Yale University
Department of Computer Science

Oblivious periodic traversal of anonymous, undirected
graphs with advice and adversarial port numbers

John Maheswaran

YALEU/DCS/TR-1475
April 2013

Oblivious periodic traversal of anonymous,
undirected graphs with advice and adversarial
port numbers

John Maheswaran*
Yale University
Department of Computer Science
john.maheswaran@yale.edu

Abstract

We consider the problem of periodic graph traversal [2], which has
previously been studied in a variety of settings [2, 5, 3, 7, 13, 12, 10, 11].
The problem of periodic graph traversal is concerned with an agent
having to visit every node of a graph and return to its start location
and state. The periodic graph traversal problem can be extended by
labeling each node to help the agent explore the graph [3]. We consider
oblivious agents (agents with no persistent memory) and graphs with
low maximum degree. Ports (the points where edges are incident to
vertices) are numbered by an adversary.

We prove that two labels are both necessary and sufficient to ex-
plore all degree three bounded graphs and prove that there are only
two (trivially isomorphic) agent algorithms that can explore all such
graphs. We provide a two label labeling algorithm that allows these
agent algorithms to explore all such graphs in a period of length 4n — 2
where n is the number of vertices in the graph.

For the special case of Hamiltonian graphs, which includes almost
all regular graphs [17], we provide an algorithm that improves the
period length to n using A(G) labels.

In the case of degree three bounded graphs, we provide a 5-label
algorithm that improves the period length to 2%11 — 1.

In the general case of all graphs, the best possible worst-case period
length is 2n —2. We give a 22(%) —1 label algorithm (7-label for degree
three bounded graphs) that achieves this for all graphs.

Finally we extend our results to graphs of higher degree and prove
upper bounds of 6 and 24 on the number of labels required for an agent

*Supported in part by NSF grant CCF-0916389

to explore all degree 4 and 5 bounded graphs respectively. We also give
agent and labeling algorithms for degree 4 and 5 bounded graphs that
give period lengths of 4n—2. This result relies on reducing the problem
to the previously studied problem of assigning port numbers[7, 5, 13]
to allow the agent to traverse the graph. The period length we give of
4n — 2 is equal to the best known period length in the case of assigning
port numbers benevolently, although this is still above the theoretical
lower bound of 2n — 2.

1 Introduction

We consider the problem of periodic graph traversal [2] with advice [3]. In
this problem, an agent (also referred to as a robot) is tasked with exploring
a graph and visiting all the nodes in that graph. The nodes of the graph
have advice labels that help the agent to navigate the graph.

The agent or mobile entity may be used to model a variety of scenarios,
for example a piece of software navigating through a computer network or a
robot navigating an unknown terrain or environment. It may be the case in a
practical application that the agent is just tasked with visiting every location
infinitely often, however due to the fact that the agent is fidnite-state, the
traversal must be periodic. The agent aims to visit all nodes eventually
returning to its start node and start state after one traversal. This is known
as a periodic traversal or traversing the graph in a periodic manner. The
robot may be modeled as a finite state machine (FSM), however in this paper
we are concerned with oblivious agents, that is agents which are stateless, or
equivalently single state FSMs. We consider anonymous, undirected graphs.
The edges do not have weights or labels.

The periodic graph traversal problem is hard from the point of view of
an oblivious agent as the agent has no persistent memory so as soon as it
leaves one node, it forgets that it has been there. It does not know which
nodes it has visited and which it has not and yet it still has to perform a
traversal of all nodes. In a completely unlabeled graph it is not possible in
general for the agent to perform a periodic traversal [2]. So there still needs
to be some way for the agent to tell where to go. Nodes do not have unique
labels, however the edges of the graph are labeled with port numbers that
identify the points where edges are incident to vertices.

Benevolent port numbers are assigned by an algorithm in a pre-processing
step, whereas adversarial port numbers are assigned by an adversary and not
under control of the algorithm. When an agent enters a node it knows the
port number that it entered the node through. In this paper we primarily

consider adversarial port numbers in Section 4.2 however we do consider
benevolent port numbers in Section 4.1.

1.1 Periodic graph traversal

The periodic graph traversal model consists of an autonomous agent and
a graph in which the agent is situated. The agent has the goal of visiting
every node in the graph repeatedly. The period length is defined to be
the maximum number times the agent crosses an edge between visiting an
arbitrary node twice where the agent enters that node in the same state (if
a non-oblivous FSM) through the same port [7].

Note that the agent may visit certain nodes multiple times during one
period of the traversal. It is not necessarily the case that every edge of the
graph will be traversed by the robot, just that every node is visited. The
agent may be modeled as either a finite state machine (FSM) in which case
it has a constant amount of memory, or as an oblivious agent in which case
it is a single state FSM with no persistent memory. The model follows the
formalism of Tlcinkas [12].

1.2 Port numbers

In the periodic traversal model, the graph is connected and has undirected
edges. Edges are not labeled either so the graph is referred to as being
anonymous however the points where the edges are incident to a given node,
known as ports, are numbered.

Definition 1. A port is defined as a pair (v, (v,v")) of a node v and an edge
incident to that node, (v,v")

These port numbers may be provided benevolently by a preprocessing
algorithm, or may be supplied by an adversary as part of the unknown
graph. Port numbers are in the range zero to the degree of the node minus
one, {0,1,...,d(v) — 1}.

1.3 Agent

The agent starts off exploring the graph in start state sg, at an arbitrary
node and port selected by an adversary. From this the agent can see only
the port numbers of the edges connected to the node it is located at. It does
not know the endpoints of the edges and indeed has no other knowledge of
the graph. The agent may only pick a port through which to exit the current
node.

When the agent arrives at a new node it knows the port number through
which it entered the node and the degree of the node. The agent starts off
entering an initial node through an initial port. If the agent is a non-oblivious
FSM it also has current state. In this paper we only consider oblivious FSMs
where the agent has only a single state. The agent computes its exit port
based on the input port and the degree of the node. In the basic oblivious
model the exit port depends only on the input port. Later we will extend
this to allow the exit port to depend on the label of the node as well. This
involves a preprocessing step of adding labels to nodes. An agent’s behavior
is described by its transition function f.

Definition 2. For the case of beneuvlent port numbers, we use the following
definition of transition function equivalence taken from Czyzowicz et al.
[5]. Two agent algorithms with transition functions f and f' are said to be
equivalent if for any d > 0 (where d is node degree) there exists a permutation
o on {0,...,d— 1} such that f'(i,d) = o' (f(0a(i),d)) (written by as f' =
oo foo™l for brevity).

It has been proven [5] that in the basic oblivious model with benevolent
port numbers, any agent that successfully traverses all graphs with benev-
olent port numbers is equivalent to one that operates under the right-hand
rule. Using this rule, when it enters a node through a port numbered n, it
exits through port number (n + 1) mod (d(v)) where d(v) is the degree of
the node v.

1.4 Advice

The model may optionally be extended by adding small amounts of extra
information to each node, known as advice. Work focuses on local advice
situated at each node [3, 11]. As in the case of the existing research on
advice, we also consider local advice!.

This advice serves as a sort of signpost to help guide the agent through
the graph. In this paper we measure the amount of advice in terms of the
number of labels |C| where C is the set of labels. A graph with |C| =1 is
said to not have advice.

