integral formulations of problems of mathematical physics has been increasing, and that
classical tools of potential theory turned out to be insufficient for dealing with many problems
encountered in practice.




Specifically, many applications lead to integral formulations involving not only integral
equations, but also integro-pseudodifferential ones. More frequently, while it is possible to for-
mulate a problem as an FKIE or an SKIE, the numerical behavior (stability) of the resulting
schemes leaves much to be desired. In such cases, it is sometimes possible to reformulate the
problem as an integro-pseudodifferential equation with drastically improved stability proper-
ties (perhaps, after an appropriate preconditioning). A simple example of such a situation is
the exterior Neumann problem for the Helmholtz equation, where the classical SKIE has so-
called spurious resonances, coinciding with those for the interior Dirichlet problem on the same
surface, and having nothing to do with the behavior of the exterior Neumann problem being
solved. The so-called “combined field equation” solves the problem of spurious resonances at
the expense of replacing an integral equation with an integro-pseudodifferential one (see, for
example, [1, 12, 14, 17, 20]). Other examples of such situations include problems in scattering
theory, in computational elasticity, in fluid dynamics, and in other fields.

In this paper, we investigate in detail the analytical structure of the integro-pseudodiffer-
ential equations obtained when Neumann problems are solved via double layer potentials, when
Dirichlet problems are solved via quadruple layer potentials, when Neumann problems are
solved via quadruple layer potentials, and in several other cases (see (11) — (29) in Section 2
for a detailed list). It turns out that the analytical structure of the obtained equations is
quite simple, and involves several standard pseudodifferential operators (derivative, Hilbert
transform, derivative of Hilbert transform, inverse of the derivative of the Hilbert transform, and
the second derivative), composed (from the left or the right) with simple diagonal operators. We
also show that the product of the standard hypersingular integral operator with the standard
first kind integral operator of classical potential theory is a second kind integral operator; in
other words, these two operators are perfect preconditioners for each other, asymptotically
speaking.

Thus, the purpose of this paper is detailed analytical investigation of integro-pseudodiffer-
ential operators converting the densities of charge, dipole, quadrupole, and octapole distribu-
tions on a smooth curve in IR? into the potential, normal derivative of the potential, second
normal derivative of the potential, and third normal derivative of the potential on that curve.
It turns out that each of these operators is a sum of a standard operator (obtained by replacing
the curve with a circle), an integral operator with a smooth kernel, and a diagonal operator.
Once such expressions are obtained, it is quite easy to construct discretizations of the underly-
ing integro-pseudodifferential operators that are adaptive, stable and of arbitrarily high order.
Such discretizations (and resulting PDE solvers) have been constructed and will be reported
in a sequel [10] to this paper.

Remark 1.1 While the results reported here are easily generalized to three dimensions, it
should be pointed out that there exist important classes of problems in three dimensions lead-
ing to integro-differential equations that are outside the scope of this paper. Specifically, when
frequency-domain equations of electromagnetic scattering are reduced to integral equations on
the boundary of the scatterer (yielding the so-called Stratton-Chew equations), the resulting
integro-pseudodifferential operators are of a type not investigated here (in addition to normal
derivatives on the boundary, they involve tangential derivatives); similarly, integral equations




of elastic (as opposed to acoustic) scattering lead to integral expressions whose analysis is not
a straightforward extension of that presented in this paper. Needless to say, such operators are
frequently encountered in applications; they are currently under investigation.

The structure of this paper is as follows. In Section 2, we list the identities that are the
purpose of this paper; the remainder of the paper is devoted to proving these identities. In
Section 3 the necessary mathematical preliminaries are introduced. In Section 4 we present
proofs of some of the results formulated in Section 2; when the proofs of several results are
almost identical, we only prove one of them. Finally, in Section 5 we briefly discuss extensions
of results of this paper to three dimensions, and to boundary conditions other than Dirichlet,
Neumann, and Robin.

Remark 1.2 The principal purpose of this paper is to present the explicit formulae (50) -
(68), (89) - (93), (94) - (99), (100) - (107), to be used in the design of numerical tools for the
solution of partial differential equations. The proofs of these formulae in Section 4 below are a
fairly standard exercise in classical analysis, provided here for the sake of completeness. The
authors ezpect that many readers will find it unnecessary to read this paper beyond Section 2.

2 Statement of Results

2.1 Notation

We will be considering Dirichlet and Neumann problems for Laplace’s equation in the interior
or the exterior of an open region Q bounded by a Jordan curve (t) = (z1(t), z2(t)) in IR? where
t € [0, L]. We will assume that -y is sufficiently smooth, and parametrized by its arclength. The
image of  will be denoted by T, so that 9Q = I'. For a vector y = (y1,y2) € IR? we will denote
its Euclidean norm by ||y||. Further, ¢(t) will denote the curvature, and N, (t) or simply N (t),
the exterior unit normal to I" at (t). Clearly,

N(t) = (z2(t), —21(t)); 1)

the situation is illustrated in Fig. 1.
A charge of unit intensity located at the point zo € IR? generates a potential, ®;, : R \
{z0o} — TR, given by the expression

By (z) = —log(|lz — zoll) , (2)

for all = # z. Further, the potential of a unit strength dipole located at z¢ € IR?, and oriented
in the direction h € R2, ||h|| = 1, is described by the formula
(h7 T — "EO)
by n(z) = 77 3
Zo, ( ) ”$—$0||2 ( )
As is well known, the potential due to a point charge at zo € IR?, defined by formula (2), is
harmonic in any region excluding the source point z.




[0, L]

Figure 1: Boundary value problem in IR?.

Definition 2.1 Suppose that o : [0,L] — R is an integrable function. Then we will refer to
the functions p,oy,,I :IR? 5 R and p,ly’a,pg’g,pg,a :R2\T' = R, given by the formulae

B = [ u@oa, @
Pho) = [ 0 o, ®
B = [ T8 wa, ©
o) = [ T oya, m

as the single, double, quadruple and octuple layer potentials, respectively.

2 3
Remark 2.1 The functions gq;,"((;)), 3;&()?, g;&g? :IR2\ {y(t)} = R are often referred to as
the dipole-, quadrupole- and octapole potentials, respectively. Obuviously,

0%,n(z)  (N(t),z— ()

NG e-a0F )
Py _ AN@)e—(1))? 1 o)
ON (1)? le =@ e =@’
P2yp(@) _ BNEz—1(1)° _ 6N(E)z — () (10
ON (t)? le =7 @)I° EREIGIE.

Clearly, the potentials p} ,, p ,, p3 , are analytic in the interior of  for any integrable
o. However, for sufficiently smooth o and v, they can be extended to Q as smooth functions.
Similarly, the potentials p} ,, p2 ,, p3 , are analytic functions in the exterior R* \ © of ,
and can be extended as smooth functions to IR? \ . Furthermore, the normal derivatives
of these potentials also can be extended up to the boundary as smooth functions. Needless
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to say, the interior and exterior extensions do not necessarily agree on the boundary r (Wlth
the obvious exception of pg,a(m)), and we 1ntroduce the functlons p,y i p7 a 0 p,y’a,e, p% o, i

p'y,g,ev p'y,o-,ia p’y,a,ea p—y,g,i, p'y,o-,ea pry,g,ia pfy, g,er P»y,g,i, p'y,a,e’ p»y,a,ia p'y,a',e7 p'y,a‘,l’ p7,a,e: P% o,i?
P93 ¢ : [0,L] = R via the formulae

