Yale University
Department of Computer Science

Constrained Randomization For Parallel Communication

Abhiram G. Ranade

YALEU/DCS/TR-511
January 1987

This work has in part been supported by the Office of Naval Research under con-
tracts N00014-84-K-0043 and N00014-86-K-0564. Approved for public release:
distribution is unlimited.




Constrained Randomization For Parallel
Communication *

Abhiram G. Ranade

Yale University
Department of Computer Science
New Haven, Connecticut

Abstract: Several algorithms for parallel communication include
random reorganization of messages as an intermediate step. This
paper presents a technique by which this step can be carried out in
exactly log N message cycles, where N is the number of processors,
for a large class of realistic networks. Although the randomization
accomplished is not total, it is shown to be sufficient for some of the
parallel communication algorithms.

1 Introduction

Randomization was proposed by Valiant and others [1,6,10,11] as a solution to
the problem of parallel communication on a network computer. Their methods
consist of a randomization phase in which the messages to be delivered are
sent to independent randomly chosen destination, followed by a routing phase
in which the messages are forwarded to the correct destinations. For realistic
network computers (i.e. with a realistic number of processors, each processor
having only a few communication links) consisting of N processors, randomized
communication accomplishes message delivery in O(log N) time, as opposed to
O(log? N) time or larger for practical deterministic algorithms [2,3,8].

The subject of this paper is the randomization phase. A technique called
Constrained Randomization is proposed, using which the randomization phase
can be completed in deterministic time, while still guaranteeing message delivery
in the routing phase in O(log N) time with high probability. Using constrained
randomization, messages are not sent to totally randomly chosen intermediate
destinations, but instead are permuted, the permutation being randomly chosen

*This work has in part been supported by the Office of Naval Research under contracts
N00014-84-K-0043 and N00014-86-K-0564.



in a distributed manner from a large set P of permutations. In particular,
the randomization is performed using an Omega network and P is the set of
permutations that can be performed in one pass through the Omega network.
It will be seen that constrained randomization has two immediate advantages.
First, the randomization is accomplished faster viz. in exactly z — 1 4 log N
message cycles for  message sets. As opposed to this, total randomization can
be acheived in k(x — 1+ log N) message cycles only with high probability, with
k ~ 8, typically. Secondly, constrained randomization uses half as many random
bits as are required for complete randomization. It is felt that constrained
randomization may be useful for problems besides data movement.

This paper is organized as follows. Sections 2 and 3 define the network
configuration and the communication model. Sections 4 and 5 analyze the
problem of routing a single message permutation. Sections 6 through 8 consider
the problem when each source has multiple messages to send. The discussion
uses a Benes network formed using an Omega and an inverse Omega network.
But it is applicable to other networks like the hypercube, cube connected cycles
etc. because of well known transformations [9,12].

2 Configuration

The architecture being considered here consists of N message sources and N
message sinks connected together by two interconnection networks. The first
interconnection network, called the Randomizer connects the N message sources
to N nodes called intermediate destinations. The second network, called the
Router connects the N intermediate destinations to the N message sinks.

The Randomizer sends the messages originating at the message sources to
random intermediate destinations. This is accomplished in exactly log N time,
and no queueing is required within the Randomizer. The Router is a parallel
communication system (described later), and is used to route the messages from
the intermediate destinations to the final destinations.

In this paper, the function log is used to denote the logarithm of a number
to the base 2. Also, the bits in an n bit binary number are numbered 1 through
n from the most significant bit through the least significant.

2.1 Randomizer

The Randomizer (RAD) is an Omega network [5,12].

An n stage Omega network has N = 2" inputs and outputs. The stages
are numbered 1 through n starting from the input side. Each stage contains
N/2 switches. Each switch has two inputs and two outputs, and a capability
to generate a random bit every cycle. The switch can either route the mes-
sages it receives on its inputs onto corresponding outputs, or exchange them
before routing them. The random bit is used to decide whether or not to




exchange the messages. These switches are numbered 0 through N/2 — 1, and
stage inputs/outputs p;..p,_10 and p;..p,—11 form the inputs/outputs to switch
P1.-Pn—1. Output p;..p, of stage 7 is connected to input py..p,p; of stage i + 1.
Switches in stage 7 are called i-switches. Network output j is taken from output
J of stage n. Network input p;..p, is connected to input ps..p,p; of stage 1.