Advice in the context of this model was first introduced by Cohen et al.
[3] where they primarily investigated labeling schemes for non-oblivious finite

!There is also the less extensively studied idea of global advice where the agent is given
some information about the graph topology prior to performing its traversal. For example
one of the agent algorithms of Cohen et al. [3] relies on knowing the maximum degree of
the graph ahead of time.

A(G) | Number of labels used Special case
> |log A(G)] —2

graphs with loops

Table 1: Previous results of Cohen et al. [3]

A(G) | Number of labels used | Period length
2 dn — 2
3 5 (25)n—1
7 2n —2
4 6 dn — 2
) 24 an — 2
any 28(G) _ 1 on — 2

Table 2: Our results - general cases

state automata and also proved several impossibility results for oblivious
FSMs.

1.5 Summary of paper

In this paper we consider several new aspects of the graph exploration model.
We first give a formal description of the model (Section 2) and then provide a
survey of related work (Section 3). We then present our new results (Section
4). We consider extending the benevolent ports model with advice and
provide an upper bound on the period length (Section 4.1). We consider the
special case of Hamiltonian graphs in the benevolent ports model without
advice and provide an upper bound on period length (Section 4.1.1). We
also examine the adversarial ports model with advice and provide an upper
bound on the period length for both the special case of Hamiltonian graphs
and for arbitrary graphs (Section 4.2). For all degree three bounded graphs
we give an algorithm to explore in period length (23)n — 1 using |C| = 5
labels (Section 4.2.3). We then show an exact bound of |C| = 2 required
to explore all degree three bounded graphs, however this leads to a longer
period length of 4n — 2 (Section 4.2.4). We then extend the result to give
upper bounds of |C| < 6 and |C| < 24 for graphs where A(G) = 4 and
A(G) = 5 respectively (Section 4.2.5). Finally we give our conclusions and
areas for future work in Section 5. The existing results are summarized in
Table 1 and our new results are summarized in Tables 2 and 3.

A(G) | Number of labels used | Period length
3 3 n
any A(G) n

Table 3: Our results for Hamiltonian graphs

2 Formal Model

Consider an arbitrary graph G = (V, F) that an agent may explore. Here V
is the set of nodes or vertices of the graph and F is the set of edges, that is
a set of pairs of vertices.

Define 6(v) as the set of edges incident to v: d(v) = {(v,v")} C E.

Let n = |V| be the number of nodes in the graph.

A port is defined as a pair (v, (v,v")) of a node v and an edge incident to
that node, (v,v’)

Define P as the set of all ports P = {(u, (u,v)) | u € V, (u,v) € E}.

The degree d(v) of a node is defined as the number of edges incident to
that node in G, d(v) = |§(v)].

A port numbering is a family of bijective functions p,, : §(v) — {0,...,d(v)—
1} defined for each vertex v to map from the set of edges incident to v to the
subset of the natural numbers {0,1,...d(v) — 1}.For brevity we may write
py(v) instead of p,(v,v’") where v’ is adjacent to v.

Define the overall graph port numbering function which maps from all
ports in a graph to port numbers, ¢ : P — {0,...,A(G) — 1}, formally
defined as q(v, (v,v")) = py(V').

If an algorithm defines ¢ then the model is said to have benevolent port
numbers whereas if the algorithm does not define ¢ then the model is said
to have adversarial port numbers.

The labeling function ¢ : V' — C maps from nodes to labels where C is
the set of labels.

If |C] > 2 then the model is said to have advice whereas if |C| = 1 then
¢ is a constant function and the model is said to not have advice.

Define the maximum degree of the graph A(G) = max,ey d(v) as the
largest degree over all vertices.

An agent consists of a set of states S and a partial function f referred to
as the agent’s transition function. The set of states is the set of states from
the FSM for the agent. Define D as the set of all port numbers in a graph
{0,1,...,A(G) — 1}. The transition function takes a state s € S, the input
port number i € D, the degree of a node d(v) € D, the label of the node
¢(v) € C and returns a state and an outgoing port j € D.

f:SxDxDxC—=SxD

The transition function f is a partial function and is not defined for
values where i > d(v) as there are no such numbered ports. It also does not
make sense for the function to return j > d(v) as there are no such numbered
ports of v. For oblivious agents |S| = 1 so the transition function may be
simplified by removing S.

f:DxDxC—D

In the case where we do not have advice we have |C| = 1 and so f
depends only on the input port and the degree of the node.

f:DxD—D

An example of such a transition function is the right-hand rule [7] for
which we have transition function

f(i,d(v)) = (i + 1) mod (d(v))

For oblivious agents without advice every transition function that suc-
cessfully traverses all graphs is equivalent (by Definition 2) to the right-hand
rule [5].

We can also consider a transition function as a mapping between ports
g : P — P so g gives the next entry port after the agent enters the given
port. Formally we define g as follows:

g((v, (U,U’)) = (uv (uvv)) | f(pv(v’),d(v),c(v)) = (Ua (v’u))

We refer to g as the agent’s port mapping function.

Define a cycle of graph G = (V, E) as a sequence of nodes (possibly with
duplicates) vg,v1,...vp_1v9 where (v;,v;11) € E and {vg,v1,..., v} = V.
An agent performs a periodic traversal of the cycle vy, v1,...vp_1vg if it
begins by entering a node v; through port number p,, (v;—1) and the following
holds: If the agent enters a node v; from node w;_1, then its transition
function computes the exit port that keeps it on the cycle by going to the next
node v;11. Formally the agent’s transition function satisfies the following:

f (P, (vi—1), d(vi), c(vi)) = Pu; (V(i41) mod &)

Note that the agent will traverse the cycle if it begins by entering a node,
say v; through port number p,, (v;_1), however it will not necessarily traverse
the cycle if it initially enters v; through a differently numbered port. For
agents with state we have the additional requirement that they return to
their initial state so at the end of the cycle, f(i,d(v),c(v),sk—1) = (4, So0)-

Definition 3. An agent-route is defined for a given agent algorithm with
port mapping function g and a start port pg as the sequence of ports that the
agent A enters starting from pg until it enters a port it has previously entered.
Formally for any k > 0 we have a sequence of ports is pop1 - . . Pr_1pr where

g'(po) = pi and py, € {po, ..., pe—1}-

Definition 4. A traversal is defined as an agent-route where py = py (the
agent eventually returns to where it started).

Definition 5. We define agent algorithm equivalence between two agent
algorithms as follows. Agent algorithm A with port mapping function g s
equivalent to B with port mapping function g’ if and only if g = ¢'.

Theorem 1. Two agents algorithms A and B with port mapping functions
g and g’ respectively are equivalent according to Definition 5 if and only if at
every port in a graph then A and B both select the same exit port.

Proof. Follows from the fact that each port (u, (u,v)) is uniquely connected
to one other port (v, (v,u)). If g and ¢’ map from the same entry ports to
exit ports, then these exit ports are uniquely connected to the next entry
ports, so g = g'. Conversely if g and ¢’ map from the an entry port to the
same next entry port, then this entry port is by definition connected to a
single port, the exit port. So g and ¢’ select the same exit port for a given
entry port.