096) = [ 2D o, (1
() = fim [0 “é?v(t)h o, (12)
Pioe(s) = lim /0 ’ aq)"(t)(’ygg]zf?;)h'lv(s)) o(t)dt, (13)
Pyoi(s) = lim OL 32“’7@)(“;(;)(;)2’»” D o0y at, (14)
P00 = i [ TR RN o, (15)
Pyoils) = lim / : 33‘I’v<t)(76(;v)(t—)3h‘N D oty at, (16)
Pe(s) = lim OL 33@”(”(76(;\,)(;3”]\7(3)) (t) dt (17)
Pyoils) = lim /0 ’ ad)”(t)(vgjz,(_s)h Ne) (t) dt, (18)
PYoe(s) = lim /OL 5‘1’7@)(7(83]27 Z;)hN &) 1) at, (19)
Pyoi(s) = lim /L 0?2y (v (( )) h( )N ©) 5ty at, (20)
PYoe(s) = lim | e (t)( ((:)) +h()N( Dowa, (21)
Pyoils) = lim OLa @“’S’]\(I(())aNZ)N(S)) o(t) dt, (22)
) = I [ o &
Proi(s) = lim OL 82@"“)(;(]\,8)(;:']\[(3)) o(t) dt, (24)
Pyoe(s) = lim /0 t 32‘1’7(0(76(;)(;2””]\’ G 1) at, (25)




Pyeils) = lim /OL 63672‘)15’2@;2;;&;\; (<) o(t)dt, (26)
Pt = g [ Z20OO LT (1)
W) = tm [ Tt ‘g‘N‘“’)(;);‘ D 51y, (28)
) = i [ T20OO L TON o (29)

Remark 2.2 Throughout the paper, the subscripts “i” and “e” will denote the limits from
the interior and the exterior towards the boundary, respectively. Furthermore, the superscripts
“,3” (as, for example, in p?;fm (8)) refers to i times and j times differentiation with respect
to N(t) and N(s), respectively.

Definition 2.2 Suppose that the function o : [0,L] — R is twice continuously differentiable,

and that vy is sufficiently smooth. Then we define the operators Kg, Ki:?, K%:%, K,?:?, K,?;%,

K39, K39, K%, KOL, K2, KLY, K2, K24, KO3, K92, K%, KOG, KOS, KO- @0, L) —
c[0, L] via the formulae
L
K0)s) = #50) = [ oo, (30)
(L 02,4 (v(s) —h-N(s))
1,0 _ L0 _ 7(t)
Ky,i(g)(s) - pfy,a',i(s) —’}’1_1)1’(1) 0 BN(t) U(t)dt? (31)
[ O%yp)(v(s) + h-N(s))
, _ , _ &\
K3%(0)(s) = pylels) = lim | — ot o(t)dt, (32)
L 328, (v(s) — h- N(s))
2,0 — 20 — 1 1Y
K’y,i(o)(s) - p'y,a,i(s) _}{1_1;% 0 8N(t)2 (t) dt’ (33)
(L@ (v(s) +h-N(s))
K20)() = phlele) = Jim [ = = o (1) dt, (34
L 3%, (v(s) — k- N(s))
3,0 — 30 — 1 1Y
Ky,i(a)(s) - p'y,a,i(s) _’{l_r)% 0 aN(t)g (t) dta (35)
[ 84 (v(s) + A N(s))
K3f0)(e) = p3%e(s)=fim [ —Tores (1) dt, (36)
L0y (v(s) —h-N(s))
0,1 _ 01 _ 1Y
Kyi(0)(s) = Pyols) = lim | N () o(t)dt, (37)
) L3d. 1 (y(s) +h-N(s
KD5(0)(s) = pygels) = lim | ) SN G) ) o(t)dt, (38)
L34 (y(s) —h-N(s))
1,1 - bl — 1 1\Y
KOs = #yh(e) = fim [ O o0 i, (39)
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o(t) dt, (40)

3
1,1 = pbl =1
Kye(0)(s) = Pyge(s) = lim ON(s) ON (¢

h=0Jo (s) .)
Ko = s = i [ T e, @)
Kpy(0)(s) = pYels) = lim OLa 2 (at)J\(fAZS)aJJFV}(lt)jV D o4y at, (42)
Ko)e) = 120 = fim [ 00O 2D o 4, (43)
K)3(0)(s) = pY%e(s) = lim OLa 2 (t)(ggff)(gzh M) oy ar, (44)
K3 (0)(s) = pygls) = lim /0 ’ 33@7(5)1\([7(22;;(;)1\7 () o(t) dt, (45)
K6 = et = i [ TOEE T Do,
Ky30)(s) = pyg(s) = lim /OL 83(1)7“)(’;(‘:[)(;)3’1.]\[(8)) o(t)dt, (47)
KO0 = 2.0 =fim [ TP T e

; 01 701 702 702 703 703 L2 p12
Remark 2.3 Obviously, the operators vai, K>re, K,y:i, Kire, K)5s K)o K%i, Kre given by

the formulae (37), (38), (48) — (48) are the adjoints of the operators K;:?, K29, sz?, ng%,
K30, K38, K21, K2} defined by (31) - (36), (41), (42), respectively. Furthermore, K9, K11,
K%Z%a defined by (30), (39), (40) are self-adjoint.

2.2 Physical Interpretation

Formulae (30) — (48) have simple physical interpretations. Specifically, KEY) is the linear operator
converting a charge distribution on the curve I' into the potential of that charge distribution
on I'. The operator K ;? converts a dipole distribution on I' into the potential created by that
distribution on the inside of I'; the operator K%;% converts a dipole distribution on I' into the
potential created by that distribution on the outside of I'. The operator Kg;}a converts a charge
distribution on I' into the normal derivative of the potential created by that distribution on
the outside of ', etc.

Generally, the first superscript denotes the number of differentiations at the source (charges,
dipoles, quadrupoles, or octapoles); the second superscript denotes the number of differentia-
tions at the point where the potential is evaluated (potential, normal derivative of the potential,
second normal derivative of the potential, third normal derivative of the potential). In agree-
ment with standard practice in the theory of pseudodifferential operators, we will define the




order k of either of the operators K'*; and K%/, by the formula
k=it+j—1, (49)

and observe that in this paper, we describe in detail all operators of potential theory whose
order does not exceed 2. For example, we do investigate the operator Ki?, converting a dipole
distribution on I into its second normal derivative, but we do not investigate the operator Ki?
converting a quadrupole distribution on I' into its second normal derivative.

An examination of formulae (50) — (68) shows that the complexity of the expressions de-
scribing the operators (30) — (48) on the circle hardly increases as the order of the operator
grows. On the other hand, the differences between the operators (30) — (48) on the circle
and those on an arbitrary curve become more complicated with the growth of the order of
the operator. For example, the operators K9, K;’?, Kg,’}, K19, K% on an arbitrary smooth
curve always differ from these operators on the circle by a compact operator (see formulae (89)
~ (93)). Similar differences for the operators K20, K29 Kb KLl k%2 K232 involve the

7,0 Py, e Ty, iy Ty, e Ty,
3,0 3,0 2,1 2,1 1,2 1,2 0,3
curvature of y (see (94) — (99)). For the operators K_’j, K3/, K'i, K3e, K5, Ky, Koy,

K,?;se, the corresponding formulae (100) — (107) already involve the square and the derivative

of the curvature, as well as the Hilbert transform of the function.

Remark 2.4 While it is certainly possible to derive explicit expressions for boundary integral
operators of orders higher than 2, the complezity of the resulting formulae grows, while their
numerical utility decreases. The authors have chosen to draw the line at the order 2, mostly
because in the applications they anticipate, order 1 is sufficient.

Remark 2.5 While many of the facts presented in this paper can be obtained “automatically”
from the standard theory of pseudodifferential operators, the purpose of this paper is to provide
the explicit expressions (50) - (68) to be used in numerical calculations. Thus, we are ignoring
the connections between the formulae (50) - (68), (89) - (93), (94) - (99), (100) - (107), and
the more general theory of pseudodifferential operators.