If s, and s; are switches, then stage(s,) will denote the stage of s,. If there
is a path between s, and s; and stage(s,) < stage(s;) then s, < s3. The other
operators >, <, >, = are similarly defined. Open and closed switch intervals are
also defined e.g. [sq,53) = {s| 54 < 5 < :}.

The following proposition describes how a message can travel from input
a;..a, of an Omega network to output b;..b,. The proof can be found in [5]-

Proposition 1 There exists a unique path from input a;..a, of an Omega net-
work to output by..b,, and this path passes through input a;1..a,by..b;_1a; and
output a;41..a4,b1..b; of stage i.

2.2 Router

The Router (RTE) is an inverse Omega network. An inverse Omega network is
an Omega network with inputs and outputs exchanged. The stages of an inverse
Omega network will be assumed to be numbered 1 through n starting from the
output side. Again, the switches in stage ¢ will be called i-switches. As for the
Randomizer, the following proposition describes how messages travel from the
input a;..a, to the output b;..b,.

Proposition 2 There exists a unique path from input a;..a, of an inverse
Omega network to output by ..b,, and this path passes through input b1 ..bya;..a;
and output b;y1..bya;..a;_1b; of stage i.

2.3 The Communication Model

The Router is a parallel communication system as described by Valiant[11]. A
parallel communication system (PCS) has the following features:

1. There is a directed graph G = (V, E) where V is a set of nodes, and E
the set of edges between them.

2. There are a total of T" messages in the system at any time. Each mes-
sage carries with it a ticket for book-keeping. Initially the ticket contains
information about the name of the message, its destination address, and
possibly a total or partial specification of the path. The ticket is used to
route the message towards its destination, and the routing of a message
only depends on the contents of its ticket. In particular the routing does
not depend upon the presence of other messages at the node. During
routing, the ticket of a message may be altered. Again, these alterations
depend only upon the original contents.




3. At every integral instant (i.e. t = 0,1,2...) each message is at some node.
During each unit interval (i.e. time period (¢,¢ + 1) for integral t), each
edge can transmit one message in the sense of its direction.

4. At every node there is one queue for each outgoing edge. At the start of
each unit interval, each queue contains a set of messages, and the Queueing
Discipline determines which one is to be at the head of the queue, provided
the queue is non-empty. During the unit interval, the message at the head
of every non-empty queue is transmitted along the associated directed
edge to the neighbouring node.

5. At the end of every unit interval, the messages at a node may consist of
those that have just arrived from a neighbouring node, others that were
waiting at one of the queues during the last interval, and others that were
already finished (i.e. had arrived at their final destinations) before this
interval. The routing algorithm decides for every unfinished message what
queue it is to be in, on the basis of its ticket.

‘Some definitions follow. The delay of a message is the total time it waits
unserved in the queues. The route is the path it follows in G. A message A is
said to delay a message B at time ¢ if at time ¢t A and B are present in the same
queue at some node and A is chosen for transmission. Two messages are said to
collide if their routes share an edge (irrespective of when they pass through the
shared edge). A run R of a Parallel Communication Scheme is a specification of
the node at which a message is at a given instant, i.e R : A x I — V where A is
the set of messages, and I is the set {0,1,2..} (time). A scheme is non-repeating
if whenever two packets take paths e;..e, and fi..f, (with e;, f; € E) in which
ej = fr and ¢, = fi, (j > 1) it is the case that j — I = k — m and ep = fotk—j
forl<p<j.

We require the following result, which holds for all queueing disciplines in
non-repeating communication schemes. The proof can be found in [11].

Proposition 3 If a message has a delay of d, then there are at least d other
messages which collide with it.