O

An exploration labeling scheme [3] consists of a pair (£, R) of a labeling
algorithm £ and an agent algorithm R. Given any graph G with any port
numbering, the algorithm £ labels the nodes of G (according to ¢), and the
agent R (governed by transition function f) explores G with the help of
the labeling produced by £. We can consider the benevolent ports model
as a special case of the adversarial ports model where £ labels each node
with a complete mapping from the set of adversarial port numbers to the
benevolent port numbers. This pair is fixed for a given class of graphs. It
is not permissible to have, for example multiple agent algorithms and the
labeling algorithm to choose between them.

Definition 6. Two exploration labeling schemes, (L,R) and (L', R'), are
equivalent if and only if their corresponding port mapping functions are equal.

In general we do not specify the start location of an agent. An agent is
said to be able to traverse a graph if and only if there it performs a periodic
traversal regardless of its transition function’s initial inputs.

3 Related work

Shannon [19] presented the first known algorithm for graph exploration,
based on the right-hand rule. Rabin [15] conjectured that no FSM with
a finite number of pebbles (markers that may be dropped by the agent at
nodes) can explore all graphs. Budach [2] showed that no robot can explore
all graphs using zero pebbles. Blum and Kozen [1] showed that no robot
can explore all graphs using three pebbles. Kozen [14] later proved that no
agent can explore all graphs using 4 pebbles. Finally Rollik [18] proved Ra-
bin’s conjecture that no FSM with a finite number of pebbles can explore all
graphs.

Without pebbles Fraigniaud and Ilcinkas [8] proved that a robot needs
©(Dlog A(G)) bits of memory where D is the diameter of the graph. How-
ever trees may be explored in a period length of only 2n — 2 by oblivious
agents (6, 10].

We now provide a summary of work directly related to the model we
described in the previous section, the model with anonymous undirected
graphs with port numbers and possibly local advice. Agents are FSMs with
small amount of memory or no memory (oblivious agents).

Budach [2] first proved that no oblivious agent can explore all graphs.
Rollik [18] extended this result to prove that not even a finite team of agents
can explore all graphs or even all planar cubic graphs [18]. Cook and Rack-
off [4] considered a similar model called a Jumping Automaton for Graphs
(JAG) where a finite team of FSMs collaborate to explore graphs and each
FSM is able to teleport to the location of any other FSM. They proved that
even JAGs cannot explore all graphs. Fraigniaud et al. [8] proved than an
FSM requires at least n states to be able to explore all graphs with n ver-
tices. This was shown to be sufficient by Reingold [16] who proved that an
n state agent can explore any graph with polynomial period length O(n).
Fraigniaud et al. |9] later investigated the impact of the agent’s memory size
on its graph exploration capabilities.

Dobrev et al. [7] introduced the idea of the benevolent ports model
and provided a port numbering algorithm that allowed oblivious agents to

explore all graphs with period length 10n. Czyzowicz et al. [5] provided
a new port numbering algorithm that gives a period length of (4%)71 and
proved a lower bound on period length of (2.8)n — O(1). Most recently
Kosowski and Navarra [13] provided another port numbering algorithm that
reduced the period length to 4n — 2. We make use of this algorithm in our
results by using labels to reduce certain cases of the adversarial model to
the benevolent ports models which can be solved using the work of Kosowski
and Navarra.

Ilcinkas [12]| considered the case of a non-oblivious agent with a small
amount of memory. lIlcinkas proved an upper bound on period length of
4n — 2. This bound was improved by Gasieniec et al. [10] to 3.75n — 2.
Crzyzowicz et al. [5] improved this bound further to 3.5n — 2.

Cohen et al. |3] introduced the idea of local advice into the model and
proved that |C| = 3 is sufficient for a non-oblivious FSM to explore all
graphs. Cohen et al. also proved that for graphs with degree A(G) > 4
certain lower bounds on |C|: For loop free graphs (graphs where we never
have (v,v) € E) they proved |C| > |log A(G)] —2 and for graphs with loops
they proved |C| > %G) —1. In our results we consider the cases where where
A(G) < 4. We provide an exact bound of |C| = 2 for A(G) = 3 and provide
upper bounds of |C| < 6 for A(G) = 4 and |C] < 24 for A(G) = 5. Our
work applies to loop-free graphs.

Zhang et al. [11] considered the model with advice using labels where
|C| = 2. They focused on labeling schemes that not only enabled the agent
to explore the graph but also allowed the system designer to adjust the ratio
of the number of different labels.

4 Our results

We consider several variants of the graph exploration model that have not
previously been investigated. Specifically we provide several agent and la-
beling algorithms for oblivious agents in the model with advice. We first
consider extending the benevolent ports model with advice and then look at
the adversarial ports model with advice.

4.1 Benevolent ports model with advice

We first consider the benevolent ports model with advice and prove an upper
bound on the number of labels required to perform the shortest possible
periodic traversal. The result focuses on reducing the graph to a spanning

10

tree which is then traversed. The algorithm works by constructing a spanning
tree for the graph and then performing a right-hand rule traversal on the
spanning tree. Labels and port numbers are assigned in a way that provides
sufficient information to be able to identify which edges are in the spanning
tree and which are not. The agent is then able to traverse the graph by
traversing a spanning tree.

Theorem 2. In the benevolent ports model with advice, a traversal of period
length 2n — 2 may be obtained with |C| = A(G)

Proof. We prove this theorem by presenting a labeling algorithm that de-
scribes how port numbers and labels are assigned in a general case graph.
We also present an agent algorithm that describes how the agent operates
in order to perform a periodic traversal of period length 2n — 2 given an
appropriately labeled graph.

Labeling algorithm The port numbers are assigned as follows. A span-
ning tree T'= (V! C V,E' C F) is constructed for the graph G = (V, E).
Say there are k spanning tree edges incident to a node. Then the ports
of that node that connect to edges in the spanning tree are arbitrarily la-
beled 0...k — 1. The remaining ports are labeled k... (d(v) — 1). That is
po(v,0v) € {0,1,...,k — 1}if (v,v") € E'and p,(v,v’) € {k,...,d(v) — 1} if
(v,0") ¢ E'.

We define the labeling function c as follows. We define ¢(v) to identify the
highest numbered port of v that is in the spanning tree. Formally c¢(v) = k.
We require A(G) labels to identify any port number from 0...A(G) — 1.

Agent algorithm The agent algorithm is a modification of the right-hand
rule. We modify the right-hand rule by limiting it to consider only ports
connected to edges in the spanning tree. Formally, the agent’s transition
function is f(i,d(v)) = (i + 1) mod (c¢(v)). Our labeling scheme defines ¢(v)
to signify the highest-numbered port that is part of the spanning tree.

We can partition the set of ports P into the set of ports P} connected
to edges in the spanning tree, and the remaining ports P, = P\P;. Now
consider the agent’s port mapping function g and the port mapping function
for the right-hand rule on the spanning tree ¢’. If we restrict the domain of
g to P; then by definition of g, we have that ¢ is equivalent by Definition 5
g'. Hence for all ports in P; the agent’s transition function is equivalent to
performing right-hand rule on the spanning tree. For all other ports P , by
definition of g we have g(p € P5) € P;. So if the agent starts at a non-tree
port, then it will exit on a tree port and converge.