2.3 Results

The limits (12), (13), (18), (19) have been studied in detail in the literature (see, for example,
[13, 11]). In Section 4, we conduct a similar investigation of (14) - (17), (20) — (29); first for a
circle, and then for a sufficiently smooth Jordan curve. The following theorem provides explicit
expressions for the operators (30) — (48) on the circle.

Theorem 2.6 Suppose that v is a circle of radius r parametrized by its arclength with the
exterior unit normal denoted by N, k is an arbitrary integer, and s € [—nr,nr]. Then,

r

(@ KN = ()= [ () e dt

_ {w|k|"1reiks/’, for k #0,

—27r log(r), fork=0, (50)




(b)

(c)

(d)

(¢)

Kl,Q(eikt/T)(S)

Y1

KEYEH)()

2,0 ikt/r
K75 (€*7)(s)

KAL)

3,0/ ikt/r
K20 (e*T)(s)

K320

KOs

K3o(e™/7)(s)

r 8@7(” (’y(S) —h- N(S))

~ L0 L ikt/r
Py eimesri(8) = ,1L1_r)1(1) —nr ON(t) o
—meks/m fork#0,
{ -2, for k=0, o

) 7 P4 ( (S) +hN(3)) ]
1’0 _ ’)‘(t) 7 'th/"'
p'y,e”“/’,e(s) - }{1_13(1) /—'n-r ON(1) i dt
ﬂ,eiks/'f‘ , for k 7/: 07
{0, for k=0, )
2,0 e [ P (v(s) —h-N(S))
pfy,eikt/';i(s) = ’{I_I)% oy aN(t)z € dt
m ([K| + 1)t ete/r, or k #0, (53)
2L, for k=0,
2,0 _ i [T 0P (v(s) + B N(S)) e
p')'a eikt/ce(s) - }l:ir{l) oy 8N(t)2 e dt
™ ([k| = 1), for k #£0,
{0’ fOI‘kZOa (54)
30 o [T 8Rn((8) —h-N()
p’y, eikt/f;i(s) = hl—l—% o ON(t)3 e dt
=7 (6] +1) (k| + 2)r=2 /7, for k #£0, (55)
_471_7.._2, fOI‘k‘an
mr 93P ( (s)+h- N(S)) i
3,0 s 7)Y ihtfr
Pl o) = fim | e
m (|k] = 1) (k| = 2)r=2etke/r, fork # 0, (56)
0, for k=0,
0,1 o [ 0%y(v(s) —h-N(s)) ke
P%eikt/r’i(s) - ,lll_{)% - aN(S) ’ “
me®s/T for k#£0,
{ 0, for k=0, 0
) T 0P ( (S) +hN(3)) ]
o 3 7)Y ikt/r
Py, ei’“/r,e(s) N llllg%) -7 ON(s) i dt
—metks/T | for k #0,
{ 27, for k=0, )




¢

(9)

(h)

1,1, ikt/r
K23 (e*7) (s)

KJA(Em)()

2,1/ ikt/r
K'y,i(e / )(S)

KZ4(/7)(s)

0,2/ ikt
K3 () (s)

K33(e/7)(s)

K27 (s)

K321 (s)

™ 02®,4) (v(s) = h - N(s))

_ 1. — 1
P%eikt/r,i(s) = ’111_1)% oy ON(s) ON(t)
_ﬂ_lklr—l eiks/r, for k ;ﬁ 0,
0, for k=0,
828, (v(s) + h - N(s))
11 e Y
Do) = M | N (s) BN R
—m|k|r—leks/T | for k #0,
0, for k=0,
P2 e (8) = lim / ™ 8@y (v(s) —h- N(s))
", elkt/";i h—0 —Tr aN(s) (9]\r(t)2

w K] (K| +1)r=2 k907, for k0,
0, for k=0,

Lo = Jim [ 8Dy (7(s) + h - N(s))
Py eerel® =i | 3N (s) ONE?

= [k| ([k| = 1) r=2 /7, for k #£0,
0, for k=0,

r 324’7(7:) (’y(S) —h- N(S))

0,2 — 1
P, em/r’i(s) = }%1_1}(1) o AN (s)2
7 (k| —1)r~Le*s/m for k #0,
0, for k=0,
0.2 _ o [T 0°2yy(v(s) +h-N(s)
p.y’eilct/'r;e(s) = ’lll_lg%) o ON (s)2
m (k| +1)r=t e/, for k #0,
271"!"—1, for k=0,

12 e (8) = lim /M 0°@y1)(1(s) — b~ N(s))
Py eikt/n h=0 J _r ON(s)2 ON(t)
{ —7 |k| (|k] —1)r~2e*s/T | for k#0,

0, for k=0,

/M 0Py (v(s) + h- N(s))
—mr ON(s)20N ()
m |k| (Jk] + 1) r=2e*s/m for k #0,
0, for k=0,

1,2 — i
Py einirro(8) = ’111_1)%
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eikt/'l‘ dt
(59)

eikt/r ds

(60)

eikt/’l" dt

(61)

eikt/T dt

(62)

6ikt/’l‘ dt

(63)

eikt/?‘ dt
(64)

(65)

eikt/?‘ dt

(66)




(1) K357 (s)

K93(e%m) (5)

Formulae (50) — (68) describe the action of the operators (30) —
, with & = 0,41, 42, ...
(68) that for any periodic function o : [0, L] — C given by its Fourier series

functions of the form ei*t/T

™ F0y(1(s) =h - N(s)) |

0,3 .
= p7 e;kt/r ( ) - ’{l_l’)r(l) —ar 6N(3)3
m (k| = 1) (k| —=2)r=2e*s/T | for k #0,
0, for k=0,
03 . ™ PPy (y(s) + b N(s))
p,y ezkt/'r ( ) - flll_l_% —r 3N(s)3 e
—m (Jk| + 1) (|k| +2)r2e™s/m | for k #£0,
—47rr2, fork=0.

w .
— Z Gk e27r1.kt/L,

k=—00

the operators (30) — (48) (v is the circle of radius r = —2%) assume the form

(a) KJ(0)(s)
(b) K3 (0)(s)
K35(0)(9)
(c) K2%(0)(s)
K25(0)(s)

—L log L 0_0+ Z _0_ e27rzks/L,

v |K
k#0
w .
—27Gy— Z Gk 627mlcs/L
k=—00
k#0

—mo(s) —maoy,

00
- z a,ke21rzks/L
k=—o0

k#0
wo(s) —mdo,

4t 2n2 & .
TG0+ T S (Kl +1) 8y e
L L

k#0
272 272

Ta(s)+7rH(a)( s) + — o,

L
2 .
E_W_ ('kl _ 1) Gk e27r1,ks/L

L k=-—c0

k#0
272 272
—Z o(s) + mH(0')(s) + =5,
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(67)

(68)

(48) on the circle for
Now, it immediately follows from (50) —

(69)

(70)

(71)

(72)

(73)

(74)