2.4 The Router As A PCS

For the Router, G is the graph of the inverse Omega network. The routing
algorithm is fairly simple: at each switch the appropriate bit of the message
destination is used to place the message onto the correct output queue. The
ticket for each message is simply its final destination. Finally, because there is a
unique path between any source and any destination, it follows that the scheme
is non-repeating.




3 Benes Network Characteristics

This section derives some results about the structure of the Benes Network.
Some notation is first defined. Capital Roman letters are used to identify
messages. If A is a message, then A’, A", A" denote the numerical address of
the source, the intermediate and the final destination respectively. a! denotes
the i** bit of the binary representation of A’ and so on. Thus, for example
A" = afa}..a}, in binary. If z is a single bit, then Z denotes the complement of -
z.

Lemma 1 If the paths of messages A and B share an i-switch without sharing
a link in RN'D then o =b; and a; = E:

Proof: In RND the messages A and B enter the same switch through sep-

=t =
o / Yl 1" [ / ! Bl 1 [
arate inputs. Thus a;,,..apa{..al_ja} = bl ,..b)b7. b} \b;. Thus a} = b;.

Similarly, they leave the switch at different outputs. Thus a},,..a},a!..a! =
by b 04 b2 b, Thusa) =5,

Lemma 2 If the paths of messages A and B separate at an i-switch in RTE
. =
after sharing at least one edge, then af..a}'a}..a} = b; bj'} . b0y B!

Proof: The two messages share at least an edge, hence they must enter at the

same input of the i-switch. Thus a},..a;'ay..af = by}, .b}'b.b!!. Since their

paths separate at this switch, these must be the two outputs of the same switch,
" iy

thus: af},..ay'al..a}_ja}’ = b}, by b_,b; . Hence the result follows.
Theorem 1 In RTE, if the paths of distinct messages A and B leave the path
of a message M at an i-switch and a j-switch respectively after sharing at least
one edge (separately, perhaps), with i < j, then in RN'D, the path of A upto an
t-switch is switch disjoint from the path of B upto a j-switch.

. " " 1 "o ==, N "1 " 7 111 "o
Proof: By lemma 2 a}’..aaf..a} = m}'m{},..m'm{..m! and by’..by'by..bf =

n
m;'mi.my'm{..m} Thus af.a = m{.m{ = b/..b! because i < j. Hence for
any k < i aj = by. Let, in fact the two paths in RN'D share a k-switch, with
k < i. In RN'D, by construction the messages cannot share links. Thus lemma

1is applicable and thus a} = EZ, contradiction.

4 Permutation Routing

Suppose each of the N message sources has one message initially, destined for
one of the message sinks such that each of the N message sinks receives exactly
one message. It will be shown that these messages can be delivered in O(log N)
time with high probability.



4.1 Proof Technique

The proof technique is adapted from [7] and is based on the concept of Kolmogorov-
complexity [4].

Let T be the class of one dimensional Turing machines with tape alphabet
{0,1,B}. Let U be a Universal Turing machine in T'. For w;,ws € {0,1}*
define the Kolmogorov-Complexity by:

K(w; | w2) = The length of the shortest 0/1 string (‘program,
description of wy’) p, such that U with input pBws computes w;
and stops. K(w) = K(w | emptystring).

A simple counting argument can be used to prove the following proposition,
stated here from [7]. This result says that strings that have short descriptions
are unlikely to be generated in random trials.

Proposition 4 Let wy € {0,1}* be fized and chose wy € {0,1}" by tossing a
fair coin n times. Then for all c:

probability({wy | K(wy | wa) <n— c})<27°

4.2 Kolmogorov Complexity of a Run

Given a deterministic routing algorithm, the only variation in runs is that caused
by the random bits selected in RAD. The number of bits chosen at random
is (N log N)/2. Thus there are 2(N108N)/2 different runs. Each different run is
completely identified by the random bits chosen.

Let £ be an ordering of the switches in RAD, with £(¢) representing the ith
switch as per the ordering. Let 7 represent the message permutation encoded
in some form. Given m, a run R of the parallel communication system can
be completely identified by a bit string wgr where the ith bit of wg is the bit
generated at switch £(7).