11

Agent traversal The graph from the agent’s perspective has now been
reduced to the spanning tree. It is known that an agent performing right-
hand rule on a tree will perform a periodic traversal [19]. Hence the agent
will perform a periodic traversal of the graph exactly following the spanning
tree of the graph giving a traversal period length of 2n — 2. O

This is a significant improvement over the oblivious benevolent ports
agent which has worst case period length 4n — 2 [13|. The cost involved is

IC] = A(G).

4.1.1 Hamiltonian graph

The previous section focused on reducing an arbitrary graph to a tree which
can be easily traversed by a right-hand rule agent. An alternative to reducing
to a tree is to reduce to a Hamiltonian cycle for Hamiltonian graphs. The
agent is then able to follow the Hamiltonian cycle in order to perform a
periodic traversal of the graph. Note that this algorithm applies to almost
all regular graphs, since almost all regular graphs are Hamiltonian [17] (as
n — oo the proportion of Hamiltonian n node regular graphs goes to 1).

Theorem 3. For the benevolent ports model without advice, for any graph
containing a Hamiltonian cycle, a periodic traversal exists with a period
length of n.

Proof. We prove this by providing a port numbering algorithm that given
a graph and a Hamiltonian cycle within the graph, numbers the ports such
that the agent is able to perform a periodic traversal coinciding with the
Hamiltonian cycle, which has period length n.

Port numbering

Let vg,v1, ...up—1,v9 be the Hamiltonian cycle. Now for each vertex define
the port numbering function as follows. We label the next edge in the Hamil-
tonian cycle with 0 and all other edges arbitrarily. Formally, for all 0 < i <
(n — 1) we have py, (vi, vit1) = 0 and py, (vi, vj2ir1) € {1,...d(v) — 1)}. For
i = (n — 1) define py, (vs,v0) = 0 and p, (vi, vj20) € {1,...d(v) — 1)}.

The port labeled 0 identifies the edge connected to the next vertex on
the Hamiltonian cycle.

12

Agent algorithm

The agent transition function is defined as the constant function f(i,d(v)) =
0. The agent now exactly follows the Hamiltonian cycle, completing a peri-
odic traversal of the graph exactly corresponding to the Hamiltonian cycle
with period length n.

O]

4.2 Adversarial ports model with advice

We now consider the adversarial ports model, that is where each p,, is defined
by an adversary. We consider the model with advice, that is |C| > 1. A
common idea when attempting to find periodic traversals is to reduce or
decompose the graph to a simpler form such as a tree or a Hamiltonian cycle
which can be traversed more easily.

4.2.1 Hamiltonian graph: exact bound

In the case where the graph contains a Hamiltonian cycle, it is possible to
label the graph such that the agent performs a periodic traversal following
a Hamiltonian cycle.

Theorem 4. For a Hamiltonian graph in the adversarial model there ex-
ists labeling and agent algorithms with |C| = A(G) that perform a periodic
traversal with m = n.

Proof. Consider some Hamiltonian cycle in the graph vg, v1,...vnp—1,v0. The
labeling function identifies the port that connects to the node next in the
Hamiltonian cycle. Define the labeling function as c(v;) = py, (vi, vis1) for
0 <i< (n—1)and c(vn-1) = ;! (vn—1,v0). We have Yv.p,(v,v') €
{0,1,...,A(G)} and hence Yv.c(v) € {0,1,...,A(G)} and |C| = A(G).
Define the agent transition function as f(i,d(v)) = c¢(v). Now the agent
will perform a periodic cycle exactly coinciding with the Hamiltonian cycle
which has period length n.
O]

4.2.2 Arbitrary graph: upper bound

In this section we look at reducing arbitrary graphs to their spanning tree
and performing a traversal of this, hence giving us an upper bound on |C|
required to perform a periodic traversal.

13

Theorem 5. For an arbitrary graph in the adversarial model and |C| =
2A(G) _

1 there exists a periodic traversal with m = 2n — 2.

Proof. For a general case graph with adversarial ports, we can use the span-
ning tree technique that we used for non-adversarial ports. That is, we first
find a spanning tree T in the graph. Define dr(v) as the degree of a vertex
v in the spanning tree T. We then add advice that identifies whether each
port is connected to an edge in the spanning tree or not.

Labeling algorithm There are 2A(G) — 1 possible combinations of ports,
this is because if we could have every combination of edges connected to a
maximum degree node, there would be 22(5) (there are this many subsets of
the set of all ports). However each edge must be connected by at lease one
edge to the tree so we can exclude one combination that correspond to no
edges (the empty subset), giving 22(%) —1. Hence we require |C] = 22(%) —1
labels to be able to identify each possible combination of which edges are
in the tree and which are not. So we define the labeling function as a set
of port numbers connected to tree edges: c(v) = {ag,a1,...,aq,()} where
p(v,v") = a; and a; € ¢(v) if and only if (v,0v") € T

Agent algorithm The agent performs a right-hand rule traversal restricted
to the spanning tree. The transition function is f(i,d(v),c(v)) = i'where
i’ = i" mod (d(v)) where " is the least integer greater than ¢ such that
i"" € c(v).

Agent traversal The agent now performs right hand rule on the spanning
tree as all non-tree edges are identified by ¢ and skipped by the agent. It
has been proven that an agent operating under the right hand rule performs
a traversal of a tree [19, 6, 3, 7] so in traversing the graph in this way, the
agent will perform a periodic traversal of the tree and thus have traversal
length of 2n — 2. O

4.2.3 Degree three bounded graphs: 5-label algorithm

In Section 4.2.4 we show that it is possible to traverse all graphs where

A(G) = 3 with only |C| = 2 with m = 4n—1. However it may be the case that

we want to use more labels to decrease the period length. We now present

an algorithm based on a tree decomposition of graphs where A(G) = 3 using
3

|C| = 5. We improve m = 4n—1 to m = (3)n— 1. We do presenting an agent

14

\
\J

0 0 0
AK 1 7 2 1 \\2\
leaf, 0 //% /\\\\
Aﬂ\l leaf, 2

Figure 4.1: Leaf labeling in 7-label algorithm (left) and 5-label algorithm
(right)

generic leaf

algorithm and labeling scheme based on tree decomposition that explores all
degree three bounded graphs using 5 labels.

Theorem 6. For graphs with A(G) = 3, there exists an agent with transition
function f, and a labeling function ¢ with |C| = 5 such that the agent ezecutes

a periodic traversal of length m = %n — 1 starting from any initial edge.

Proof. We know that we can construct a spanning tree and identify it us-
ing 7 labels (using the algorithm from Section 4.2.2). An agent is said to
bounce off a node, say vy, if it moves from one node vy to another node v;
and then back to vy in 2 steps. Formally f(i,d(vo),c(vg)) = py,(v1) and
f(pv1 (UQ), d(vl)’ C(UO)) = Pu (UO)'

In order to only use 5 labels instead of 7, the agent will simply bounce
off nodes labeled as leaves. Figure 4.1 shows that the 7-label algorithm uses
3 labels to label leaves, however we could instead label them all the same
and reduce the total number of labels from 7 to 5.

However the agent would get stuck if it started between two leaves (just
bouncing back and forth between them) so in this case we label one of the
leaves as if it were a degree 2 node so that the agent would leave the tree,
bounce off the other leaf, and then re-enter the tree. This is shown in Figure
4.2.