3 3 o
B s in ~  2miks/L

K’?’:O(O')(S) = ——L2 00_—52— Z (lk|+1)(lk|+2)0k€
oty
8 6 w2 83 _
- - a0
4 0 o
K3%(0)(s) = —I—g— S ([l = 1) (k] — 2) 5y e2miks/
7y
g 6 2 83 _
= —LZ—U(S)—WJH(S)—TH( o')(s )—Tz—ao, (76)
K2:1(0)(S) = 7 Z o2miks/L
ey
o0
KOL(o)s) = —2mdo—m 3. Gy e/l
T
= —mwo(s)—7ap, 78)
27r ;
K)i(o)(s) = Z L
k;;a”
= —mH(o')(s), (79)
2m ~ _iks/L
K3Mo)e) = == 3 Iklone
iy
= 'WH(U')(S) (80)
K2i(o)(s) = Z k| (|| + 1) 35 €27ks/L
S
" 271'2 f
= -0 (3)+TH(0‘ )(3) (81)
Kyi(o)(s) = Z k| (k| — 1) 5 e2miks/L
k;;o“’
2 72
= mo"(s)+ - H()(s), (5)
2m? & R .
K}3(0)(s) = T (|k| = 1) e2miks/L
[y
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2 2 92 12
= ~SF ol +mHEE) + 17, )
472 =N 2712 2 R )
KY%0)(s) = <Gt 3 (|E| + 1) 5 e2miks/L
oty
2 2 2 2A
i 2 4r < ~  omiks/L
(l) Kfy:i(a)(s) = —“E‘Z_ Z lkl(lkl—l)o‘ke
s
2 2
= WU"(S)-i--%H(U')(s), (85)
1.2 ir § ~  omiks/L
Kye(0)(s) = 5 > [kl(kl+1)5xe
Ty
2 2
= —wa"(s)-l——%r—H(a’)(s), (86)
j 03 4r o ~ omiks/L
(i) K,y:i(o)(s) = 7 Z (k| = 1) (|k| — 2) Gx e
oty
87!'3 67.‘.2 871'3 ~
- TQ—U(S) —mo'(s) — ‘L_H(U/)(S) ~ 72 %0, (87)
167% _  4nd & L
K’?:Z(U)(S) = __LTGO— Iz Z (k] + 1) (|k] + 2) 0'k€27”ks/L
T
g 672 8w
=~y 0(s) +70"(s) ~ - H(o)(s) = 7560,  (88)

with &% denoting the k-th Fourier coefficient of the function o, and H the Hilbert transform
(see (130) in Section 3.3).

Theorem 2.6 above is proved by direct evaluation of the relevant integrals (in Section 4
below, we compute these integrals via the theory of residues). Formulae (70) — (88) are an
immediate consequence of Theorem 2.6; they provide explicit expressions for the operators
(30) — (48) when 7 is a circle.

The following theorem follows easily from well-known results (see, for example, [19, 13]),
here stated in a slightly different form.

Theorem 2.7 Suppose that v : [0,L] — R? is a k times continuously differentiable Jordan
curve parametrized by its arclength, and that n : [0,L] — IR? denotes the circle of radius r.
Then, for any sufficiently smooth function o : [0, L] - R,

(a) Ey(0)(s) = Kp(0)(s) +Mo(o)(s), (89)
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(b) K(0)(s) = K, {(0)(s) + My(o)(s)
= —mo(s)+ Ni(o)(s), (90)

K32(0)(s) = Ep2(0)(s) + Mi(o)(s)
mo(s) + Ni(0)(s), (91)

(c)  Kpi()s) = Kpi(o)(s) + Mi(o)(s)
= mo(s) + Ni(o)(s), (92)

KD4(o0)(s) = Kf”( )(s) + M7 (0)(s)
= —mo(s) + N{(0)(s), (93)

where Mo,Ml,Nl 2 ¢[0, L] — ¢[0, L] are integral operators with kernels mo(s,t) € cf~1([0, L] x
[0,L]), mi(s,t), ni(s,t) € F~2([0,L] x [0, L]), respectively. Furthermore, M}, N} are the
adjoints of My, N1, respectively, and the operator My is self-adjoint.

Theorem 2.7 approximates the operators K9 K; 9 K%, K2 5 K2, for an arbitrary smooth
Jordan curve by the same operators on the mrcle, Theorem 2.8 below extends these results to
the operators (33), (34), (39), (40), (43), (44). While Theorem 2.7 is well-known, the authors

failed to find Theorem 2.8 in the literature.

Theorem 2.8 Suppose that v : [0,L] — R? is a k times continuously differentiable Jordan
curve parametrized by its arclength, and that n : [0, L] — IR? denotes the circle of radius 71’;,
also parametrized by its arclength. Then, for any sufficiently smooth function o : [0, L] — IR,

71'2
(@ KN = (rels) - I )ols) + K20)(6) + Mao)(s)
= me(s)o(s) +mH(o')(s) + Ne(o)(s), (94)
K386 = ~(mels) = 2 )os) + K2A(0)(5) + Mafo)e)
= —me(s)o(s) +m H(a')(s) + Na(o)(s), (95)
(t) Ki(0)(s) = Kpi(o)(s) + Ga(o)(s)
= —mH(0')(s) + Ga(o)(s), (96)
KL (0)(s) = KLi(0)(s)+ Galo)(s)
= —mH(0')(s) + Ga(0)(s), (97)
0,2 27 0,2
() K0 = —(nels) - 2T )ols) + K22(0)(s) + ME(0)(s)
= —mc(s)o(s) +mH(o")(s) + Ni(o)(s), (98)
71,2
K920)s) = (mels) = 2= )ole) + K32(o)(s) + M (o) (o)
= wc(s)o(s) +mH(o')(s) + Ni(o)(s), (99)
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where c(s) denotes the curvature of v at v(s), and Ma, N, G2 : ¢[0,L] = [0, L] are integral
operators with kernels mo(s,t), na(s,t), g2(s,t) € cF=2([0, L] x[0, L]), respectively. Furthermore,
M3, N3 are the adjoints of My, Na, the operator Gy is self-adjoint, and H denotes the Hilbert
transform (see (130) in Section 3.3).

Remark 2.9 The formulae (90) - (93) above are somewhat misleading, in that they state very
simple facts in a relatively complicated manner. Specifically, each of the operators Ki ?, K,}’%,

Kg }, K5 0 L is a second kind integral operator with smooth (ckF=2) kernel (see, for example, [13]).

In the case of the circle, the kernels of the operators K,; ?, K,% 9, K,(; }, KO L are identically equal
to —5=. Thus, (90) - (93) state the trivial fact that the difference of two smooth kernels is

smooth. We list (90) - (93) for compatibility with the formulae (89), (94) - (99).

Observation 2.10 Formulae (89) - (99) have a straightforward interpretation. Specifically,

0 1,0 1,0 0,1 0,1 2,0 2,0 1,1 1,1 0,2 0,2
each of the operators K, K,Yl,K7e,K,YI,K,Ye,Kvl,KAye,K,Yl,Kve,K,“,Kn,e,zsasum

of a standard operator (the corresponding operator on the circle) and an integral operator with
a smooth kernel.

In Section 4 below, a proof of formulae (94) and (95) is given; the proofs of the formulae
(94) - (99) in Theorem 2.8 are similar and are omitted. Theorem 2.11 below extends the results

of Theorem 2.8 above to the operators K,:; 9 K39, Kz 5 K2, K; 2 K32, K,S 3, K93, Tts proof

is virtually identical to that of Theorem 2.8, and is omitted.

Theorem 2.11 Suppose that 7 : [0, L] — R? is a k times continuously differentiable Jordan
curve parametrized by its arclength, and that 1 : [0, L) — R? denotes the circle of radius 2 ,
also parametrized by its arclength. Then, for any sufficiently smooth function o : [0,L] — R,

(a) K,:::?(U)(s) = —(27r (c(s))2 - 11.2_2 c(s))a(s) + (7r - —s-c(s)) a’(s)

—2mc(s) H(o)(s) + £C( ) K5 (0) () + Ms(0)(s)

= 27 (c (s)) (s) +ma"(s) — 2w (s) H(o)(s) — 3mc(s) H(a")(s)
+N3(0)(s) (100)

K8 = (27 (el )2———2c(s>)a(s)— (s~ Le) "o
27 () H(o)(s) + o cls) KEL(@)6) + M(o)(o

= 27r( 3)20 ) —mo"(s) = 2nc(s) H(o)(s) — 3me(s) H(o')(s)

+N3(0)(s), (101)
B K = (1= Fel) o) + ) Bo)(s) + 5= cls) Krt()(o)
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+Gs(0)(s)

= —wo'(s)+nc(s) H(o)(s) + mc(s) H(a")(s) + G3(a)(s), (102)
K20)s) = (r=7cl6))0"(s) +1¢(s) H0)(o) + 5 cls) KEL(o)(o
+G3(0)(s)
= wo"(s)+nc(s) H(o)(s) + me(s) H(a")(s) + G3(o)(s), (103)