Definition 1 The Kolmogorov-Complezity of a run R given 7 is defined as
C(R) = K(wg | 7).

It will be shown in the following section that runs having large delays for a
message permutation 7 have descriptions of length less than |wg| = 2V 108 N/2
and thus, low probability.

5 Description Of A Run

The description of a run consists of the following components:

1. Description of the intermediate and the final destinations of a message M
suffering a maximum delay.



2. Description of messages that collide with M. This description is in n
parts, the i** part being the description of the destinations of the set of
messages leaving the path of M at an i-switch.

3. Serial specification of all the random bits which cannot be deduced from
the above.

5.1 Describing the message with the maximum delay

Specification of the intermediate and final destinations of M requires n bits
each. The source of M’ can be found using 7. Thus, knowing M’ and M”, it is
possible to construct the path of M in RAD. This reveals n random bits, one
for every switch on the path.

5.2 Describing Colliding messages
Let C; messages leave the path of M at an é-switch in RTE. By lemma 2

a’..ay'al. .ol = m/'ml;. . m'm{. .m{ for every such message A, i.e., all the C;

messages must have destinations of the form * * .. x m{’..m/’. But each message
has a unique destlna,tlon Thus there are ( ¢ ) possibilities. Thus naming one

of these requires log( ¢ ) bits. The number of bits required is variable, and
thus there is a parsing problem This can be solved by prefixing the above bit
string with a parsable string that encodes C;. Since ¢ is known, it is possible to

compute log (2 ) C; can be represented in a parsable form using 2log C; bits
as follows. The first component of the description consists of a string of 1°s of
length log C;. This is followed by a zero, and then by the representation of C;
in binary which requires another log C; bits. The complete description of the
set for a given i is as follows: string of log C; 1’s terminated by a 0; value of
C; in binary, which reqmres log C; bits; and the descrlptlon of the C; messages,

which requires log( . ) bits. Thus a total of log (2 ) + 1+ 2log C; bits are
required.

The above encoding identifies the set of messages leaving the path of M at
an i-switch by their final destinations. Given the permutation =, it is possible
to find their sources. The most significant i bits of the intermediate destination
are known as well, and thus this allows one to construct the path of every
message upto and including an i-switch in RA'D. However by theorem 1, all
these paths, for all ¢ are switch disjoint. Specifying a path in RAD reveals
the state of all the switches through which it passes. Since each path upto the
output of an i-switch passes through ¢ switches, C;i switch settings are encoded
in this description. The gain in description is:

i—1

Cii — log (2(7

i

C
) —1-2logC; > C,-+C,-10g?'-—2log0,- -1



Using (7) < (Z2)¥. This can be summed over different values of i. Let C
represent the total number of touching messages and so C = Y, C;. The
total gain can then be estimated using the concavity of the functions zlogz
and —log . Thus the total gain is at least:

n
Z(C,-+C,-logﬁ—210gC,~-—-1)20+Clog-f—e——2nlog%—n
e

i=1

5.3 Describing the rest

The switches in RAND are ordered canonically, and those that are included
in the description above are marked off. The random bits generated by all
the unmarked switches are described in the canonical order. This description
therefore requires exactly as many bits as there are unmarked switches, and
thus there is no gain or loss in the description.

5.4 Conclusion

Thus the total gain in the representation can be estimated by adding up the
separate gains and losses. Thus from sections 5.1 and 5.2 the total gain is at
least:

C’+Clog%-—2nlog%—2n>Kn

for C = Kn with K > 8. Thus the probability that a run does not complete in
time (K + 1)log N is:
< 2-—Kn - N——K