From Figure 4.2 we can see that this means that in comparison to the
7-label tree, we have to do at most one extra edge traversal for every two
leaves.

Formally, we define our labeling function ¢ as follows.

Labeling algorithm Construct a spanning tree T'C G = (Vp, E7).

Define the set of edges incident to a node in the tree, ép(v) = {(v,v') |
(v,v") € Ep}. Define the degree of the node in the tree dp(v) = |o7(v)|.

15

- = -

Figure 4.2: A set of leaves connected in a cycle. Solid lines are tree edges.
Arrows show how the agent behaves at each vertex for the 5-label algorithm.

Define gr(v) = {py(v, ') | (v,v") € T} as the set of port numbers of a node
that are incident to edges in tree T.

We will be labeling nodes first by their degree in the tree, then with extra
information for nodes that have degree two in the tree. Labels will be of the
form c(v) € {(1,-),(2,{u,v}), (3,—)}. The left part of the pair encodes the
degree of the node in the tree and the right part of the pair encodes any
extra information required to traverse that node. While these labels do not
follow the {0,1,...,|C| — 1} convention of our model, it is straightforward
to encode them by mapping each label to a number {0,1,...,4}.

We label all nodes with degree 3 in the tree with label (3, —): Let ¢(v) =
(3, —) if and only if dr(v) = 3.

Now label all nodes with degree 2 in the tree as specified below. This
identifies which two of their three edges are in the tree:

(2, {07 1}) if dr(v) =2 &gr(v) = {07 1}
c(v) =< (2,{0,2}) if dr(v) =2 & gr(v) = {0,2}
(2,{1,2}) ifdp(v)=2& gr(v) ={1,2}

Define the graph containing only nodes that are leaves in the tree and
only edges that are non-tree edges: Let 77 = (G\T)\{v | dr(v) € {2,3}}.
This graph T” is a is composed of of paths and cycles. This is because every
node has at least one tree edge incident to it, so has at most degree two in
T'. Every node in T” satisfies dp(v) =1 (is a leaf in tree T by definition of
T"). For each path pick a node vy at the end of the path and then we have
voU1 ... Vp_1. For cycles arbitrarily pick a node vy as the endpoint and an
orientation for the cycle and then we have vgvy ...vip_1v9. Now starting at
vy label every alternate v; with 0: For each line or cycle, define ¢(v;) = (1, —)
if and only if ¢ mod 2 = 1.

16

Now consider all nodes in the line apart from vi_;. We will label the
remaining unlabeled nodes in vy ...vg_o in a similar way. Specifically, for
all vovy ...vE_9, if 2 mod 2 = 0 then define:

(27 {07 1}) if gT(vi) U {pUi (vi7 vi-‘rl)} = {07 1}
c(vi) = § (2,{0,2}) if gr(vi) U {pv, (vi,vit1)} = {0,2}
(2’{172}) if gT(vi) U {pvi(vivvi+1)} = {172}

Finally consider node vi_1. If (k — 1) mod 2 = 1 then we have already
have label c¢(vg—1) = (1,—). If (k — 1) mod 2 = 0 then label it as follows:

(2’ {07 1}) if gT(vi) U {pUi (Uiv Uifl)} = {O> 1}
c(vi) =< (2,{0,2}) if gr(vi) U{py, (vi,vi-1)} = {0,2}
(27{172}) if gT(vi)U{pvi(vivvi—1>} = {172}

We have now defined ¢(v) for all vertices of graph G.

Agent algorithm The agent transition function defined for nodes where
c(v) # (1,—) as performing right-hand rule restricted to the edges de-
noted by label ¢(v). Formally, for c¢(v) = (3,—) we perform right-hand
rulef(i,d(v), (3,—)) = (i + 1) mod d(v). For c¢(v) = (2,{u,v}) we perform
right hand rule restricted to the edges denoted by the label {u,v.

The transition rule is f(i,d(v),(2,{0,1})) = j mod d(v) where j is the
least integer greater than i such that j mod d(v) € {0,1}. Similarly we have,
f(i,d(v),(2,{0,2})) = 7 mod d(v) where j is the least integer greater than i
such that j mod d(v) € {0,2}. Similarly again we have f(i, d(v), (2,{1,2})) =
j mod d(v) where j is the least integer greater than i such that 7 mod d(v) €
{1,2}.

For nodes where ¢(v) = (1, —) the agent simply bounces back out of the
port it came in from, f(i,d(v), (1,-)) = i.

The agent’s transition function f is shown by Table 4. The input port is
i and the output port j. The d(v) is omitted as f does not depend on d(v).

Agent traversal Consider the periodic traversal vgvy ... vg_1vg obtained
by an agent performing right hand rule on spanning tree T. Now for all
nodes where dr(v) € {2,3} the agent performs the right-hand rule restricted
to spanning tree T, consistent with the periodic traversal. If the agent starts
on a non-tree edge and hits a node where dp(v) = 2 then it exits on a tree
edge and converges to the traversal. However for nodes where dp(v) =1 we
have one of two cases, either ¢(v) = 0 or ¢(v) € {{0,1},{0,2},{1,2}}.

17

(17 _)
(2,{0,1})
0] (2,{0,2})
(2,{1,2})

(37 _)

(17 _)
(2,{0,1})
1] (2,{0,2})
(2,{1,2})

(37 _)

(17 _)
2,{0,1})
2] (2,{0,2})
(2,{1,2})

(37 _)

Table 4: Degree 3 bounded graph agent transition function

O~ OO NN N O =N O,

If the agent starts on a tree edge and hits a node where dp(v) = 1 and
c(v) € {{0,1},{0,2},{1,2}} then it will exit on a non-tree edge. However
by definition this edge is connected to a node v' where ¢(v’) = 0. Hence the
agent will then bounce back to node v and then re-enter the tree where it
left. This corresponds to extending the periodic cycle by two nodes, v'v. For
example say we enter vy and then leave the tree, we are still performing a
periodic traversal vov1v'vy ... vE_1v9 albeit two nodes longer than the tree
traversal. If the agent starts on a non-tree edge and hits a node where
dr(v) =1 and ¢(v) € {{0,1},{0,2},{1,2}} then by definition it will exit on
an edge in this new traversal and converge.

Figure 4 shows how the agent behaves if it encounters several leaves that
are connected together. Figure 4.3 shows how an agent may encounter a leaf
connected to another leaf, exit the spanning tree and then bounce back and
re-enter the spanning tree.

For nodes where c(v) = 0, if the agent starts on an edge in this new
traversal, it will bounce off the node and remain on the traversal. If it starts
on a non-traversal edge and hits a node where ¢(v) = 0, it will bounce back
and by definition of ¢(v) enter a node where c¢(v) € {{0,1},{0,2},{1,2}} and
hence exit on a traversal edge. So the agent always converges to a periodic

18

Figure 4.3: A spanning tree extended with an edge that can only be entered
by the node at one end. White nodes satisfy ¢(v) = (1, —), black nodes
satisfy c¢(v) = (3,—) and striped nodes satisfy c¢(v) = (2, {u,v}) where the
stripes mark the edges u and v.

19

traversal.