() KR = (r-Fe9)0"(6) + 5= cls) KEH0)6) + G3(0)6)

= wo"(s) +mec(s) H(a')(s) + G3(o)(s), (104)
1,2 L " L 1,2 *
K320)(s) = = (7= 5 cls)) 0"(s) + 5= ls) KR2(0)(s) + G3(o) (o)
= —7n0d"(s)+mc(s) H(d')(s) + G3(o)(s), (105)

(@  K¥0)s) = (27r (c(s))” - %r—?c(s)) o(s) — <7r _ g—c(s)> " (s)

KY(o)(s) = - (27r (c(.s))2 - _I—,E c(s))a(s) + (7r - éc(s)) a"(s)

where c(s) denotes the curvature of v at y(s), and M3, N3, G3 : c[0,L] — [0, L] are integral
operators with kernels m3(s,t), n3(s,t), g3(s,t) € #=4([0, L] x[0, L]), respectively. Furthermore,
M3, N3, G5 are the adjoints of M3, N3, G3, and H denotes the Hilbert transform (see (130)
in Section 3.3).

2.4 Computational Observations

In the numerical solution of elliptic PDEs, one is often confronted with the task of evaluating
some (or all) of the operators (30) — (48) numerically. While this class of issues will be discussed
in detail in a sequel to this paper, here we observe that an inspection of the formulae (50) — (68),
(89) - (93), (94) - (99), (100) — (107) immediately shows that each of the operators (30) — (48) is
a combination of the following: integral operators with smooth kernels, integral operators with
the logarithmic singularity on the diagonal, the Hilbert transform, the derivative of the Hilbert
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transform, and the second derivative. The techniques for the accurate integration of smooth
functions have been available for hundreds of years, and the numerical evaluation of the second
derivative presents no serious problems. Effective techniques for the numerical evaluation of
the Hilbert transform are less well-known, but have also been available for many years (see,
for example, [16]). Efficient integration of logarithmically singular functions is also not very
difficult (see [15, 8, 2]). The only possible source of problems is the derivative of the Hilbert
transform; quadrature rules for the evaluation of the latter have been constructed, and will be
published in [10]. Thus, there exist rapidly convergent schemes for the numerical evaluation
of all of the operators (30) — (48), and, therefore, for the discretization of any problem of
mathematical physics that has been reduced to a set of integro-pseudodifferential equations
involving any (or all) of the operators (30) — (48).

Of course, when a problem of mathematical physics is discretized, one of principal issues
is the condition number of the obtained system of equations. An examination of the formulae
(51), (57), (52), (58) immediately shows that the operators K;:?, K,(Y)”%, K29, KDL are asymp-
totically well-conditioned (being a sum of the identity and a compact operator). The spectrum
of the operator K,‘; decays as 1/k with k the sequence number of the eigenvalue (see (50)), and
its n-point discretization will (asymptotically) have condition number ~ n. Each of the oper-
ators K::?, K;:%, Kg:?, Kg;g, K,%;le, K,?;ze has a spectrum that grows linearly, and the n-point
discretization of each of them will have condition number n. Finally, each of the operators
K,‘:’:?, K,i’%, K,;,’?, KS,’?, K%%, Kg;i, KH},’%, KS;% has a spectrum that grows as k2; an n-point dis-
cretization of any of them will have condition number ~ n?. Thus, whenever the problem to be
solved results in the discretization of any one of the operators K,(y), Kzz?, K ,1:}, K 2,’?, Kg:g, K;:le,
K32, K,‘;’:?, K,f:}, K,if, K,(;:?, K39, K24, K32, K97 there is a potential for condition number
problems, similar to those encountered with direct discretization of differential equations.

Fortunately, formulae (50) — (68) suggest a solution. Specifically, an examination of the
formulae (50), (53), (89), (94) immediately indicates that each of the operators K,? o K::?,
K,f? o KS is a sum of multiplication by a constant with a compact operator, i.e.

K90 K20 =72 I + M, (108)

K3fo Ky =n* T+ M, (109)
with M2 1% compact operators L2[0, L] — L2[0, L]. Similarly,

Ko K20 = n* - T+ M, (110)

K20 oK) =71+ M2, (111)
and

KoKy} =—n-1+M™", (112)

K»ioKY=—n?- T+ M™, (113)

K)o K}t =—n*- T+ M, (114)
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KygoKy=—n"-I+M*", (115)

and
K)o K% =" 1+ M%%?, (116)
KXo KO =2 I+ MP>™, (117)
Ko K% =" I+ M2, (118)
K% oK) =n? - I+ M2 (119)

all of the operators Mi11,00, M0, JVIiOO’H, MO ]Mioz,oo, M9200, Mioo,oz’ M%:92 are compact.
In other words, the operator Kg is a perfect preconditioner (asymptotically speaking) for each
of the second order pseudodifferential operators of potential theory in two dimensions; in turn,
Kfy’ is preconditioned by each of the operators (94) — (99).

Expressions (100) — (107) contain the second derivative, and are, clearly, preconditioned
by the operator of repeated integration I : L2[0, L] — L?2[0, L], defined by its action on the
functions e*™*/L yia the formula

I2(e1l~m-z/L) - 7_n]_~§ X ei-m~z/L' (120)

In other words, for each of the operators (30) — (48), there is available a straightforward

preconditioner. Numerical implications of these (and related) observations will be discussed in

[10].

3 Analytical Preliminaries

3.1 Principal Value Integrals

Integrals of the form

b
E‘-'i% dt, (121)
=

where s € (a,b), do not exist in the classical sense, and are often referred to as singular integrals.

Definition 3.1 Suppose that ¢ is a function [a,b] = R, s € (a,b), and the limit

s—e b
lim ( / o) gy o [ 2) dt) (122)
e—0 a t—s s+e t—s
ezists and is finite. Then we will denote the limit (122) by
b o(t
p.v. o) dt, (123)
a t—s

and refer to it as a principal value integral.

Theorem 3.1 Suppose that the function ¢ : [a,b] — IR is continuously differentiable in a
neighborhood of s € (a,b). Then the principal value integral (123) exists.
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3.2 Finite Part Integrals
In this paper, we will be dealing with integrals of the form

/a ' (f_(tg)2 dt, (124)

where s € (a,b), which are divergent in the classical sense. This type of integrals are often
referred to as hypersingular or strongly singular.

Definition 3.2 Suppose that ¢ is a function [a,b] = R, s € (a,b), and the limit

. S—€ t b t 9
= </ e [ e (pe(S)> (129

exists and is finite. Then we will denote the limit (125) by

b
£p. /a (tw_(ts))z dt, (126)

and refer to it as a finite part integral (see, for example, [7]).

The following obvious theorem provides sufficient conditions for the existence of the fi-
nite part integral (125), and establishes a connection between finite part and principal value
integrals.

Theorem 3.2 Suppose that the function ¢ : [a,b] — R is twice continuously differentiable in
a neighborhood of s € (a,b). Then the finite part integral (126) exists, and

b b
p(t) .. _d o(t)
f.p./a TE dt = PV My dt. (127)

3.3 The Hilbert Transform

For an arbitrary periodic function ¢ € L%[—m, 7] and any integer k, we will denote by @ the
k-th Fourier coefficient of ¢, defined by the formula,

U .
fr= o | etyeas, (128)
-
so that v
w .
o(t)= Y Pue, (129)
k=—00

for all t € [—m, 7).
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Definition 3.3 The Hilbert transform is the mapping H : L?[—m, 7] — L?[~7, 7], given by the

formula
o0

H(p)(s) = _Z ~i sgn(k) Py e, (130)

k0
with ¢ € L?[—m, 7] an arbitrary function. The function H(p) : [-m,7] = C is often referred
to as the conjugate function of .