6 Pipelining Communication

This section examines the problem of routing multiple permutations. Each of
the N message sources is assumed to have & messages initially. The messages at
each node have priorities 0 through 2 —1. It is assumed that messages of a given
priority form a permutation, i.e. each of the N message sinks receives exactly
one message of each priority. The priorities are used by the queueing discipline
to determine which message to transmit at every node. Specifically, a message
with the highest priority is chosen for transmission. Between messages of the
same priority, the choice is arbitrary. Such queueing disciplines will be called
priority-based queueing disciplines. The Randomizer works in deterministic time
as before, and its operation is pipelined. Thus, the z sets of messages arrives
at the intermediate destinations in n 4 z — 1 time units. The total number of
random bits generated by the Randomizer is N log N/2. It will be assumed
that the Router starts transmission only after all the messages arrive at the
intermediate destinations. This assumption somewhat simplifies the argument
that follows, but it should be clear that this extra delay is unnecessary.




It will be shown that under any priority-based queueing discipline, all the
messages will be delivered in time proportional to n+z — 1 with very high prob-
ability. The proof technique used is similar to that used earlier, i.e. the runs of
the parallel communication system will be encoded and runs having large de-
lays will be shown to have compact encodings, and thus low probabilities. Given
the destinations II for each of the Nz messages, and the queueing discipline at
each switch of the Router, the # N log N/2 bits generated in the Randomizer
uniquely identify a run, i.e. a run R can be completely identified by a bit string
vgr which specifies the random bits generated. Thus the encoding problem may
be formally stated as follows.

Definition 2 The Kolmogorov-Complezity of a run R given II is defined as
C(R)= K(vg | II).

It will be shown that runs having large delays can be described using con-
siderably fewer bits than |vg| = N log N/2, and thus are improbable.

6.1 Monotonic Runs

As mentioned above, the queueing discipline at each switch is only required to
give preference to messages according to priority, it may treat messages with
the same priority arbitrarily. The following theorem shows that it is sufficient
to consider queueing disciplines which are somewhat restricted, for purposes of
encoding runs. In particular, it is shown, that given a run R which uses an
arbitrary priority-based queueing discipline, it is possible to construct a run R’
which is monotonic. R’ rather than R is used to encode the bits generated in
the Randomizer.

Definition 3 A run R is said to be monotonic if for all messages A and B
the following is satisfied: If a message A ever delays another message B, then
message B never delays A.

Definition 4 Consider a run R of RN'D in which messages A and B delay
each other. Let A delay B at switch and time (s1,t1) and B delay A at (sa,13).
Let 51 < s3, i.e. 51 is towards the output side. Because the PCS being considered
is non-repeating, A and B have the same route between s; and s5. Let neither A
nor B delay the other between sy and sy. Then the messages A and B are said to
constitute an inconsistency (A, B,sl,t1) at (s1,t1). Given inconsistencies o =
(A,B,s,t) and o/ = (A", B',8',t') a < o if stage(s) < stage(s') or stage(s) =
stage(s’) andt <t'. Ifa < o for alla’ then o is said to be a least inconsistency.

Theorem 2 Given a run R and a priority-based queueing discipline QD for
RTE it is possible to construct a monotonic run R' and an associated priority-
based queueing discipline QD' such that:

1. The initial message sets for the two runs are identical.




2. The delay suffered by any message from the intermediate source to the
destination is the same for both runs.

Proof: If R contains no inconsistencies, then clearly R is monotonic. If R does
contain inconsistencies, then it must contain a least inconsistency «. It will be
shown that it is possible to remove o without introducing inconsistencies 8 < o
Since a run cannot contain arbitrarily large inconsistencies, this process must
result in a removal of all inconsistencies.

Let o = (A, B, s1,t1) be a least inconsistency, with B delaying A at (s2,t2).
Consider the run R, obtained by exchanging A and B between sy and s;.!
Assume that an inconsistency § < « is introduced in Ry at (s;,t;) because of
the above exchange. This must involve either A or B. If this involves A, then
it must be caused because a message C delays A at (s;,t;), and A delays C at
some (s;,t;) where s; < s; < s2, and w.Lo.g. A and C do not delay each other
in (s;,s;). Note that it is easy to show that s; < s;.