The periodic traversal is the tree traversal, extended by two nodes for at
most half the leaves, which works out to at most one node per leaf. There are
at most 5 + 1 leaves in the spanning tree as we can pick a leaf node to be the
root, and then excluding the root we have a binary tree with n —1 nodes and
hence at most % leaves. Adding the root node back (as it is a leaf) gives
at most § + 1 leaves overall. The traversal of the spanning tree has length
2n—2 and we traverse the spanning tree and at most one extra edge for every
leaf giving an overall period length of at most 2n—2+5+1 = (2%)71 -1. O

4.2.4 Degree three bounded graphs: exact bound on number of
labels

In the previous section we presented a 5-label algorithm with (2%)n —1. In
this section we present an exact bound of |C| = 2 required to explore all
degree three bounded graphs when the period length is unrestricted. We
prove this exact bound by reducing the problem to the benevolent ports
case.

Our technique results in a longer period length than the |C| = 5 al-
gorithm. Since we reduce to the benevolent ports case, the period length
is dependent on existing benevolent ports algorithms. The current upper
bound for this is 4n — 2 [13] and even the lower bound of 2.8n [5] is greater
than the worst case period length of our |C| = 5 algorithm which we previ-
ously described in Section 4.2.3. It has been proven that it is impossible to
explore all cubic planar graphs, and hence all degree three bounded graphs
with adversarial port numbers when |C| = 1 [18]. In this section we show
that by increasing |C| = 1 to |C| = 2 it is possible to explore not only all
cubic planar graphs, but indeed all degree three bounded graphs.

We show that there are only two agent algorithms that could explore all
possible degree three bounded graphs.

We subsequently provide a labeling algorithm that allows one of these
agent algorithms to explore all such graphs.

Theorem 7. In the adversarial ports model with advice, with |C| = 2, for
graphs where A(G) = 3, there are exactly two agent algorithms that can
explore all such graphs.

Proof. We prove this by giving a graph that cannot be explored by all but
two of the possible agent algorithms. Consider a subset of degree three
bounded graphs where Yv.d(v) = 3, referred to as cubic graphs. There are
6 independent situations in which we can specify the behavior of the agent:

20

It may enter a node with ¢(v) = 0 or ¢(v) = 1 and will enter through port
i € 0,1,2. Hence there are 6 different scenarios where the agent has to
decide which port to exit out of. The exit port is chosen from three different
ones {0,1,2}. Hence there are at most 3¢ = 729 agent algorithms. We now
demonstrate how certain structures of graph restrict these choices down two
algorithms.

Consider the pentagon graph in Figure 4.4. This is a graph structure
that may be connected on to another graph by the edge at the top. Every
node in the pentagon has degree three. The agent must enter from the top.
The agent enters through port 0 and if the agent can only exit through port
1 when it enters through 0, it will traverse the marked loop of 4 nodes,
missing the circled node. For an agent to explore this structure it must have
f(0,b) = 2 for some b (degree omitted as we are considering cubic graphs
where for all nodes d(v) = 3) for some c¢(v).

Similarly, at each node in the pentagon we could renumber all ports
currently numbered 1 with 2 and vice versa. This new permutation of port
numbers then gives us f(0,a) = 1 for some a. So where a,b € {0,1}, a # b
we have:

f(0,a) =1
f(0,0) =2
Similarly we could have another 4 pentagons, each with a different per-

mutation of the port numberings, in order to constrain the agent’s transition
function as shown below, where ¢,d, e, f € {0,1}, ¢ #d, e # f:

~

(1,c
(17
(2,e

- =

SN
~— — —

0
2
0
1

~

(2,

&h

These constraints mean that any agent that can execute a periodic traver-
sal in all cubic graphs can never bounce back off a node with f(i,b) =i for
any b. If this is part of the transition function then the agent cannot explore
all 6 pentagons.

Now we put these 6 pentagons together into a single graph, shown in
Figure 4.7. Each of the small pentagons represents a different numbering of
the pentagon in Figure 4.4. Now say the agent starts on the edge marked

21

Figure 4.4: Pentagon structure. When the agent enters the pentagon from
the top, if it never enters 0 and exits 2, then the agent never traverses the
circled node (or the dashed edges).

f(0,0) = f(0,1) =2
f(1,0 f(1,1) =
f(2,0) = f(2,1) =

Figure 4.5: Right-hand rule/left-hand rule agent algorithm

by the arrowhead, going towards the right. When the agent enters the first
node through port 0, it must do one of two things.

It either exits through port 1, traverses the connected pentagon, then
re-enters the node through port 1 and exit through port 2. When the agent
comes back it must enter through port 2 and exit through port 0 in order to
traverse the whole graph. This restricts f as shown in Figure 4.5 (without
loss of generality we consider the node as labeled ¢(v) = 0).

Or alternatively when the agent enters the first node through port 0
it exits through port 2, and when it comes back it enters through port 2,
exits through port 1, traverses the pentagon, then enters through 1 and exits
through 0. This restricts f as follows:

We refer to the algorithm in Figure 4.5 as the right-hand rule/left-hand
rule algorithm as for nodes where ¢(v) = 0 it performs right-hand rule, and
for all other nodes where c¢(v) = 1 it does the opposite which we refer to

22

Figure 4.6: Left-hand rule/right-hand rule agent algorithm

AV

P
>

0 2

Figure 4.7: 6 pentagon graph

as left-hand rule. Similarly we refer to the algorithm in Figure 4.6 as the
left-hand rule/right-hand rule algorithm. Say we have algorithm R perform-
ing right-hand rule/left-hand rule and algorithm R’ performing left-hand
rule/right-hand rule. Now for any labeling algorithm £ defined by labeling
function c¢(v), we can construct £’ defined by ¢(v) where ¢/(v) = 1 if and
only if ¢(v) = 0, otherwise ¢/(v) = 0. Now the two labeling schemes (£, R)
and (L', R’) are equivalent (by Definition 6) because for any input port p, if
L makes the first algorithm choose output port based on the right-hand rule,
then £’ will also make R’ choose the output port based on the right-hand
rule. Similarly for the case where £ makes R select the output port based
on the left-hand rule.
So no other algorithm can possibly explore the 6 pentagon graph (Figure
4.7).
O

Note that while we have proven that no algorithm that is not equivalent
by defintion 6 to right-hand rule/left-hand rule (Figure 4.5) can explore all

23

degree three bounded graphs, we have not yet shown that this algorithm can
explore all degree three bounded graphs. It turns out that right-hand rule
left-hand rule can explore all degree three bounded graphs.

We will next show that the case of the adversarial ports model with advice
can be reduced to that of benevolent ports model without advice where it
was proven by Dobrev et al. [7] that it is possible to assign the port numbers
by defining p, such than an agent can traverse all graphs. The initial period
length 10n was subsequently improved to (4%)71 by Czyzowicz et al. |[5]
and more recently this result was improved by Kosowski and Navarra [13]
to 4n — 2. The technique of Kosowski and Navarra is based on a graph
decomposition based on a spanning tree of the graph. The decomposition
then has its ports numbered in such a way to allow a benevolent agent to
perform a periodic traversal.

We now show how we can use such benevolent port numbering algorithms
to solve the case of the adversarial ports model with advice. We first give a
discussion of the algorithm, before providing a formal proof in Theorem 8.