The following theorem summarizes several well-known properties of the Hilbert transform
(see, for example, [9]).

Theorem 3.3 (a) The mapping H : L?[—n, 7] — L?[—m, 7] is bounded.
(b) For any integrable ¢, the identity

H(p)(s) = p.v.il; /_7; Ef—g%_—t) dt, (131)

holds almost everywhere.
(c) For any function ¢ € ct[—m, 7],

H(@)(s) = ((H@))') (s) = Y [k prets. (132)
iy
In other words,
HD =DH, (133)

where D = ad; is the differentiation operator.

3.4 Boundary Integral Operators

In this subsection, we define boundary the integral operators K%’O, K,%’O, Ks’o, Kg’l, K%’l, K,%’l,
K)?, K}?, K23, that are closely related to the operators (31) — (48) defined in Section 2.

Definition 3.4 Suppose that the function o : [0,L] — IR is sufficiently smooth. Then we
denote by K%’O,Kfy”l : [0, L] = ¢[0,L] and K,%’O,Kg’o,K%’I,Ks’l,KS’Z,K%’z,KS"" : c2[0,L] —
c[0, L] the operators defined by the formulae

L9
EM(o)(s) = /O —(}%“F)((%@a(t)dt, (134)

fp. /L 82@7@)(7(3))

SN o(t)dt, (135)

K3%(0)(s)

3 S
K¥(0)(s) = fp. /0 La—@a-i’]%l(%a(—)—)a(t) dt, (136)
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o(t)dt, (137)

KY(o)(s) = fp A NOE0 o(t)dt, (138)
K2'(o)(s) = fp. / g “)”“) ((Stla(t)dt, (139)
K%(c)(s) = fp. /0 ’ 324;}3)(;’2(3)) o(t) dt, (140)
K}?(0)(s) = fp OL gjﬁ;gggif()t)) o(t) dt, (141)
K%(0)(s) = fp. /O L?j‘%f;)((—s—”)’@a(t)dt, (142)

respectively.

Remark 3.4 Obviously, the operators K01 K92, K03 K2 given by the formulae (137),
{0’

(140) - (142) are the adjoints of the opemtors Ky 0 K20 K3° K2 1 defined by (134) - (136),

(189). Furthermore, K%’l, defined by (138), is self ad]o'mt

4 Proof of Results

In this section we prove the results from Section 2. The outline of this section is as follows:
First, we consider the case where v is a circle. We provide the proof for Theorem 2.6. In
Lemma 4.2 we give explicit formulas for the boundary integral operators (134) — (140) for the
case where v is a circle. Then, by combining Theorem 2.6 and Lemma 4.2, we immediately
get the so-called jump conditions for the operators (12) — (25) on a circle. These are stated in
Theorem 4.3.

Next, we consider the case where «y is an arbitrary and sufficiently smooth Jordan curve.
Since the proof of the identities (94) — (99) in Theorem 2.8 are similar, we only provide the
proof for (94) and (95). In fact, (94) and (95) in Theorem 2.8 follow immediately from Theorem
4.7 and Lemma 4.6. The proof of Theorem 4.7 is based on Theorem 4.3 and the approximation
(178) given in Lemma 4.5.

Proof of Theorem 2.6 Since the proofs for the identities (50) — (64) are nearly identical, we
only provide the proof for the interior limit of the quadruple layer potential (53). Further, it
is enough to prove (53) for the case r = 1; the general case follows by a simple transformation
of variables. We choose the parametrization

7(t) = (cos(t),sin(t)) (143)
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where t € [—, 7]. It immediately follows from (143) that

/W 8@, (v(s) = h - N(s))
o AN(t)?
_/7‘ 1-2-(1—h)-cos(t—s)+ (1 —h)2 cos(2(t—s))
Jen (1+(1—h)2—2-(1—h)-cos(t —s))?
_ ik, /" 1—-2-(1—=h)-cos(t) + (1 —h)?-cos(2t) ikt
B —r (14+(1=h)2=2-(1—h)-cos(t))?

ekt dt =

dt, (144)

for any s € [—m, 7). We will use calculus of residues to evaluate the integral (144). To this

effect, the substitution .
z=e", (145)

converts (144) into

giks /7’ 1—2-(1—h)-cos(t) + (1 —h)? - cos(2t) Skt gy —
—r (1+(1=-h)2=2-(1—h)-cos(t)?
_eiks./ =i (1—(1—h)(z+z“1)+%(1—h)2(z2+z—2)
B =1 2 (1+(1—h)2—(1—=h)(z+271))?

) cZFdz,  (146)

and after simple algebraic manipulation, we get

j-(1—(1_h)<z+z—1)+%<1—h)2<z2+z‘2>) =
s\ G AR (=R et ) )

1 izkt1 izk-1
=3‘>3'(“((1—h)—z)2‘(z(l—h)—1>2>' (140

Substituting (147) into (146), we obtain

/” 2@, (7(s) = h- N(s)) ikt gy _
- AN (1) =
_ Giks | 1kt izk=1
- /|z|=1 2 ( (1-=h)—2)% (z(1—=h) - 1)2) dz. (148)

Now, formula (53) for r = 1 follows by applying a standard residue calculation to (148). O

Remark 4.1 Formulae (50) - (52), (57) — (58) follow from well-known results (see for example
[11, 8]). While the derivation of (53) - (56), (59) - (64) is quite similar, the authors failed to
find them in the literature.

The operators KA}’O, K,%’O, K::’*O, K%'l, K,f’l, KP,’I, K7°’2, K2’3, K%ﬂ defined by (134) - (141),
assume a particularly simple form on the circle. The following lemma follows immediately from
an elementary computation.
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Lemma 4.2 Suppose that vy is a circle of radius r parametrized by its arclength with exterior
unit normal denoted by N. Then, for any sufficiently smooth function o : [—nr,7r] — C:

(¢)

(b)

(c)

(d)

(f)

(9)

(h)

()

K1(0)(s)

K2%(0)(s)

r
/ —G—(Q dt = —m oy,

_ar 27

1
fp/ <2T2 2r2cos(t‘Ts)_.2r2> o(t)dt
rr7\ 50 + 1 H(0')(s),

T 1 3
f.p. - - t
P /.m‘ ( r3 273 cos(t=2) — 2r3> olt)dt

T
—27r25, —37r Y H(o')(s),
nr
/ ( )dt —71‘30,
—ar 2T

dt = —m H(d")(s),

./,
Lol By 2r2cos( £)

dt =nr 1 H(d')(s),

w
Lol cos( )—2r3

1
wf,
b (27”2 272 cos(&2) —27‘2) olt)dt
ﬂf‘%+wﬂwxa,
f. dt = —-IH !
b /7r72T3 COS )-——2'r3 mr (0')(3),

f wr 1 3 d
.p- - = t)dt
P /_m r3 273 cos(i=2) — 273 o(®)
277725, - 3nr L H(d')(s),

where H denotes the Hilbert transform (see (130) in Section 3.3).

(149)

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)

The following theorem is an immediate consequence of Theorem 2.6 and Lemma 4.2. It

summarizes the so-called jump conditions for the integrals (12) —
where T is a circle.