Thus in R, B delays C at (s;,t;) and B and C do not delay each other in
[s1,s;]. In R, at the output of s;, assume A is ahead of C. But A is known
to be behind B, and thus because B delays C, A delays C as well. But in
this case, the inconsistency (C, A, s;,t;) < «a in R, proving that « is not a least
inconsistency in R.

Thus at the output of sj, C must be ahead of A. Because B remains ahead
of C in [s1, s;], and A is ahead of B at s,, A must also be ahead of C. Thus A
must delay C in [s1,s;). Again, the inconsistency (C, A, s;,1;) < .

A similar contradiction is obtained if the inconsistency involves B rather
than A in R;.

Definition 5 A delaying set: DS(M,s) for a message M at switch s is the set
of messages which delay M at s, or delay any message which delays M etc.

Let d(M, s) represent the delay suffered by a message M at switch s. Let
D(M,s;) = Y., d(M,s), where s; is the switch on the path of M such that

stage(s;) = i, and the sum is taken along the path of M.

Theorem 3 In RTE let the switches on the path of a message M be labelled s,

through s, from the output to the input. For a message M' in DS(M,s;) and
1<j<i<n

s; 35
| DS(M,5)| + D(M',5141) > > d(M,5)
$=8; 8=S8y

Proof: The proof is by induction on j.
M’ enters a time D(M, s;41)— D(M’, s;11) before M enters, and D(M, s;) —
D(M',s;11) before M leaves. Because M' delays M there must be at least

1The associated queueing discipline QD; is priority-based because A and B are guaranteed
to have the same priority.

10



D(M, s;) — D(M', ;1) other messages that delay M. But these messages are
in DS(M,s;). Thus |DS(M,s;)| > D(M,s;) — D(M',s;41), establishing the
base case. The induction hypothesis is:

Sj41 Si+1
U DS(M, )| + D(M',si+1) > Y d(M,s)
8=8; $=8p

Let | ;i) DS(M,s)(\ DS(M, 5j)] = . Then by monotonicity all these a

8=8p

messages which indirectly delay M before s; must enter s; before M, i.e., the

first of these must arrive at least a time a before M arrives. Thus,
IDS(M’SJ')l 2o +d(M’sj)

Adding this to the induction hypothesis, the result follows, using:

$i41 Si+
a= U DS(M,s)(| DS(M, 5;)| > Ul DS(M,s)( | DS(M, s;)
$=8pn $=s;

Corollary 1 Let the switches on the path of a message M be labelled s, through
sn from the output to the input. Then for1<i<n

U DS(M,s)| > D(M,s;)

8=38,

Proof: Obvious.

7 Construction Of A Distinguished Path

As mentioned above, it is only necessary to consider monotonic runs. The
description of a run can be made compact because every monotonic run has
at least one distinguished path which touches a large number of messages in a
simple manner. This section describes how such a path may be found given a
run R.

A distinguished path goes from an input of the Router to an output, and is
made up of paths of several messages. If z is the number of priorities, then the
set @ of switches on this path can be partitioned into z sets Qq..Q,—1 having the
following characteristics. Each @Q; is either empty or contains switches adjacent
on the distinguished path. Each non-empty Q; corresponds to a part of the
path of a message M; of priority ¢, i.e. M; passes through every switch in Q;.
Finally, Q; are encountered in ascending order along the distinguished path
starting from the output side i.e. the switches in Q; are closer to the output
side than Q; if ¢ < j. The following paragraph describes how a distinguished
path can be constructed starting from the output side of the Router.

11



Let M be a message with the maximum delay, with p as its priority. Then
M, = M, and all Qo..Qp_1 are null sets. Let s, be the final switch on the path
of My. In general, given M; and s;, Q; is constructed as follows. Let s be the
first switch on the path of M; starting from s; and moving toward the input,
such that DS(M;, s}) contains a message with priority higher than i. Then the
Qi = [s4,5]]. Let M; be a highest priority message in DS(M;, s) that is not
delayed by any other message at s}. Let s; be the first switch on the path of M;
starting from s{ and moving towards the input. Then, given s; and M;, set Q;
is constructed as above, and all sets Q;4+1..Q;j—1 are null sets. In this manner
all Qo..Q4—1 are constructed.