The idea is to reduce the problem of traversing a graph in adversarial
ports with advice to traversing with benevolent ports without advice. We
show that right-hand rule/left-hand rule can simulate any agent algorithm
in the benevolent ports model without advice.

In the benevolent ports model without advice, a labeling algorithm sup-
plies the port numbers to each node, so that a right-hand rule agent performs
a periodic traversal. For degree three nodes, there are 6 different ways of
assigning port numbers, shown in Figure 4.8. The arrow in Figure 4.8 shows
how right-hand rule behaves on each of the different port numbering, for
example for the first node the right-hand rule enters through 0 and exits 1,
enters 1 and then exits 2, and enters 2 and then exits 0.

From Figure 4.8 we can see that of the 6 different port number assign-
ments, the right hand rule only behaves in one of two different ways, travers-
ing the node in a clockwise or counter-clockwise manner. These directions
correspond to the parity of port number permutations. described in the para-
graph below. A diagram for the left-hand rule would be the same except the
direction of all the arrows is reversed.

So when benevolent port numbering algorithms assign benevolent port
numbers to cubic graphs the benevolent port algorithm is choosing between
one of two behaviors for the agent at that node. For a node pick an or-
dering of its ports, say pi1,p2,p3. The set of possible port numberings is
{012,021, 120,102,201,210}. We partition this set into two equivalence
classes: the set of even permutations {012,120,201} and the set of odd
permutations {021, 102,210}. Now if we pick a port numbering from the set

24

of even permutations we get one right hand rule behavior, and if we pick an
odd permutation then we get the other behavior.

Now consider the case with adversarial port numbers for a graph G. If we
first take G (ignoring port numbers) and run a benevolent ports algorithm,
we obtain definitions for each port numbering function, say pl. For each
node v € V pick an ordering of its ports pyopy1pv2. In the adversarial case
we already have each p, defined by an adversary. For each node v, then
py and p), either number pop;p2 with port numbers in the same equivalence
class (both assign even permutations or both assign odd permutations), or p,
and p) assign port numbers from different equivalence classes (one assigns
an odd permutation and the other assigns an even permutation). For all
nodes where p, and p/ assign numbers from the same equivalence class,
define ¢(v) = 0. In this case right-hand/left-hand rule behaves equivalently
to right-hand rule because Theorem 1 states that for two agent algorithms to
behave equivalently, they must select the same exit port for every entry port.
Where ¢(v) = 0 then right-hand/left-hand rule picks the output port based
on the right-hand rule, so is equivalent to the right-hand rule algorithm.
Since in this case (where c¢(v) = 0) right-hand/left-hand rule is equivalent to
right hand rule, this is consistent with a benevolent port numbering traversal.

In the remaining nodes where p, and pl assign port numbers from dif-
ferent equivalence classes, define ¢(v) = 1. Say that the benevolent port
numbering p!, picks an even permutation, but the adversarial numbering p,
uses an odd permutation. Then this means that if we perform left-hand rule
on the node, then we will traverse the ports in the order pspop; which will
be an even permutation (due to the fact that for strings of length three,
reversing an odd permutation gives an even permutation). Labeling the
node ¢(v) = 1 makes right-hand rule left-hand rule perform left-hand rule
on the node and traverse the node consistently with the periodic traversal
of a benevolent port numbering algorithm.

Hence at every node in the adversarial case the right-hand rule/left-
hand rule agent behaves identically to the right-hand rule in the case of
benevolent port numbers. Hence by Theorem 1 the right-hand rule/left-
hand rule performs a periodic traversal identical to that of a benevolent port
numbering algorithm.

The algorithm is easily extended from cubic graphs to degree 3 bounded
graphs as for each node where d(v) = 1 there is no choice but to exit from
the entry port, and for nodes where d(v) = 2 we just exit from the port we
did not enter from, consistent with the right-hand (and indeed left-hand)
rules.

The right-hand rule/left-hand rule algorithm can traverse all graphs where

25

NS RV N

Figure 4.8: Port numberings for degree 3 nodes

A(G) = 3 in period length 4n — 2 as using the above algorithm we know that
the right-hand rule/left-hand rule algorithm can traverse all graphs where
A(G) = 3 in a path identical to that obtained using a benevolent port num-
bering algorithm. The benevolent port numbering algorithm of Kosowski and
Navarra [13] gives a period length of 4n — 2, hence using this with the above
theorem gives a period length of 4n — 2 for the right-hand rule/left-hand rule
algorithm.

The 4n — 2 bound is not known to be optimal, so it is possible that this
result could improve with better benevolent ports algorithms, since the best
known lower bound on benevolent ports algorithms’ period length is (2.8)n.

4.2.5 Higher degree graphs: upper bounds on number of labels

We can use the technique of the previous section to create algorithms to
explore higher degree graphs. While this technique is applicable to graphs
of any A(G), we show below that this technique only gives an improvement
over the algorithm from Section 4.2.2 for small A(G).

Theorem 8. A graph G with adversarial port numbers defined by port num-
bering functions q, : 6(v) — {0,...,d(v) — 1} and overall port numbering
function q(v, (v,v")) = q,(v") can be explored by an oblivious agent using at

most |C| = (A(G) — 1)! labels.

Proof. A benevolent port numbering algorithm A takes a graph G and re-
turns a port numbering function, A(G) = r wherer : P — {0,...,A(G)—1}.

26

Say A defines r to allow a right-hand rule agent to explore G. So A defines for
each node v a function r, : 6(v) — {0,...,d(v)—1} and r(v, (v,v")) = r,(v).

A right-hand rule agent R has transition function f(i,d(v)) = (i+1) mod
d(v) and so port mapping function

g((u, (u,0)) = (V'(v,)

where:

Eliminating x for entry port (u, (u,v)) gives exit port:

(u7 (u7 UI)) = r;l(f(ru(v), d(u))

Expanding f gives (u, (u,v")) = r;((ry(v) + 1) mod d(u)).

Define a port numbering function s as a rotation of r if and only if
sp(p) = ro(p) + 7 mod d(v) where i € {0,1,2,...} and s(v, (v,0")) = s, (V).

We now show that, when s is a rotation of r, given an input port (u, (u, v))
then the exit port (u, (u,v")) chosen by right hand rule f is the same for s
and 7r:

Using s we have:

(u, (u,0) = 53, (f(su(v), d(u))
Expanding f gives:

(u, (u,v")) = 5;1((3u(v) + 1) mod d(u))
Expand s, in terms of 7y:

(u, (u,v")) = s ((ru(v) + i 4+ 1) mod d(u))

—1; ~1.
Expand s;* in terms of r *:

(u, (u,v")) = r;l((ru(v) +i+1—14) modd(u))
o (ru(v) + 1) mod d(u))
=7, ((f(ru(v),d(u))) = s, ((f (su(v), d(w)))

=r

27

So if we use a rotation s of a benevolent port numbering r then the right-
hand rule still pick the same output ports for a given input port. Theorem
1 states that if two algorithms pick the same output port for a given input
port then they are equivalent. Hence right-hand rule using s is equivalent to
right-hand rule using 7.