(29) on the boundary T,

Theorem 4.3 Suppose that 7y is a circle of radius r parametrized by its arclength with exterior
unit normal denoted by N. Further, suppose that H denotes the Hilbert transform (130). Then,
for any sufficiently smooth function o : [—7r,nr] = C,

K>3(0)(s)

= —mo(s)+ K%’O(U)(s) )
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K}(0)(s) = mols)+K2O(0)(s), (159)

() EKXRO)s) = mr7lo(s) + K30)(s), (160)
K2%(0)(s) = —mrto(s) +K3%(0)(s), (161)
(c) EX(o)(s) = —2nr7%a(s) +ma"(s) + K3°(0)(s), (162)
E3%(0)(s) = 2mr%a(s) —ma"(s) + K3(0)(s), (163)
(d) KXY (o)(s) = ma(s)+ (Ky°) (0)(s), (164)
K%L(0)(s) = —mo(s)+ (K30 (o)(s), (165)
() KLNo)(s) = Kii(0)(s) = K}'(0)(s) = —m H(o)(s), (166)
() KXO)Ns) = —7md"(s) + K3 o)), (167)
K2L(o)(s) = ma"(s)+ K} (a)(s), (168)
(9) KYi(0)(s) = —mr7ta(s) + K2 (0)(s), (169)
K% 0)(s) = mrlo(s)+ Ky*(o)(s), (170)
(k) K2(0)(s) = mo"(s) + (K2Y) (a)(s), (171)
K2(0)(s) = —mo"(s) +(K3N) (0)(s), (172)
(i) K3 (0)(s) = 2mr2o(s) —ma”(s) + (K39 (0)(s), (173)
K% (0)(s) = —2mr 2o(s)+mo"(s) + (K3)(0)(s). (174)

We now proceed to the case where v is an arbitrary sufficiently smooth Jordan curve. The
following obvious lemma can be found in most elementary textbooks on differential geometry
(see, for example, [4]).

Lemma 4.4 Suppose that v : [0, L] — R? is a sufficiently smooth Jordan curve parametrized
by its arclength with the exterior unit normal and the unit tangent vectors at y(s) denoted by
N(s) and T(s), respectively. Then, there exist a positive real number a (dependent on v), and
two continuously differentiable functions f,g : (—a,a) = R (dependent on vy), such that for
any s € [0, L},

ct2
v(s+t) —v(s) = (t +1¢3. f(t)) -T(s) — (—;— +13. g(t)) -N(s), (175)

for all t € (—a,a), where the coefficient ¢ in (175) is the curvature of y at the point (s).
Furthermore, for all t € (—a,a),

IF B < 1" (1 (176)
lg@®)l < 17" () (177)
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In the local parametrization (175), the potential of a quadrupole located at y(s) and oriented
in the direction N(s) assumes a particularly simple form, given by the following lemma.

Lemma 4.5 Suppose that v : [0, L] — R? is a sufficiently smooth Jordan curve parametrized
by its arclength. Then, there ezist real positive numbers A,a and hg such that for any s € [0, L]

0?Dyo4n(¥(s) —h-N(s))  h2—#>  chi* (5% +1?)
aN(3+t) (h2+t2)2 (h2+t2)3 SA; (178)

for all t € (—a,a), 0 < h < hg, where the coefficient c in (178) is the curvature of v at the
point y(s).

Proof. Without loss of generality, it is sufficient to prove the lemma for the case where
=0, 7(0) = 0, and 4(0) = (1,0). Substituting (175) into (9) and evaluating the result at
= (0, h), we obtain

P04 (x) po(h,1)

8N(t)2 - (h2+t2+'r(h,t))2 ’ (179)

where po, 7 : IR?2 = IR are functions given by the formulae

po(h,t) = {h —t+cht+ "’—;3 - 5; +3RE2(f(t) +9(t)) - 26 (2£(t) - (1))
—fgf(f(t) +59(0) +hE(f ) +9'@) - t* (f’(t) t)) - 3t5(f (12 +9(2)?)
—%f (F®)+d®) - 1@ (1) - g ®) - 29 ( }
[h+t—cht+ —g + 9—;—3 +3he(f(2) 10) +263(2f (¢ ) +9(2))
—%f(fu) —5g(t) + e (11(1) - g'(®) + £ (1'®) + 9'(9) + 38 (£ () + 9(2)°)
—Ejf(f'(t) —g' () + 0 F@(F (1) +9'@)) — g0 (£(0) = g'( )} (180)
r(h,t) = —cht®—2ht’g(t) + %ﬁ +2t4 £(t) + ctPg(t) + O (F (1) + 9(2) ). (8
We also introduce the notation
pr(h,t) = (W + 8 +r(h0) — (K2 + £2)" = 2(8% + ) - r(h,t) +r(h, )%, (182)

Obviously, (180) — (182) are algebraic combinations of f, g, f’, ¢, t, and h, and an examination
of formulae (180) - (182) immediately shows that there exist positive real numbers a, ho, and
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C (dependent on ) such that

|po(h,t) = B+ —3cht?| < C(R? +1%)°, (183)
]po(h,t) pr(h,t) —2¢h 2 (R2+¢2) (W2 —12)| < O (R2+1?)", (184)
|po(ht) - p1(h, 12| < C (W +17)°, (185)
j4! (h7 t)
o <, 186
(h2 +t2)? (186)
for all h < hg, t € (—a,a). Substituting (182) into (179), we have
F®y(a) _ po(h, 1)
8N(t)2 (h2 +t2 (1 + P;—:ltzt )

po(h,t) & ) p1(h,t)k
_ b 187
h2 + t2)2 Z( h2 + t2)2k ( )

where the convergence of the series follows from (186). Combining (183) — (185), we obtain

po(h,t) —h% +t2 —3cht?

{32@7@) (z) B h? —¢2 cht? (5h? +t?)

ON(®? (2 +)?  (R+2)° |° 07 72)?
po(h,t) - p1(h,t) — 2cht? (h? +t2) (h? - po(h,t) - p1(h,t)*
+ 2 214 + Z 2 2\2k+2
(h? +¢%) = (2 +12)
c of |
< .
< 2C+C T—a’ (188)
with a defined by the formula
a= _pl(_}f’_t)_2 ) (189)
h<hg , t€(—a,a) (h2 + t2)
Now, introducing the notation
2
e
A—2C+C-1_a, (190)

we obtain (178). O

Lemma 4.2 provides an explicit formula for the operator K3 2.0 defined in (135), in the
case when v is a circle. The following lemma shows that the operator K> 20 on an arbitrary
sufﬁc1ently smooth Jordan curve of length L, is a compact perturbation of Kz 2.0 on the circle

of radius = 5. Its proof is an immediate consequence of estimate (178) in Lemma 4.5.

Lemma 4.6 Suppose that v : [0, L] = R? is a sufficiently smooth Jordan curve parametrized
by its arclength, and that 1 : [0,L] — R? denotes the circle of radius Q—%, also parametrized
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by its arclength. In addition, suppose that o : [0,L] — R is a twice continuously differentiable
function. Then,

L 3’9,
£p / t)dt = f.p / azs)(ty o(t)dt + Ma(o)(s),  (191)
where My : ¢[0, L] — [0, L] 18 a compact operator defined by the formula
_ [E(8B,0(1(s) D%y (n(s))
My(o)(s) = /0 ( NG~ ) cBdt. (192)

Furthermore, for any t # s,

2Nl 0?1
mel) = TR o2

27\ 2
(%)

I(s) = v(8)112 =2 (%) (1~ cos (2£(s - 1))
+ ) )

2 , (193)
Ihv(s) = Y@ 2 (&) (1 - cos (E(s - 1))

and fort = s, \
may(s,s) = % (c(s))2 - 1—52— (2%) , (194)

where c(s) is the curvature of v at the point v(s), and ms : [0,L] x [0, L] — R is the kernel of
the operator M.

The following theorem provides the so-called jump conditions for the operators (14) and
(15) on the boundary I', when T is sufficiently smooth.

Theorem 4.7 Suppose that v : [0, L] — R? is a sufficiently smooth Jordan curve parametrized
by its arclength. Then, for any sufficiently smooth function o : [0,L] = IR,

K33(0)(s) — K35(0)(s) =

o [E[8%®y(v(s) +h-N(s)) 8%, (v(s) — h- N(s))
= Jim | ( N BT o(t)dt

= —2mc(s)o(s), (195)

and
K2(0)(s) + K28(0)(s) =
i [ (62%)(7(3) +heN(s)  8y9((s) —h-N(s)) ) o(t) dt
0

h—0 ON (t)2 ON (t)?