8 Description Of A Run

For a given @Q; and M;, the messages in UsEQ'_ DS(M;,s) can be described
compactly. The description consists of |@Q;| + 7 — ¢ components, assuming the
first non null segment following Q; is Q;. The first |@;| components describe
the messages of priority i that delay M; at any of the |Q;| switches in Q;. If
a message delays M; at more than one switch, it is included in only one of
the corresponding components. M; can also be delayed by messages of higher
priority. But by construction, these messages can delay M; only at s;. Further,
the highest priority message that delays M; has priority j. Thus these messages
can be described in j — i groups, each group consisting of messages of a given
priority. Thus the total number of groups is ), |Qx|+2—1 = n+=z —1 (There
could be some null groups). Further, these groups are encountered in order of
increasing priority as one moves up the distinguished path towards the input
side.
Because of monotonicity, the messages associated with Qy viz. ¢, DS(Mz, s)

are disjoint for different values of k. Thus, the total number of messages de-

scribed:
S°1 U DS(My,s)

k |s€Qx

If Q; and Q; are the last two segments i.e. the closest to the input side, then
by corollary 1 and proposition 3 respectively:

8=8; §=s8;5 3=8;
\J Ds(Mi,s)|+| | DS(M;,s)| > || DS(M;,s)|+D(M;j,s;) > D(M;, s:)
=3 a:s; s=s)

Thus applying theorem 3 repeatedly:

S°1 U DS(My,s)| > D(M, sp)

k |s€EQx

12



Thus the number of messages described is at least as large as the largest
message delay. These messages are described in a manner similar to section 5.
First, the distinguished path is described, followed by the messages touching
the distinguished path. These are described in n + 2 — 1 groups, as discussed
above. Finally all the random bits generated in RAD which are not described
earlier are explicitly listed.

8.1 Describing The Distinguished Path

This requires 2n bits, n to describe the intermediate source at which the path
starts, and n to describe the destination. Let P be a fictitious message that
travels along the distinguished path. Then the above specifies P and P"".

8.2 Describing Touching Messages

This description is similar to that in section 5.2 with a few important differences.
The description is in n+z — 1 groups, each group describing messages of a given
priority and touching the distinguished path at a given switch. Unlike section
5.2 the messages described in a group need not leave the path at the associated
switch.

Each group is associated with a switch on the distinguished path and a
priority. The groups are described in the same order in which the associated
switches are encountered as one moves up the distinguished path towards the
input, and groups associated with the same switch are described in the order of
increasing priority. Notice that there is at least one group associated with every
priority and every switch. Further if a switch s has g groups associated with
it then these have g distinct and consecutive priorities. Finally, if s and ¢ are
consecutive switches on the distinguished path, then the highest priority of any
group associated with s is the same as the least priority of any group associated
with £. Thus if the number of groups associated with a switch is specified, then
the priority and the switch associated with the j** group (0 < j < n + z) can
be computed. This can be done by specifying n — 1 ‘boundaries’ dividing the
sequence of n + z groups into n fragments, each fragment containing at least
one group. This can be done in (":f'l' 1) ways. Thus the specification requires
log (*}*71) =log ("*°71) < a:logﬂ%'—12 bits.

This paragraph describes how messages in group j (0 < j < n + z) can be
described. Let the messages have priority k and let the associated switch be
s € Q. Let stage(s) = i. k and i can be computed given j as discussed in
the previous paragraph. Let A be a message belonging to the group. A travels
along the distinguished path at least one edge after s. Thus P and A leave s
at the same output. Thus a},..ap’a?..a!_;a!" = pi{,..p)'p}..p{_p}". But P"
1s known. Thus only the first i — 1 bits of A”’ need be specified. Then given
k, A" and the message destinations II it is possible to compute A’ because
there is a unique message of a given priority and destination. Note that the