For a node v, a benevolent port algorithm defines a port numbering
function r, : 6(v) — {0,...,d(v) — 1}. Function r, must by definition be
bijective and so there are at most d(v)! possible functions from which r, is
chosen. We have shown that for a right-hand rule agent then any rotation s,
results in identical agent behavior. For any r, there are d possible rotations
of r,.

Define an equivalence relation where r, is equivalent to s, if and only if
Sy 18 a rotation of r,. We have shown that for any two elements of the same
equivalence class, a right-hand rule agent will behave identically. Since there
are d rotations for any r, and r, is chosen from a set of size d(v)! then there
are d(v)!/d = (d(v) — 1)! equivalence classes. A node of maximum degree
will hence have (A(G) — 1)! equivalence classes.

We now return to the original problem of how to label graph G. We do
this as follows:

For each node v of degree A(G) we have (A(G) — 1)! equivalence classes,
say EgF1 ... Ey. A benevolent port algorithm A will define for each v a port
numbering function r,. We now label v using one of the equivalence classes,
c(v) = E; where r, € E;.

Now define the agent transition function to perform the right-hand rule
using an element of F; (where p, is the adversarial port numbering function):

(i, d(v), c(v)) = pu(s, ((s0(py ' (4)) + 1) mod d(v)))
Sy € ¢(v)

It does not matter which s, € ¢(v) we pick as we have shown that they
result in identical behavior for a right-hand rule agent.

Using this labeling scheme which requires |C| = (A(G) — 1)! labels, the
agent will traverse the graph identically to a right-hand rule agent traversing
G using benevolent port numbers.

O]

Note that while this technique can be used for graphs of any A(G), there
is only an improvement in |C| for small A(G). This is because the number
of labels used by this technique grows as O(A(G)!), whereas the tree-based

28

algorithm of Section 4.2.2 grows at rate O(22(%)). Hence for large A(G)
the tree-based algorithm is more efficient, however for A(G) < 6 we get an
improvement in |C|. For A(G) = 4 we get |C| = 6 and for A(G) = 5 we
get |C| = 24 (as opposed to |C| = 15 and |C| = 31 respectively for the
tree-based algorithm).

5 Conclusions

We have shown a new exact bound of |C| = 2 for the number of labels
needed for an oblivious agent to explore degree three bounded graphs with
adversarial port numbers and local advice at each node.

We have shown that there is in fact only one such agent algorithm (up
to trivial isomorphism of swapping label values) that can explore all such
graphs. This algorithm worked by reducing the case of adversarial ports
with advice to benevolent ports without advice. The upper bound on period
length is 4n — 2 when reducing to previous results of Kosowski and Navarra
[13]. It may be possible to improve on this period length in future work.

We have also shown a new 5-label algorithm that explores all degree
three bounded graphs with similar conditions, with period length (2%)71 —1.
It remains open as to whether this technique can be extended to graphs of
higher degree.

We have proved an upper bound of |C| = (A(G) — 1)! for all graphs in
the adversarial model with advice. This gives new upper bounds for graphs
where |C] € 4,5. This technique gives a period length of 4n — 2 as it reduces
to the previous results of Kosowski and Navarra [13]. It remains open as to
whether these upper bounds are tight or not.

6 Acknowledgements

The author would like to thank James Aspnes, Dana Angluin and Joan
Feigenbaum for their useful discussions.

References

[1] M. Blum and D. Kozen, On the power of the compass, or, Why mazes
are easier to search than graphs," in FOCS 78 (1978), 132-142.

[2] Lothar Budach, Environments, labyrinths and automata, Fundamentals
of Computation Theory, 1977, pp. 54-64.

29

3]

4]

[5]

[6]

7]

8]

19]

Reuven Cohen, Pierre Fraigniaud, David Ilcinkas, Amos Korman, and
David Peleg, Label-guided graph exploration by a finite automaton,
ICALP (Luis Caires, Giuseppe F. Italiano, Luis Monteiro, Catuscia
Palamidessi, and Moti Yung, eds.), Lecture Notes in Computer Science,
vol. 3580, Springer, 2005, pp. 335-346.

Stephen A. Cook and Charles Rackoff, Space lower bounds for maze
threadability on restricted machines, SIAM J. Comput. 9 (1980), no. 3,
636—652.

Jurek Czyzowicz, Stefan Dobrev, Leszek Gasieniec, David Ilcinkas, Jes-
per Jansson, Ralf Klasing, loannis Lignos, Russell A. Martin, Kuni-
hiko Sadakane, and Wing-Kin Sung, More efficient periodic traversal in
anonymous undirected graphs, SIROCCO (Shay Kutten and Janez Ze-
rovnik, eds.), Lecture Notes in Computer Science, vol. 5869, Springer,
2009, pp. 167-181.

Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej
Pelc, Tree exploration with little memory, J. Algorithms 51 (2004), no. 1,
38-63.

Stefan Dobrev, Jesper Jansson, Kunihiko Sadakane, and Wing-Kin
Sung, Finding short right-hand-on-the-wall walks in graphs, SIROCCO
(Andrzej Pelc and Michel Raynal, eds.), Lecture Notes in Computer
Science, vol. 3499, Springer, 2005, pp. 127-139.

Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David
Peleg, Graph exploration by a finite automaton, Theor. Comput. Sci.
345 (2005), no. 2-3, 331-344.

Pierre Fraigniaud, David Ilcinkas, and Andrzej Pelc, Impact of memory
size on graph exploration capability, Discrete Applied Mathematics 156
(2008), no. 12, 2310-2319.

Leszek Gasieniec, Ralf Klasing, Russell A. Martin, Alfredo Navarra, and
Xiaohui Zhang, Fuast periodic graph exploration with constant memory,
J. Comput. Syst. Sci. 74 (2008), no. 5, 808-822.

Liang Hu, Meng Zhang, Yi Zhang, and Jijun Tang, Label-guided graph
exploration with adjustable ratio of labels, Int. J. Found. Comput. Sci.
23 (2012), no. 4, 903-930.

30

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

David TIlcinkas, Setting port numbers for fast graph exploration,
SIROCCO (Paola Flocchini and Leszek Gasieniec, eds.), Lecture Notes
in Computer Science, vol. 4056, Springer, 2006, pp. 59-69.

Adrian Kosowski and Alfredo Navarra, Graph decomposition for im-
proving memoryless periodic exploration, MFCS (Rastislav Kralovic and
Damian Niwinski, eds.), Lecture Notes in Computer Science, vol. 5734,
Springer, 2009, pp. 501-512.

D. Kozen, Automata and planar graphs, Fund. Computat. Theory
(FCT) 2 (1979), 43-2.

MO Rabin, Maze threading automata, An unpublished lecture presented
at MIT and UC Berkeley, 1967.

Omer Reingold, Undirected st-connectivity in log-space, STOC
(Harold N. Gabow and Ronald Fagin, eds.), ACM, 2005, pp. 376-385.

Robert W. Robinson and Nicholas C. Wormald, Almost all regular
graphs are hamiltonian, Random Struct. Algorithms 5 (1994), no. 2,
363-374.

Hans-Anton Rollik, Automaten in planaren graphen, Acta Inf. 13
(1980), 287-298.

C.E. Shannon, Presentation of a maze-solving machine, 8th Conf. of the
Josiah Macy Jr. Found.(Cybernetics), 1951, pp. 173-180.

31