3
—2.fp /a avzi;)tp o(t) dt, (196)
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where c(s) denotes the curvature of y at y(s). In other words, the quadruple layer potential
with density o (see (6)), can be continuously extended from 2 to @ and from RR2\ Q to R?\ Q,
with the limiting values given by the formulae

L g2
P25 () = KJi(0)(s) = me(s)a(s) + L. /0 —%(—S)—)a(t) dt, (197)
P25.o(s) = K3S(o)(s) = —me(s)a(s) +1Lp / Lo q;;i;’gg o(t)ydt.  (198)

Proof. Without loss of generality, we can assume that s # 0 and s # L. We begin by
proving (196). Suppose that 7 : [0,L] — R? is the circle of radius 5— parametrized by its
arclength. We define the functions Eh Eh [0,L] x [0, L] = IR via the formulae

0%@.y(v(s) + k- N(s)) = 8°@yp(v(s) —h-N(s))

ohs,t) = AN N (P , (199)
02 s)+h-N(s 828, (n(s) — h -
Sh(s,1) Q"(t)(Z(N)(; M) "()(Z,(N)(t)z N(S)), (200)

and, substituting (199), (200) into (196), obtain the identity

2,0 \ L
K39(0)(s) + K22(0)(s) = Jim | " (s, 1) olt)di + lin /0 (Sh(s,8)~ Sh(s,1)) o(t) . (201)

Substituting (160), (161) in Theorem 4.3 into (201), we have
K25(0)(s) + K25 (0)(s) =

L 2% L
=2 fp / n(t)(n o(t)dt + lim (3h(s, 1) — Sh(s,1)) o(t) dt. (202)
0

Due to Lemma 4.5, there exist posmve real constants Cp, a, and hq such that for any s € [0, L]
| h(s,) = Zh(s,9)] < Co. (203)

for all |t —s| < a, 0 < h < hg. For any t # s and sufficiently small h, both Z’;(s,t) and Z,’;(s,t)
are c®-functions. Therefore, there also exist positive real constants hq, Ci such that for any
s €0, L]

| Sh(s,1) - Sh(s,8)| < O, (204)

for all |t —s| > a, 0 < h < h;. Now, applying Lebesgue’s dominated convergence theorem (see,
for example, [18]) to the second integral of the right hand side of (202), we obtain

L
: h h _
’le%J A (Z,Y(s,t) - (s, t)) o(t)dt =

L . N
= [ lim (Sh(s,0) - Thts ) o) dt
= L (88 (1(s)) 8By (n(s))
- 2'/0 ( ON(t)? 87}V(t) )"(t)dt~ (205)
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Finally, formula (196) immediately follows from the combination of (202), (205) with (191),
(192) in Lemma 4.6.

We now proceed by proving formula (195). We define the functions A%, A% : [0, L] x [0, L] —
R via the formulae

8@, (7(s) + h-N(s))  0*Py)(v(s) —h- N(s))

Al(s, ) FIOE AN : (206)
AZ (5.8) = az@,,(t) (rgjsg(;zh.N(s)) B a2q>n(t) (775}(;;: - N(s)) , (207)
and, by substituting (206), (207) into (195), obtain the identity
KXo )( )—KZ’D(U)(S) =
5o h_m/ Ah(s,t)o(t) dt + lim OL (A’,;(s,t) - fgf%r_fi : A,’;(s,t)) o(t) dt
(208)

Substituting (160), (161) in Theorem 4.3 into (208), we get

K2%(0)(s) — K28(0)(s) =
c(s) L
27

= —2mc(s)o(s) + lim ’ (A’,;(s,t) -

A ) - Ah(s, 1)) o(t)dt.  (209)

Due to Lemma 4.5, there exist positive real constants Cp, a, and hg such that for any s € [0, L]

h
’Av(s,t) oL

ABs,0)| < G, (210)
for all |t—s| < a, 0 < h < hg. For any t # s and sufficiently small h, both A’;(s, t) and Af;(s, t)
are c®-functions. Therefore, there also exist positive real constants h;, C; such that for any
s€(0,L]

2(8,8) = 9—(2537]1 : AZ(s,t)’ < Cr, (211)

for all |t — s| > a, 0 < h < h;. Applying Lebesgue’s dominated convergence theorem (see, for
example, [18]) to the second integral of the right hand side of (209), we have

L s
Jim | (Ai;(s,t) - 0—(23-); : A',;(s,t)) o(t) dt = /0 lim (ah(s,1) - c(z 3( - Ak, t)) a(t)(dt. |
212
Examining (206), (207), we obviously have
lim (Al3(s, ) - (;)L Ali(s,1)) =0. (213)

Therefore, the integral on the right hand side of (212) is zero, from which (195) follows imme-
diately. O
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5 Generalizations

We have presented explicit (modulo an integral operator with a smooth kernel) formulae for
integro-pseudodifferential operators of potential theory in two dimensions (up to order 2). The
work presented here admits several obvious extensions.

a. Formulae (89) — (107) have their counterparts for elliptic PDEs other than the Laplace
equation. Indeed, for any elliptic PDE in two dimensions, the Green’s formula has the form

G(z,y) = ¢(z,y) - log(llz — yll) + ¥(z,9), (214)

with ¢, 1 a pair of smooth functions; derivations of Section 4 are almost unchanged when
log(||z — y]|) is replaced with (214). In particular, the counterparts of the formulae (89) — (99)
for the Helmholtz equation (with either real or complex Helmholtz coefficient) are identical to
(89) - (99); the counterparts of the formulae (100) — (107) for the Helmholtz equation do not
coincide with (100) — (107) exactly; instead, they assume the form

3,0 2 2 !
(a) K i(o)(s) = —2m (c(s)) o(s)+4nk’o(s)+ma"(s) —2nc(s) H(o)(s)
—3mc(s) H(a')(s) + N3(o)(s), (215)
2
K¥(a)(s) = 27 (c(s)) o(s) —4mk2o(s) —mo"(s) — 2nc(s) H(o)(s)
—3me(s) H(o")(s) + Na(o)(s), (216)
(b) K,fﬁ(o)(s) = —4nk’o(s)—7wo"(s)+nc (s)H(o)(s) + mc(s) H(a')(s)
+G3(0)(s), (217)
K2(o)(s) = 4nm k2o(s) +mo"(s) +nc(s) H(o)(s) + mc(s) H(a')(s)
+G3(0)(s), (218)
(©  K}0)(s) = 4mk’o(s)+ma"(s)+me(s) H(o')(s) + Ga(o)(s), (219)
K,}”z (0)(s) = —4nm k2 o(s) —mo"(s) +mc(s) H(a')(s) + C?;,(a)(s) , (220)
@ K%0)s) = 27 (c(s)) 0ls) — 47k o(s) ~m0"(s) — m(s) H(o)(5)
—3mc(s) H(o")(s) + N3(0)(s), (221)
Kg:i(a)(s) = 27 ( (s )) o(s)+4nk?o(s)+ma"(s) —nc(s) H(o)(s)
—3me(s) H(a')(s) + N3(o)(s), (222)

where k € C is the Helmholtz coefficient, and the operators N3, G3, Ns, Gy : L?[0,L] — L?[0, L]
are compact.

b. The derivation of the three-dimensional counterparts of formulae (89) — (107) is completely
straightforward; such expressions have been obtained, and the paper reporting them is in
preparation.
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c. In certain areas of mathematical physics, one encounters integro-pseudodifferental equations
whose analysis is outside the scope of this paper. An important example is the Stratton-Chew
equations, to which Maxwell’s equations are frequently reduced in computational electromag-
netics. Another source of such problems is the scattering of elastic waves in solids. Problems
of this type are currently under investigation.
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