13




most significant ¢ — 1 bits of A” are known because they are identical to those
of P". Thus it is possible to compute the path of A upto an (¢ — 1)-switch in
RND. As in theorem 1 it can be shown that all such paths computed in RAD
are sw1tch disjoint. As in section 5.2 the entire group may be encoded using

log( c; ) + 1+ 2log C; bits, assuming the group contains C; messages. The
number of switch settings this specifies in RAD is (¢ — 1)C;. Thus the gain in
description for each group is

i—1 X
Cj(i—1) —log <2C~ ) —1-2logC; > C; log% —2logC; —1
3

Using (}) < (B2)*. This can be summed over the different groups using the

concavity of the functions zlogz and —logz. Thus if C = Z’ Zats=1 ¢y, then
the gain is at least:

n4z—1 C
Z Cjlog ————2logC -1> Clog

C
= CCETED A

C
n+z—1 ~(n+a-1)

But at most zlog ﬂ%ﬂ bits are required to describe the number of groups
associated with each switch. Thus the total gain is at least:

_(n+x__1)_x10gf(”_+_x£____ll

c C
Clogm—Q(n+x—l)]ogn+w_1

8.3 Description Of The Rest

As in section 5.3 the random bits generated in RAD are first ordered canoni-
cally, and then all the bits described above are marked off. The unmarked bits
are described in the canonical order. Thus there is no gain or loss.

8.4 Conclusion

The total gain in the representation can be estimated by adding up the in-
dividual gains or losses. Thus from sections 8.1 and 8.2 the total gain is at
least:

c C e(n+z—1)
- - -1 - —1)— Tre— )
Clog cntz=1) 2(n+z )lOgn+:c—-1 (n+z—1)—zlog " 2
C C
> —— — —_ —
_Cloge(n+.’c—1) 2(n+z 1)logn+:c_1 dn+z-1)

Assuming z > n. Further, if C = K(n+ 2 —1) where K > 9 then the gain is at
least:

K C K, 1 2
——_9 = = —(—)%¥ > >
Clog - 2K log4K = Clog e(4K) >C/2> Kn

14




Thus the probability of requiring more than K(n + z — 1) + n time to complete

is less than:
2—Kn — N—K

Acknowledgements
I am very grateful to Lennart Johnsson for numerous discussions and for his
careful reading of this manuscript, which lead to substantial improvements. I
would also like to thank Sandeep Bhatt for many discussions.

References

[1] R. Aleliunas. Randomized parallel communication. In PODC, pages 60-72,
1982.

[2] K. Batcher. Sorting networks and their applications. In AFIPS Spring
Joint Comp. Conf., pages 307-314, 1968.

[3] Z. Galil and W. Paul. A practical general purpose parallel computer. In
Proceedings of STOC 81, 1981.

[4] A. N. Kolmogorov. Three approaches to the quantitative definition of in-
formation. Problems of Information Transmission, 1-1:1-7, January-March
1965.

[5] K. Padmanabhan and D. H. Lawrie. Fault tolerance schemes in shuffle-
exchange type interconnection networks. In Proceedings of 1983 Intl. Conf.
On Parallel Processing, pages 71-75, 1983.

[6] Nicholas Pippenger. Parallel communication with limited buffers. In Pro-
ceedings of FOCS 84, pages 127-136, 1984.

[7] Stefan Reisch and Georg Schnitger. Three applications of kolmogorov-
complexity. In Proceedings of FOCS 82, pages 4552, 1982.

[8] 3. T. Schwartz. Ultracomputers. ACM TOPLAS, 2:484-521, October 1980.

[9] 3. D. Ullman. Computational aspects of VLSI. Computer Science Press,
1984.

[10] E. Upfal. Efficient schemes for parallel communication. In PODC,
pages 55-59, 1982.

[11] L. G. Valiant and G. J. Brebner. Universal schemes for parallel communi-
cation. In Proceedings of STOC 81, pages 263-277, 1981.

15



[12] C. Wu and T. Feng. On a class of multistage interconnection networks.
IEEFE Transactions on Computers, C-29:694-702, August 1980.

16



